Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [465,2,Mod(29,465)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("465.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.w (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(224\) |
Relative dimension: | \(56\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −2.17476 | − | 1.58006i | −1.39076 | + | 1.03236i | 1.61497 | + | 4.97038i | 1.84413 | + | 1.26459i | 4.65577 | − | 0.0476579i | −2.62331 | + | 0.852364i | 2.67993 | − | 8.24797i | 0.868451 | − | 2.87155i | −2.01243 | − | 5.66400i |
29.2 | −2.17476 | − | 1.58006i | 1.41161 | − | 1.00368i | 1.61497 | + | 4.97038i | 1.84413 | − | 1.26459i | −4.65577 | − | 0.0476579i | 2.62331 | − | 0.852364i | 2.67993 | − | 8.24797i | 0.985262 | − | 2.83359i | −6.00866 | − | 0.163662i |
29.3 | −2.13783 | − | 1.55322i | −0.825661 | + | 1.52259i | 1.53977 | + | 4.73893i | −1.91718 | − | 1.15084i | 4.13004 | − | 1.97260i | 2.83245 | − | 0.920319i | 2.43569 | − | 7.49628i | −1.63657 | − | 2.51429i | 2.31108 | + | 5.43810i |
29.4 | −2.13783 | − | 1.55322i | 1.70321 | − | 0.314743i | 1.53977 | + | 4.73893i | −1.91718 | + | 1.15084i | −4.13004 | − | 1.97260i | −2.83245 | + | 0.920319i | 2.43569 | − | 7.49628i | 2.80187 | − | 1.07215i | 5.88610 | + | 0.517500i |
29.5 | −1.93988 | − | 1.40940i | 0.843084 | + | 1.51301i | 1.15867 | + | 3.56602i | 0.953695 | − | 2.02249i | 0.496966 | − | 4.12330i | −3.08879 | + | 1.00361i | 1.29635 | − | 3.98976i | −1.57842 | + | 2.55119i | −4.70055 | + | 2.57924i |
29.6 | −1.93988 | − | 1.40940i | 1.17843 | + | 1.26937i | 1.15867 | + | 3.56602i | 0.953695 | + | 2.02249i | −0.496966 | − | 4.12330i | 3.08879 | − | 1.00361i | 1.29635 | − | 3.98976i | −0.222587 | + | 2.99173i | 1.00045 | − | 5.26752i |
29.7 | −1.80416 | − | 1.31080i | −1.70077 | − | 0.327670i | 0.918771 | + | 2.82769i | 0.118368 | − | 2.23293i | 2.63896 | + | 2.82055i | 0.687565 | − | 0.223404i | 0.670664 | − | 2.06409i | 2.78527 | + | 1.11458i | −3.14049 | + | 3.87342i |
29.8 | −1.80416 | − | 1.31080i | 0.213936 | − | 1.71879i | 0.918771 | + | 2.82769i | 0.118368 | + | 2.23293i | −2.63896 | + | 2.82055i | −0.687565 | + | 0.223404i | 0.670664 | − | 2.06409i | −2.90846 | − | 0.735420i | 2.71338 | − | 4.18373i |
29.9 | −1.67717 | − | 1.21854i | −1.66147 | − | 0.489400i | 0.710043 | + | 2.18529i | −1.68652 | + | 1.46821i | 2.19022 | + | 2.84538i | 2.98458 | − | 0.969747i | 0.190744 | − | 0.587051i | 2.52098 | + | 1.62625i | 4.61766 | − | 0.407353i |
29.10 | −1.67717 | − | 1.21854i | 0.0479758 | − | 1.73139i | 0.710043 | + | 2.18529i | −1.68652 | − | 1.46821i | −2.19022 | + | 2.84538i | −2.98458 | + | 0.969747i | 0.190744 | − | 0.587051i | −2.99540 | − | 0.166129i | 1.03952 | + | 4.51754i |
29.11 | −1.34617 | − | 0.978049i | 0.106881 | + | 1.72875i | 0.237556 | + | 0.731123i | −2.22111 | − | 0.258232i | 1.54692 | − | 2.43172i | −1.69392 | + | 0.550387i | −0.633098 | + | 1.94848i | −2.97715 | + | 0.369541i | 2.73742 | + | 2.51997i |
29.12 | −1.34617 | − | 0.978049i | 1.61111 | + | 0.635863i | 0.237556 | + | 0.731123i | −2.22111 | + | 0.258232i | −1.54692 | − | 2.43172i | 1.69392 | − | 0.550387i | −0.633098 | + | 1.94848i | 2.19136 | + | 2.04889i | 3.24255 | + | 1.82473i |
