Properties

Label 465.2.k.b.218.9
Level $465$
Weight $2$
Character 465.218
Analytic conductor $3.713$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(32,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,0,0,-4,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 218.9
Character \(\chi\) \(=\) 465.218
Dual form 465.2.k.b.32.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00031 - 1.00031i) q^{2} +(-1.58066 + 0.708168i) q^{3} +0.00123647i q^{4} +(-1.98035 + 1.03838i) q^{5} +(2.28954 + 0.872765i) q^{6} +(-1.66917 + 1.66917i) q^{7} +(-1.99938 + 1.99938i) q^{8} +(1.99699 - 2.23875i) q^{9} +(3.01966 + 0.942258i) q^{10} -0.488628i q^{11} +(-0.000875632 - 0.00195445i) q^{12} +(0.606001 + 0.606001i) q^{13} +3.33937 q^{14} +(2.39491 - 3.04375i) q^{15} +4.00247 q^{16} +(-0.560255 - 0.560255i) q^{17} +(-4.23706 + 0.241832i) q^{18} -1.46112i q^{19} +(-0.00128393 - 0.00244865i) q^{20} +(1.45634 - 3.82044i) q^{21} +(-0.488779 + 0.488779i) q^{22} +(3.42811 - 3.42811i) q^{23} +(1.74445 - 4.57625i) q^{24} +(2.84354 - 4.11270i) q^{25} -1.21238i q^{26} +(-1.57116 + 4.95292i) q^{27} +(-0.00206388 - 0.00206388i) q^{28} -0.216767 q^{29} +(-5.44034 + 0.649033i) q^{30} -1.00000 q^{31} +(-0.00494590 - 0.00494590i) q^{32} +(0.346031 + 0.772356i) q^{33} +1.12086i q^{34} +(1.57230 - 5.03875i) q^{35} +(0.00276816 + 0.00246923i) q^{36} +(5.23298 - 5.23298i) q^{37} +(-1.46158 + 1.46158i) q^{38} +(-1.38703 - 0.528733i) q^{39} +(1.88335 - 6.03558i) q^{40} -7.11630i q^{41} +(-5.27841 + 2.36483i) q^{42} +(4.14486 + 4.14486i) q^{43} +0.000604176 q^{44} +(-1.63007 + 6.50714i) q^{45} -6.85833 q^{46} +(-6.37862 - 6.37862i) q^{47} +(-6.32656 + 2.83442i) q^{48} +1.42776i q^{49} +(-6.95839 + 1.26955i) q^{50} +(1.28233 + 0.488820i) q^{51} +(-0.000749304 + 0.000749304i) q^{52} +(6.92873 - 6.92873i) q^{53} +(6.52610 - 3.38280i) q^{54} +(0.507381 + 0.967652i) q^{55} -6.67460i q^{56} +(1.03472 + 2.30955i) q^{57} +(0.216834 + 0.216834i) q^{58} +9.51422 q^{59} +(0.00376351 + 0.00296125i) q^{60} +3.65071 q^{61} +(1.00031 + 1.00031i) q^{62} +(0.403534 + 7.07017i) q^{63} -7.99505i q^{64} +(-1.82935 - 0.570833i) q^{65} +(0.426457 - 1.11873i) q^{66} +(-4.73394 + 4.73394i) q^{67} +(0.000692741 - 0.000692741i) q^{68} +(-2.99101 + 7.84636i) q^{69} +(-6.61310 + 3.46753i) q^{70} +0.0865773i q^{71} +(0.483365 + 8.46887i) q^{72} +(1.94880 + 1.94880i) q^{73} -10.4692 q^{74} +(-1.58220 + 8.51450i) q^{75} +0.00180664 q^{76} +(0.815601 + 0.815601i) q^{77} +(0.858567 + 1.91636i) q^{78} +8.96053i q^{79} +(-7.92628 + 4.15608i) q^{80} +(-1.02402 - 8.94155i) q^{81} +(-7.11850 + 7.11850i) q^{82} +(-0.345948 + 0.345948i) q^{83} +(0.00472388 + 0.00180073i) q^{84} +(1.69126 + 0.527742i) q^{85} -8.29227i q^{86} +(0.342636 - 0.153508i) q^{87} +(0.976954 + 0.976954i) q^{88} +12.2175 q^{89} +(8.13972 - 4.87858i) q^{90} -2.02303 q^{91} +(0.00423877 + 0.00423877i) q^{92} +(1.58066 - 0.708168i) q^{93} +12.7612i q^{94} +(1.51720 + 2.89353i) q^{95} +(0.0113203 + 0.00431527i) q^{96} +(-1.33436 + 1.33436i) q^{97} +(1.42821 - 1.42821i) q^{98} +(-1.09392 - 0.975787i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{6} + 16 q^{10} - 12 q^{13} - 8 q^{15} - 60 q^{16} + 34 q^{18} - 4 q^{21} + 8 q^{22} + 8 q^{25} - 6 q^{27} - 80 q^{28} - 54 q^{30} - 60 q^{31} + 10 q^{33} + 28 q^{36} - 12 q^{37} + 60 q^{40}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00031 1.00031i −0.707325 0.707325i 0.258647 0.965972i \(-0.416723\pi\)
