Newspace parameters
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(104\) |
Relative dimension: | \(52\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
119.1 | −2.66243 | 0.290440 | + | 1.70753i | 5.08855 | 0.356449 | + | 2.20747i | −0.773277 | − | 4.54617i | 0.379861 | + | 0.219313i | −8.22305 | −2.83129 | + | 0.991867i | −0.949020 | − | 5.87725i | ||||||
119.2 | −2.66243 | 1.62398 | − | 0.602235i | 5.08855 | 1.73350 | + | 1.41243i | −4.32374 | + | 1.60341i | −0.379861 | − | 0.219313i | −8.22305 | 2.27463 | − | 1.95603i | −4.61534 | − | 3.76050i | ||||||
119.3 | −2.25277 | −1.65302 | − | 0.517218i | 3.07497 | 1.98107 | + | 1.03701i | 3.72388 | + | 1.16517i | 3.62956 | + | 2.09552i | −2.42166 | 2.46497 | + | 1.70995i | −4.46288 | − | 2.33613i | ||||||
119.4 | −2.25277 | −1.27444 | − | 1.17295i | 3.07497 | −0.0924590 | + | 2.23416i | 2.87101 | + | 2.64239i | −3.62956 | − | 2.09552i | −2.42166 | 0.248372 | + | 2.98970i | 0.208289 | − | 5.03304i | ||||||
119.5 | −2.15798 | −0.783102 | + | 1.54491i | 2.65688 | −0.0977344 | − | 2.23393i | 1.68992 | − | 3.33389i | 1.65711 | + | 0.956733i | −1.41754 | −1.77350 | − | 2.41965i | 0.210909 | + | 4.82078i | ||||||
119.6 | −2.15798 | 0.946382 | − | 1.45064i | 2.65688 | −1.88577 | − | 1.20161i | −2.04227 | + | 3.13046i | −1.65711 | − | 0.956733i | −1.41754 | −1.20872 | − | 2.74572i | 4.06946 | + | 2.59304i | ||||||
119.7 | −2.04620 | 0.485137 | + | 1.66272i | 2.18694 | 2.10761 | − | 0.746986i | −0.992687 | − | 3.40226i | −4.09236 | − | 2.36273i | −0.382512 | −2.52928 | + | 1.61329i | −4.31259 | + | 1.52848i | ||||||
119.8 | −2.04620 | 1.68253 | − | 0.411220i | 2.18694 | −1.70071 | + | 1.45175i | −3.44279 | + | 0.841439i | 4.09236 | + | 2.36273i | −0.382512 | 2.66180 | − | 1.38378i | 3.48000 | − | 2.97057i | ||||||
119.9 | −1.83398 | −1.72961 | − | 0.0919572i | 1.36348 | −2.09097 | − | 0.792377i | 3.17206 | + | 0.168647i | −0.777962 | − | 0.449157i | 1.16737 | 2.98309 | + | 0.318100i | 3.83479 | + | 1.45320i | ||||||
119.10 | −1.83398 | −0.944441 | − | 1.45191i | 1.36348 | 0.359264 | − | 2.20702i | 1.73209 | + | 2.66276i | 0.777962 | + | 0.449157i | 1.16737 | −1.21606 | + | 2.74248i | −0.658883 | + | 4.04762i | ||||||
119.11 | −1.73851 | 1.39172 | + | 1.03108i | 1.02242 | 2.06916 | − | 0.847683i | −2.41952 | − | 1.79253i | 3.83754 | + | 2.21560i | 1.69954 | 0.873767 | + | 2.86994i | −3.59726 | + | 1.47371i | ||||||
119.12 | −1.73851 | 1.58880 | + | 0.689727i | 1.02242 | −1.76870 | + | 1.36811i | −2.76214 | − | 1.19910i | −3.83754 | − | 2.21560i | 1.69954 | 2.04855 | + | 2.19167i | 3.07490 | − | 2.37846i | ||||||
119.13 | −1.36470 | 0.0687450 | + | 1.73069i | −0.137607 | 0.288745 | + | 2.21735i | −0.0938159 | − | 2.36186i | 1.46427 | + | 0.845397i | 2.91718 | −2.99055 | + | 0.237952i | −0.394049 | − | 3.02600i | ||||||
