Properties

Label 465.2.q.a
Level $465$
Weight $2$
Character orbit 465.q
Analytic conductor $3.713$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [465,2,Mod(304,465)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(465, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("465.304");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{3} + 2 q^{4} + (2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{5} - 2 \zeta_{12} q^{7} + \zeta_{12}^{2} q^{9} + 3 \zeta_{12}^{2} q^{11} + 2 \zeta_{12} q^{12} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}) q^{13} + \cdots + (3 \zeta_{12}^{2} - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 2 q^{5} + 2 q^{9} + 6 q^{11} - 8 q^{15} + 16 q^{16} - 8 q^{19} + 4 q^{20} - 4 q^{21} + 6 q^{25} - 20 q^{29} + 14 q^{31} + 16 q^{35} + 4 q^{36} + 8 q^{39} - 10 q^{41} + 12 q^{44} - 2 q^{45}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(-1\) \(1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
304.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −0.866025 + 0.500000i 2.00000 2.23205 + 0.133975i 0 1.73205 1.00000i 0 0.500000 0.866025i 0
304.2 0 0.866025 0.500000i 2.00000 −1.23205 1.86603i 0 −1.73205 + 1.00000i 0 0.500000 0.866025i 0
439.1 0 −0.866025 0.500000i 2.00000 2.23205 0.133975i 0 1.73205 + 1.00000i 0 0.500000 + 0.866025i 0
439.2 0 0.866025 + 0.500000i 2.00000 −1.23205 + 1.86603i 0 −1.73205 1.00000i 0 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
31.c even 3 1 inner
155.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 465.2.q.a 4
5.b even 2 1 inner 465.2.q.a 4
31.c even 3 1 inner 465.2.q.a 4
155.j even 6 1 inner 465.2.q.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.q.a 4 1.a even 1 1 trivial
465.2.q.a 4 5.b even 2 1 inner
465.2.q.a 4 31.c even 3 1 inner
465.2.q.a 4 155.j even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T + 5)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 7 T + 31)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$41$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$59$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$61$ \( (T - 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 196 T^{2} + 38416 \) Copy content Toggle raw display
$79$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$89$ \( (T + 13)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
show more
show less