Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [465,2,Mod(304,465)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("465.304");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.q (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
304.1 | − | 2.71530i | −0.866025 | + | 0.500000i | −5.37283 | −0.793165 | − | 2.09067i | 1.35765 | + | 2.35152i | −3.52866 | + | 2.03727i | 9.15824i | 0.500000 | − | 0.866025i | −5.67678 | + | 2.15368i | |||||
304.2 | − | 2.52175i | −0.866025 | + | 0.500000i | −4.35921 | 1.40815 | + | 1.73698i | 1.26087 | + | 2.18390i | 1.27653 | − | 0.737003i | 5.94933i | 0.500000 | − | 0.866025i | 4.38022 | − | 3.55101i | |||||
304.3 | − | 2.42055i | 0.866025 | − | 0.500000i | −3.85906 | 0.0792470 | + | 2.23466i | −1.21027 | − | 2.09626i | 3.48532 | − | 2.01225i | 4.49995i | 0.500000 | − | 0.866025i | 5.40911 | − | 0.191821i | |||||
304.4 | − | 2.24754i | 0.866025 | − | 0.500000i | −3.05145 | 1.89729 | − | 1.18334i | −1.12377 | − | 1.94643i | −2.11510 | + | 1.22115i | 2.36317i | 0.500000 | − | 0.866025i | −2.65961 | − | 4.26423i | |||||
304.5 | − | 2.16012i | 0.866025 | − | 0.500000i | −2.66614 | −1.31012 | − | 1.81206i | −1.08006 | − | 1.87072i | −1.09424 | + | 0.631758i | 1.43894i | 0.500000 | − | 0.866025i | −3.91428 | + | 2.83003i | |||||
304.6 | − | 2.11581i | −0.866025 | + | 0.500000i | −2.47665 | −1.82252 | − | 1.29553i | 1.05790 | + | 1.83234i | 4.27194 | − | 2.46641i | 1.00850i | 0.500000 | − | 0.866025i | −2.74110 | + | 3.85611i | |||||
304.7 | − | 1.97266i | −0.866025 | + | 0.500000i | −1.89140 | 1.71541 | + | 1.43435i | 0.986332 | + | 1.70838i | −3.55080 | + | 2.05006i | − | 0.214231i | 0.500000 | − | 0.866025i | 2.82949 | − | 3.38393i | ||||
304.8 | − | 1.56738i | 0.866025 | − | 0.500000i | −0.456691 | 2.09283 | + | 0.787438i | −0.783692 | − | 1.35739i | 0.751020 | − | 0.433602i | − | 2.41896i | 0.500000 | − | 0.866025i | 1.23422 | − | 3.28027i | ||||
304.9 | − | 1.40377i | −0.866025 | + | 0.500000i | 0.0294315 | 0.833968 | − | 2.07473i | 0.701885 | + | 1.21570i | −0.717444 | + | 0.414216i | − | 2.84885i | 0.500000 | − | 0.866025i | −2.91244 | − | 1.17070i | ||||
304.10 | − | 1.29837i | −0.866025 | + | 0.500000i | 0.314240 | −1.59440 | + | 1.56777i | 0.649184 | + | 1.12442i | −2.02725 | + | 1.17043i | − | 3.00474i | 0.500000 | − | 0.866025i | 2.03554 | + | 2.07012i | ||||
304.11 | − | 1.09870i | 0.866025 | − | 0.500000i | 0.792852 | −2.14855 | + | 0.619461i | −0.549351 | − | 0.951505i | 2.60166 | − | 1.50207i | − | 3.06851i | 0.500000 | − | 0.866025i | 0.680604 | + | 2.36062i | ||||
304.12 | − | 0.884829i | −0.866025 | + | 0.500000i | 1.21708 | −2.18219 | − | 0.487898i | 0.442414 | + | 0.766284i | −2.44399 | + | 1.41104i | − | 2.84656i | 0.500000 | − | 0.866025i | −0.431706 | + | 1.93086i | ||||
304.13 | − | 0.725626i | −0.866025 | + | 0.500000i | 1.47347 | −0.00238698 | + | 2.23607i | 0.362813 | + | 0.628410i | 3.46926 | − | 2.00298i | − | 2.52044i | 0.500000 | − | 0.866025i | 1.62255 | + | 0.00173205i | ||||
304.14 | − | 0.712440i | 0.866025 | − | 0.500000i | 1.49243 | 0.623543 | − | 2.14737i | −0.356220 | − | 0.616991i | 1.79597 | − | 1.03690i | − | 2.48815i | 0.500000 | − | 0.866025i | −1.52987 | − | 0.444237i | ||||
304.15 | − | 0.431366i | 0.866025 | − | 0.500000i | 1.81392 | 1.40014 | + | 1.74345i | −0.215683 | − | 0.373574i | −1.74686 | + | 1.00855i | − | 1.64520i | 0.500000 | − | 0.866025i | 0.752064 | − | 0.603970i | ||||
304.16 | 0.431366i | −0.866025 | + | 0.500000i | 1.81392 | −2.20994 | − | 0.340828i | −0.215683 | − | 0.373574i | 1.74686 | − | 1.00855i | 1.64520i | 0.500000 | − | 0.866025i | 0.147022 | − | 0.953292i | ||||||
304.17 | 0.712440i | −0.866025 | + | 0.500000i | 1.49243 | 1.54790 | − | 1.61369i | −0.356220 | − | 0.616991i | −1.79597 | + | 1.03690i | 2.48815i | 0.500000 | − | 0.866025i | 1.14966 | + | 1.10279i | ||||||
304.18 | 0.725626i | 0.866025 | − | 0.500000i | 1.47347 | −1.93530 | + | 1.12010i | 0.362813 | + | 0.628410i | −3.46926 | + | 2.00298i | 2.52044i | 0.500000 | − | 0.866025i | −0.812774 | − | 1.40430i | ||||||
304.19 | 0.884829i | 0.866025 | − | 0.500000i | 1.21708 | 1.51363 | + | 1.64588i | 0.442414 | + | 0.766284i | 2.44399 | − | 1.41104i | 2.84656i | 0.500000 | − | 0.866025i | −1.45632 | + | 1.33930i | ||||||
304.20 | 1.09870i | −0.866025 | + | 0.500000i | 0.792852 | 0.537806 | + | 2.17043i | −0.549351 | − | 0.951505i | −2.60166 | + | 1.50207i | 3.06851i | 0.500000 | − | 0.866025i | −2.38466 | + | 0.590889i | ||||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
31.c | even | 3 | 1 | inner |
155.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.q.b | ✓ | 60 |
5.b | even | 2 | 1 | inner | 465.2.q.b | ✓ | 60 |
31.c | even | 3 | 1 | inner | 465.2.q.b | ✓ | 60 |
155.j | even | 6 | 1 | inner | 465.2.q.b | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.q.b | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
465.2.q.b | ✓ | 60 | 5.b | even | 2 | 1 | inner |
465.2.q.b | ✓ | 60 | 31.c | even | 3 | 1 | inner |
465.2.q.b | ✓ | 60 | 155.j | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{30} + 47 T_{2}^{28} + 991 T_{2}^{26} + 12392 T_{2}^{24} + 102369 T_{2}^{22} + 589155 T_{2}^{20} + \cdots + 43264 \)
acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\).