29.13 | −1.34382 | − | 0.976344i | −1.21881 | + | 1.23065i | 0.234577 | + | 0.721954i | −0.451941 | + | 2.18992i | 2.83941 | − | 0.463789i | −0.178840 | + | 0.0581085i | −0.636943 | + | 1.96031i | −0.0289842 | − | 2.99986i | 2.74544 | − | 2.50161i |
29.14 | −1.34382 | − | 0.976344i | 1.54705 | − | 0.778870i | 0.234577 | + | 0.721954i | −0.451941 | − | 2.18992i | −2.83941 | − | 0.463789i | 0.178840 | − | 0.0581085i | −0.636943 | + | 1.96031i | 1.78672 | − | 2.40990i | −1.53079 | + | 3.38411i |
29.15 | −1.32909 | − | 0.965643i | −0.519304 | + | 1.65237i | 0.215989 | + | 0.664746i | 2.05145 | − | 0.889701i | 2.28580 | − | 1.69469i | 4.85968 | − | 1.57900i | −0.660500 | + | 2.03281i | −2.46065 | − | 1.71616i | −3.58570 | − | 0.798468i |
29.16 | −1.32909 | − | 0.965643i | 1.73197 | + | 0.0167223i | 0.215989 | + | 0.664746i | 2.05145 | + | 0.889701i | −2.28580 | − | 1.69469i | −4.85968 | + | 1.57900i | −0.660500 | + | 2.03281i | 2.99944 | + | 0.0579251i | −1.86743 | − | 3.16346i |
29.17 | −0.947381 | − | 0.688313i | −1.72341 | + | 0.172753i | −0.194277 | − | 0.597924i | 2.20604 | − | 0.365200i | 1.75164 | + | 1.02259i | −1.47965 | + | 0.480767i | −0.951239 | + | 2.92761i | 2.94031 | − | 0.595450i | −2.34134 | − | 1.17246i |
29.18 | −0.947381 | − | 0.688313i | 0.696862 | − | 1.58568i | −0.194277 | − | 0.597924i | 2.20604 | + | 0.365200i | −1.75164 | + | 1.02259i | 1.47965 | − | 0.480767i | −0.951239 | + | 2.92761i | −2.02877 | − | 2.21000i | −1.83859 | − | 1.86443i |
29.19 | −0.871945 | − | 0.633505i | 0.564951 | + | 1.63732i | −0.259075 | − | 0.797351i | 0.965755 | + | 2.01676i | 0.544647 | − | 1.78555i | −2.06777 | + | 0.671858i | −0.945333 | + | 2.90944i | −2.36166 | + | 1.85002i | 0.435542 | − | 2.37031i |
29.20 | −0.871945 | − | 0.633505i | 1.38261 | + | 1.04326i | −0.259075 | − | 0.797351i | 0.965755 | − | 2.01676i | −0.544647 | − | 1.78555i | 2.06777 | − | 0.671858i | −0.945333 | + | 2.90944i | 0.823212 | + | 2.88484i | −2.11971 | + | 1.14669i |
See next 80 embeddings (of 224 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
31.f | odd | 10 | 1 | inner |
93.k | even | 10 | 1 | inner |
155.m | odd | 10 | 1 | inner |
465.w | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.w.c | ✓ | 224 |
3.b | odd | 2 | 1 | inner | 465.2.w.c | ✓ | 224 |
5.b | even | 2 | 1 | inner | 465.2.w.c | ✓ | 224 |
15.d | odd | 2 | 1 | inner | 465.2.w.c | ✓ | 224 |
31.f | odd | 10 | 1 | inner | 465.2.w.c | ✓ | 224 |
93.k | even | 10 | 1 | inner | 465.2.w.c | ✓ | 224 |
155.m | odd | 10 | 1 | inner | 465.2.w.c | ✓ | 224 |
465.w | even | 10 | 1 | inner | 465.2.w.c | ✓ | 224 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.w.c | ✓ | 224 | 1.a | even | 1 | 1 | trivial |
465.2.w.c | ✓ | 224 | 3.b | odd | 2 | 1 | inner |
465.2.w.c | ✓ | 224 | 5.b | even | 2 | 1 | inner |
465.2.w.c | ✓ | 224 | 15.d | odd | 2 | 1 | inner |
465.2.w.c | ✓ | 224 | 31.f | odd | 10 | 1 | inner |
465.2.w.c | ✓ | 224 | 93.k | even | 10 | 1 | inner |
465.2.w.c | ✓ | 224 | 155.m | odd | 10 | 1 | inner |
465.2.w.c | ✓ | 224 | 465.w | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{112} + 41 T_{2}^{110} + 945 T_{2}^{108} + 16187 T_{2}^{106} + 229461 T_{2}^{104} + 2805068 T_{2}^{102} + \cdots + 390625 \)
acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\).