Properties

Label 4650.2
Level 4650
Weight 2
Dimension 132446
Nonzero newspaces 84
Sturm bound 2304000

Downloads

Learn more

Defining parameters

Level: N N = 4650=235231 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31
Weight: k k = 2 2
Nonzero newspaces: 84 84
Sturm bound: 23040002304000

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(4650))M_{2}(\Gamma_1(4650)).

Total New Old
Modular forms 582720 132446 450274
Cusp forms 569281 132446 436835
Eisenstein series 13439 0 13439

Decomposition of S2new(Γ1(4650))S_{2}^{\mathrm{new}}(\Gamma_1(4650))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
4650.2.a χ4650(1,)\chi_{4650}(1, \cdot) 4650.2.a.a 1 1
4650.2.a.b 1
4650.2.a.c 1
4650.2.a.d 1
4650.2.a.e 1
4650.2.a.f 1
4650.2.a.g 1
4650.2.a.h 1
4650.2.a.i 1
4650.2.a.j 1
4650.2.a.k 1
4650.2.a.l 1
4650.2.a.m 1
4650.2.a.n 1
4650.2.a.o 1
4650.2.a.p 1
4650.2.a.q 1
4650.2.a.r 1
4650.2.a.s 1
4650.2.a.t 1
4650.2.a.u 1
4650.2.a.v 1
4650.2.a.w 1
4650.2.a.x 1
4650.2.a.y 1
4650.2.a.z 1
4650.2.a.ba 1
4650.2.a.bb 1
4650.2.a.bc 1
4650.2.a.bd 1
4650.2.a.be 1
4650.2.a.bf 1
4650.2.a.bg 1
4650.2.a.bh 1
4650.2.a.bi 1
4650.2.a.bj 1
4650.2.a.bk 1
4650.2.a.bl 1
4650.2.a.bm 1
4650.2.a.bn 1
4650.2.a.bo 1
4650.2.a.bp 1
4650.2.a.bq 1
4650.2.a.br 1
4650.2.a.bs 1
4650.2.a.bt 1
4650.2.a.bu 1
4650.2.a.bv 1
4650.2.a.bw 1
4650.2.a.bx 1
4650.2.a.by 2
4650.2.a.bz 2
4650.2.a.ca 2
4650.2.a.cb 2
4650.2.a.cc 2
4650.2.a.cd 2
4650.2.a.ce 2
4650.2.a.cf 2
4650.2.a.cg 2
4650.2.a.ch 2
4650.2.a.ci 3
4650.2.a.cj 3
4650.2.a.ck 3
4650.2.a.cl 3
4650.2.a.cm 3
4650.2.a.cn 3
4650.2.a.co 3
4650.2.a.cp 3
4650.2.d χ4650(3349,)\chi_{4650}(3349, \cdot) 4650.2.d.a 2 1
4650.2.d.b 2
4650.2.d.c 2
4650.2.d.d 2
4650.2.d.e 2
4650.2.d.f 2
4650.2.d.g 2
4650.2.d.h 2
4650.2.d.i 2
4650.2.d.j 2
4650.2.d.k 2
4650.2.d.l 2
4650.2.d.m 2
4650.2.d.n 2
4650.2.d.o 2
4650.2.d.p 2
4650.2.d.q 2
4650.2.d.r 2
4650.2.d.s 2
4650.2.d.t 2
4650.2.d.u 2
4650.2.d.v 2
4650.2.d.w 2
4650.2.d.x 2
4650.2.d.y 2
4650.2.d.z 2
4650.2.d.ba 2
4650.2.d.bb 2
4650.2.d.bc 4
4650.2.d.bd 4
4650.2.d.be 4
4650.2.d.bf 4
4650.2.d.bg 4
4650.2.d.bh 4
4650.2.d.bi 6
4650.2.d.bj 6
4650.2.e χ4650(4649,)\chi_{4650}(4649, \cdot) n/a 192 1
4650.2.h χ4650(1301,)\chi_{4650}(1301, \cdot) n/a 204 1
4650.2.i χ4650(3001,)\chi_{4650}(3001, \cdot) n/a 204 2
4650.2.j χ4650(2357,)\chi_{4650}(2357, \cdot) n/a 360 2
4650.2.k χ4650(2107,)\chi_{4650}(2107, \cdot) n/a 192 2
4650.2.n χ4650(721,)\chi_{4650}(721, \cdot) n/a 640 4
4650.2.o χ4650(901,)\chi_{4650}(901, \cdot) n/a 400 4
4650.2.p χ4650(1831,)\chi_{4650}(1831, \cdot) n/a 640 4
4650.2.q χ4650(1771,)\chi_{4650}(1771, \cdot) n/a 640 4
4650.2.r χ4650(481,)\chi_{4650}(481, \cdot) n/a 640 4
4650.2.s χ4650(931,)\chi_{4650}(931, \cdot) n/a 608 4
4650.2.t χ4650(2351,)\chi_{4650}(2351, \cdot) n/a 404 2
4650.2.w χ4650(1049,)\chi_{4650}(1049, \cdot) n/a 384 2
4650.2.x χ4650(1699,)\chi_{4650}(1699, \cdot) n/a 192 2
4650.2.ba χ4650(929,)\chi_{4650}(929, \cdot) n/a 1280 4
4650.2.bb χ4650(559,)\chi_{4650}(559, \cdot) n/a 592 4
4650.2.bg χ4650(581,)\chi_{4650}(581, \cdot) n/a 1280 4
4650.2.bh χ4650(401,)\chi_{4650}(401, \cdot) n/a 816 4
4650.2.bi χ4650(3191,)\chi_{4650}(3191, \cdot) n/a 1280 4
4650.2.bj χ4650(461,)\chi_{4650}(461, \cdot) n/a 1280 4
4650.2.bs χ4650(1391,)\chi_{4650}(1391, \cdot) n/a 1280 4
4650.2.bv χ4650(109,)\chi_{4650}(109, \cdot) n/a 640 4
4650.2.bw χ4650(89,)\chi_{4650}(89, \cdot) n/a 1280 4