119.14 | −1.36470 | 1.53319 | − | 0.805808i | −0.137607 | 1.77591 | + | 1.35873i | −2.09234 | + | 1.09968i | −1.46427 | − | 0.845397i | 2.91718 | 1.70135 | − | 2.47091i | −2.42357 | − | 1.85426i | ||||||
119.15 | −1.15830 | 0.150473 | + | 1.72550i | −0.658332 | −2.23430 | + | 0.0890267i | −0.174294 | − | 1.99866i | −0.189994 | − | 0.109693i | 3.07916 | −2.95472 | + | 0.519284i | 2.58799 | − | 0.103120i | ||||||
119.16 | −1.15830 | 1.56957 | − | 0.732437i | −0.658332 | 1.19425 | − | 1.89044i | −1.81803 | + | 0.848385i | 0.189994 | + | 0.109693i | 3.07916 | 1.92707 | − | 2.29922i | −1.38330 | + | 2.18971i | ||||||
119.17 | −1.11406 | −1.73171 | − | 0.0341087i | −0.758880 | 1.65152 | − | 1.50748i | 1.92923 | + | 0.0379990i | −1.74935 | − | 1.00999i | 3.07355 | 2.99767 | + | 0.118133i | −1.83989 | + | 1.67941i | ||||||
119.18 | −1.11406 | −0.895396 | − | 1.48265i | −0.758880 | −2.13127 | + | 0.676520i | 0.997522 | + | 1.65176i | 1.74935 | + | 1.00999i | 3.07355 | −1.39653 | + | 2.65513i | 2.37436 | − | 0.753681i | ||||||
119.19 | −0.784965 | −1.67682 | + | 0.433902i | −1.38383 | −0.314782 | + | 2.21380i | 1.31625 | − | 0.340598i | 2.60048 | + | 1.50139i | 2.65619 | 2.62346 | − | 1.45515i | 0.247093 | − | 1.73776i | ||||||
119.20 | −0.784965 | −0.462641 | − | 1.66912i | −1.38383 | 2.07460 | + | 0.834291i | 0.363157 | + | 1.31020i | −2.60048 | − | 1.50139i | 2.65619 | −2.57193 | + | 1.54441i | −1.62849 | − | 0.654889i | ||||||
See next 80 embeddings (of 104 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
31.e | odd | 6 | 1 | inner |
93.g | even | 6 | 1 | inner |
155.i | odd | 6 | 1 | inner |
465.t | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.t.d | ✓ | 104 |
3.b | odd | 2 | 1 | inner | 465.2.t.d | ✓ | 104 |
5.b | even | 2 | 1 | inner | 465.2.t.d | ✓ | 104 |
15.d | odd | 2 | 1 | inner | 465.2.t.d | ✓ | 104 |
31.e | odd | 6 | 1 | inner | 465.2.t.d | ✓ | 104 |
93.g | even | 6 | 1 | inner | 465.2.t.d | ✓ | 104 |
155.i | odd | 6 | 1 | inner | 465.2.t.d | ✓ | 104 |
465.t | even | 6 | 1 | inner | 465.2.t.d | ✓ | 104 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.t.d | ✓ | 104 | 1.a | even | 1 | 1 | trivial |
465.2.t.d | ✓ | 104 | 3.b | odd | 2 | 1 | inner |
465.2.t.d | ✓ | 104 | 5.b | even | 2 | 1 | inner |
465.2.t.d | ✓ | 104 | 15.d | odd | 2 | 1 | inner |
465.2.t.d | ✓ | 104 | 31.e | odd | 6 | 1 | inner |
465.2.t.d | ✓ | 104 | 93.g | even | 6 | 1 | inner |
465.2.t.d | ✓ | 104 | 155.i | odd | 6 | 1 | inner |
465.2.t.d | ✓ | 104 | 465.t | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{26} - 33 T_{2}^{24} + 473 T_{2}^{22} - 3876 T_{2}^{20} + 20107 T_{2}^{18} - 69071 T_{2}^{16} + \cdots - 12 \)
acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\).