Properties

Label 465.2.n.c
Level $465$
Weight $2$
Character orbit 465.n
Analytic conductor $3.713$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(16,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} + \beta_{5} - \beta_{3}) q^{2} + \beta_{7} q^{3} + (\beta_{7} + \beta_{6} + \beta_{4} + 1) q^{4} + q^{5} + ( - \beta_{2} - \beta_1 + 1) q^{6} + (\beta_{6} + \beta_{5} - \beta_{2}) q^{7}+ \cdots + ( - \beta_{7} + \beta_{5} + \beta_{3} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{5} + 2 q^{6} + q^{7} + 2 q^{8} - 2 q^{9} + 2 q^{10} + 6 q^{11} - 9 q^{12} - 4 q^{13} - 5 q^{14} - 2 q^{15} + 4 q^{16} - 2 q^{17} + 2 q^{18} + 5 q^{19} + 6 q^{20}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} + 2\nu^{6} - 3\nu^{5} - 4\nu^{3} - 7\nu^{2} - 12\nu - 7 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 7\nu^{5} + 20\nu^{4} - 16\nu^{3} + 19\nu^{2} + 6\nu + 9 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 4\nu^{6} - 9\nu^{5} + 12\nu^{4} - 16\nu^{3} + 13\nu^{2} - 10\nu - 1 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} + 10\nu^{6} - 17\nu^{5} + 8\nu^{4} - 4\nu^{3} - 13\nu^{2} - 8\nu - 5 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{7} - 12\nu^{6} + 23\nu^{5} - 20\nu^{4} + 16\nu^{3} + \nu^{2} + 6\nu - 1 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} + 18\nu^{6} - 35\nu^{5} + 32\nu^{4} - 28\nu^{3} - 11\nu^{2} - 12\nu - 7 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{4} - \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 3\beta_{6} + 2\beta_{5} + \beta_{4} - 3\beta_{2} - 2\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{7} + 4\beta_{6} + \beta_{4} - \beta_{3} - 5\beta_{2} - 4\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{7} - 6\beta_{5} - 4\beta_{3} - 6\beta_{2} - 6\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -16\beta_{6} - 16\beta_{5} - 6\beta_{4} - 6\beta_{3} - 7\beta _1 - 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -16\beta_{7} - 51\beta_{6} - 29\beta_{5} - 23\beta_{4} + 29\beta_{2} - 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \beta_{3} - \beta_{4} - \beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1
−0.386111 + 0.280526i
1.69513 1.23158i
0.418926 1.28932i
−0.227943 + 0.701538i
0.418926 + 1.28932i
−0.227943 0.701538i
−0.386111 0.280526i
1.69513 + 1.23158i
−1.43376 + 1.04169i −0.809017 0.587785i 0.352519 1.08494i 1.00000 1.77222 −0.238630 + 0.734428i −0.470553 1.44821i 0.309017 + 0.951057i −1.43376 + 1.04169i
16.2 1.93376 1.40496i −0.809017 0.587785i 1.14748 3.53158i 1.00000 −2.39026 1.04765 3.22433i −1.26552 3.89486i 0.309017 + 0.951057i 1.93376 1.40496i
256.1 0.0501062 0.154211i 0.309017 + 0.951057i 1.59676 + 1.16012i 1.00000 0.162147 −0.677837 0.492478i 0.521270 0.378725i −0.809017 + 0.587785i 0.0501062 0.154211i
256.2 0.449894 1.38463i 0.309017 + 0.951057i −0.0967635 0.0703028i 1.00000 1.45589 0.368820 + 0.267964i 2.21480 1.60914i −0.809017 + 0.587785i 0.449894 1.38463i
376.1 0.0501062 + 0.154211i 0.309017 0.951057i 1.59676 1.16012i 1.00000 0.162147 −0.677837 + 0.492478i 0.521270 + 0.378725i −0.809017 0.587785i 0.0501062 + 0.154211i
376.2 0.449894 + 1.38463i 0.309017 0.951057i −0.0967635 + 0.0703028i 1.00000 1.45589 0.368820 0.267964i 2.21480 + 1.60914i −0.809017 0.587785i 0.449894 + 1.38463i
436.1 −1.43376 1.04169i −0.809017 + 0.587785i 0.352519 + 1.08494i 1.00000 1.77222 −0.238630 0.734428i −0.470553 + 1.44821i 0.309017 0.951057i −1.43376 1.04169i
436.2 1.93376 + 1.40496i −0.809017 + 0.587785i 1.14748 + 3.53158i 1.00000 −2.39026 1.04765 + 3.22433i −1.26552 + 3.89486i 0.309017 0.951057i 1.93376 + 1.40496i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 465.2.n.c 8
31.d even 5 1 inner 465.2.n.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.n.c 8 1.a even 1 1 trivial
465.2.n.c 8 31.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 2T_{2}^{7} + T_{2}^{6} + 4T_{2}^{5} + 9T_{2}^{4} - 8T_{2}^{3} + 39T_{2}^{2} - 4T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - T^{7} + 10 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{8} - 6 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{8} + 4 T^{7} + \cdots + 121 \) Copy content Toggle raw display
$17$ \( (T^{4} + T^{3} + 6 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} - 5 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$23$ \( T^{8} + 8 T^{7} + \cdots + 271441 \) Copy content Toggle raw display
$29$ \( T^{8} + 3 T^{7} + \cdots + 3721 \) Copy content Toggle raw display
$31$ \( T^{8} - 3 T^{7} + \cdots + 923521 \) Copy content Toggle raw display
$37$ \( (T^{4} - 4 T^{3} + \cdots + 121)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 14 T^{7} + \cdots + 2070721 \) Copy content Toggle raw display
$43$ \( T^{8} - 4 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$47$ \( T^{8} - 24 T^{7} + \cdots + 3041536 \) Copy content Toggle raw display
$53$ \( T^{8} - 4 T^{7} + \cdots + 546121 \) Copy content Toggle raw display
$59$ \( T^{8} - 6 T^{7} + \cdots + 361 \) Copy content Toggle raw display
$61$ \( (T^{4} - 17 T^{3} + \cdots - 8531)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 43 T^{3} + \cdots + 10811)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 2 T^{7} + \cdots + 361 \) Copy content Toggle raw display
$73$ \( T^{8} + 6 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$79$ \( T^{8} + 13 T^{7} + \cdots + 687241 \) Copy content Toggle raw display
$83$ \( T^{8} - 22 T^{7} + \cdots + 121 \) Copy content Toggle raw display
$89$ \( T^{8} + 44 T^{7} + \cdots + 34586161 \) Copy content Toggle raw display
$97$ \( T^{8} + 11 T^{7} + \cdots + 361201 \) Copy content Toggle raw display
show more
show less