4650.2.bx χ4650(959,)\chi_{4650}(959, \cdot) n/a 1280 4
4650.2.by χ4650(449,)\chi_{4650}(449, \cdot) n/a 768 4
4650.2.bz χ4650(2209,)\chi_{4650}(2209, \cdot) n/a 640 4
4650.2.ca χ4650(349,)\chi_{4650}(349, \cdot) n/a 384 4
4650.2.cb χ4650(469,)\chi_{4650}(469, \cdot) n/a 640 4
4650.2.cc χ4650(1889,)\chi_{4650}(1889, \cdot) n/a 1280 4
4650.2.cl χ4650(29,)\chi_{4650}(29, \cdot) n/a 1280 4
4650.2.cm χ4650(529,)\chi_{4650}(529, \cdot) n/a 640 4
4650.2.cn χ4650(371,)\chi_{4650}(371, \cdot) n/a 1280 4
4650.2.cs χ4650(3157,)\chi_{4650}(3157, \cdot) n/a 384 4
4650.2.ct χ4650(707,)\chi_{4650}(707, \cdot) n/a 768 4
4650.2.cu χ4650(211,)\chi_{4650}(211, \cdot) n/a 1280 8
4650.2.cv χ4650(1291,)\chi_{4650}(1291, \cdot) n/a 1280 8
4650.2.cw χ4650(661,)\chi_{4650}(661, \cdot) n/a 1280 8
4650.2.cx χ4650(751,)\chi_{4650}(751, \cdot) n/a 816 8
4650.2.cy χ4650(391,)\chi_{4650}(391, \cdot) n/a 1280 8
4650.2.cz χ4650(121,)\chi_{4650}(121, \cdot) n/a 1280 8
4650.2.da χ4650(337,)\chi_{4650}(337, \cdot) n/a 1280 8
4650.2.db χ4650(233,)\chi_{4650}(233, \cdot) n/a 2560 8
4650.2.dm χ4650(977,)\chi_{4650}(977, \cdot) n/a 2560 8
4650.2.dn χ4650(247,)\chi_{4650}(247, \cdot) n/a 1280 8
4650.2.do χ4650(277,)\chi_{4650}(277, \cdot) n/a 1280 8
4650.2.dp χ4650(457,)\chi_{4650}(457, \cdot) n/a 768 8
4650.2.dq χ4650(497,)\chi_{4650}(497, \cdot) n/a 2400 8
4650.2.dr χ4650(407,)\chi_{4650}(407, \cdot) n/a 1536 8
4650.2.ds χ4650(1163,)\chi_{4650}(1163, \cdot) n/a 2560 8
4650.2.dt χ4650(463,)\chi_{4650}(463, \cdot) n/a 1280 8
4650.2.du χ4650(523,)\chi_{4650}(523, \cdot) n/a 1280 8
4650.2.dv χ4650(47,)\chi_{4650}(47, \cdot) n/a 2560 8
4650.2.ea χ4650(161,)\chi_{4650}(161, \cdot) n/a 2560 8
4650.2.eb χ4650(1309,)\chi_{4650}(1309, \cdot) n/a 1280 8
4650.2.ec χ4650(239,)\chi_{4650}(239, \cdot) n/a 2560 8
4650.2.el χ4650(179,)\chi_{4650}(179, \cdot) n/a 2560 8
4650.2.em χ4650(19,)\chi_{4650}(19, \cdot) n/a 1280 8
4650.2.en χ4650(919,)\chi_{4650}(919, \cdot) n/a 1280 8
4650.2.eo χ4650(49,)\chi_{4650}(49, \cdot) n/a 768 8
4650.2.ep χ4650(269,)\chi_{4650}(269, \cdot) n/a 2560 8
4650.2.eq χ4650(1199,)\chi_{4650}(1199, \cdot) n/a 1536 8
4650.2.er χ4650(569,)\chi_{4650}(569, \cdot) n/a 2560 8
4650.2.es χ4650(169,)\chi_{4650}(169, \cdot) n/a 1280 8
4650.2.ev χ4650(611,)\chi_{4650}(611, \cdot) n/a 2560 8
4650.2.fe χ4650(641,)\chi_{4650}(641, \cdot) n/a 2560 8
4650.2.ff χ4650(251,)\chi_{4650}(251, \cdot) n/a 1616 8
4650.2.fg χ4650(11,)\chi_{4650}(11, \cdot) n/a 2560 8
4650.2.fh χ4650(911,)\chi_{4650}(911, \cdot) n/a 2560 8
4650.2.fm χ4650(439,)\chi_{4650}(439, \cdot) n/a 1280 8
4650.2.fn χ4650(119,)\chi_{4650}(119, \cdot) n/a 2560 8
4650.2.fq χ4650(127,)\chi_{4650}(127, \cdot) n/a 2560 16
4650.2.fr χ4650(227,)\chi_{4650}(227, \cdot) n/a 5120 16
4650.2.fs χ4650(107,)\chi_{4650}(107, \cdot) n/a 3072 16
4650.2.ft χ4650(377,)\chi_{4650}(377, \cdot) n/a 5120 16
4650.2.fu χ4650(43,)\chi_{4650}(43, \cdot) n/a 1536 16
4650.2.fv χ4650(13,)\chi_{4650}(13, \cdot) n/a 2560 16
4650.2.fw χ4650(37,)\chi_{4650}(37, \cdot) n/a 2560 16
4650.2.fx χ4650(173,)\chi_{4650}(173, \cdot) n/a 5120 16
4650.2.fy χ4650(803,)\chi_{4650}(803, \cdot) n/a 5120 16
4650.2.fz χ4650(73,)\chi_{4650}(73, \cdot) n/a 2560 16
4650.2.gk χ4650(113,)\chi_{4650}(113, \cdot) n/a 5120 16
4650.2.gl χ4650(613,)\chi_{4650}(613, \cdot) n/a 2560 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(4650))S_{2}^{\mathrm{old}}(\Gamma_1(4650)) into lower level spaces

S2old(Γ1(4650)) S_{2}^{\mathrm{old}}(\Gamma_1(4650)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))16^{\oplus 16}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))6^{\oplus 6}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))8^{\oplus 8}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))8^{\oplus 8}\oplusS2new(Γ1(25))S_{2}^{\mathrm{new}}(\Gamma_1(25))8^{\oplus 8}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))4^{\oplus 4}\oplusS2new(Γ1(31))S_{2}^{\mathrm{new}}(\Gamma_1(31))12^{\oplus 12}\oplusS2new(Γ1(50))S_{2}^{\mathrm{new}}(\Gamma_1(50))4^{\oplus 4}\oplusS2new(Γ1(62))S_{2}^{\mathrm{new}}(\Gamma_1(62))6^{\oplus 6}\oplusS2new(Γ1(75))S_{2}^{\mathrm{new}}(\Gamma_1(75))4^{\oplus 4}\oplusS2new(Γ1(93))S_{2}^{\mathrm{new}}(\Gamma_1(93))6^{\oplus 6}\oplusS2new(Γ1(150))S_{2}^{\mathrm{new}}(\Gamma_1(150))2^{\oplus 2}\oplusS2new(Γ1(155))S_{2}^{\mathrm{new}}(\Gamma_1(155))8^{\oplus 8}\oplusS2new(Γ1(186))S_{2}^{\mathrm{new}}(\Gamma_1(186))3^{\oplus 3}\oplusS2new(Γ1(310))S_{2}^{\mathrm{new}}(\Gamma_1(310))4^{\oplus 4}\oplusS2new(Γ1(465))S_{2}^{\mathrm{new}}(\Gamma_1(465))4^{\oplus 4}\oplusS2new(Γ1(775))S_{2}^{\mathrm{new}}(\Gamma_1(775))4^{\oplus 4}\oplusS2new(Γ1(930))S_{2}^{\mathrm{new}}(\Gamma_1(930))2^{\oplus 2}\oplusS2new(Γ1(1550))S_{2}^{\mathrm{new}}(\Gamma_1(1550))2^{\oplus 2}\oplusS2new(Γ1(2325))S_{2}^{\mathrm{new}}(\Gamma_1(2325))2^{\oplus 2}