−0.965972 + 0.258647i \(0.916723\pi\)
\(3\) −1.58066 + 0.708168i −0.912597 + 0.408861i
\(4\) 0.00123647i 0.000618237i
\(5\) −1.98035 + 1.03838i −0.885638 + 0.464377i
\(6\) 2.28954 + 0.872765i 0.934701 + 0.356305i
\(7\) −1.66917 + 1.66917i −0.630886 + 0.630886i −0.948290 0.317405i \(-0.897189\pi\)
0.317405 + 0.948290i \(0.397189\pi\)
\(8\) −1.99938 + 1.99938i −0.706888 + 0.706888i
\(9\) 1.99699 2.23875i 0.665665 0.746251i
\(10\) 3.01966 + 0.942258i 0.954900 + 0.297968i
\(11\) 0.488628i 0.147327i −0.997283 0.0736634i \(-0.976531\pi\)
0.997283 0.0736634i \(-0.0234691\pi\)
\(12\) −0.000875632 0.00195445i −0.000252773 0.000564201i
\(13\) 0.606001 + 0.606001i 0.168074 + 0.168074i 0.786132 0.618058i \(-0.212080\pi\)
−0.618058 + 0.786132i \(0.712080\pi\)
\(14\) 3.33937 0.892483
\(15\) 2.39491 3.04375i 0.618364 0.785892i
\(16\) 4.00247 1.00062
\(17\) −0.560255 0.560255i −0.135882 0.135882i 0.635894 0.771776i \(-0.280631\pi\)
−0.771776 + 0.635894i \(0.780631\pi\)
\(18\) −4.23706 + 0.241832i −0.998684 + 0.0570004i
\(19\) 1.46112i 0.335205i −0.985855 0.167602i \(-0.946397\pi\)
0.985855 0.167602i \(-0.0536025\pi\)
\(20\) −0.00128393 0.00244865i −0.000287095 0.000547534i
\(21\) 1.45634 3.82044i 0.317799 0.833689i
\(22\) −0.488779 + 0.488779i −0.104208 + 0.104208i
\(23\) 3.42811 3.42811i 0.714810 0.714810i −0.252728 0.967537i \(-0.581328\pi\)
0.967537 + 0.252728i \(0.0813276\pi\)
\(24\) 1.74445 4.57625i 0.356084 0.934123i
\(25\) 2.84354 4.11270i 0.568708 0.822540i
\(26\) 1.21238i 0.237767i
\(27\) −1.57116 + 4.95292i −0.302370 + 0.953190i
\(28\) −0.00206388 0.00206388i −0.000390037 0.000390037i
\(29\) −0.216767 −0.0402527 −0.0201263 0.999797i \(-0.506407\pi\)
−0.0201263 + 0.999797i \(0.506407\pi\)
\(30\) −5.44034 + 0.649033i −0.993266 + 0.118497i
\(31\) −1.00000 −0.179605
\(32\) −0.00494590 0.00494590i −0.000874319 0.000874319i
\(33\) 0.346031 + 0.772356i 0.0602362 + 0.134450i
\(34\) 1.12086i 0.192225i
\(35\) 1.57230 5.03875i 0.265767 0.851705i
\(36\) 0.00276816 + 0.00246923i 0.000461360 + 0.000411539i
\(37\) 5.23298 5.23298i 0.860296 0.860296i −0.131076 0.991372i \(-0.541843\pi\)
0.991372 + 0.131076i \(0.0418433\pi\)
\(38\) −1.46158 + 1.46158i −0.237099 + 0.237099i
\(39\) −1.38703 0.528733i −0.222103 0.0846650i
\(40\) 1.88335 6.03558i 0.297784 0.954309i
\(41\) 7.11630i 1.11138i −0.831390 0.555690i \(-0.812454\pi\)
0.831390 0.555690i \(-0.187546\pi\)
\(42\) −5.27841 + 2.36483i −0.814477 + 0.364902i
\(43\) 4.14486 + 4.14486i 0.632084 + 0.632084i 0.948591 0.316506i \(-0.102510\pi\)
−0.316506 + 0.948591i \(0.602510\pi\)
\(44\) 0.000604176 0 9.10829e−5 0
\(45\) −1.63007 + 6.50714i −0.242996 + 0.970027i
\(46\) −6.85833 −1.01121
\(47\) −6.37862 6.37862i −0.930418 0.930418i 0.0673142 0.997732i \(-0.478557\pi\)
−0.997732 + 0.0673142i \(0.978557\pi\)
\(48\) −6.32656 + 2.83442i −0.913160 + 0.409114i
\(49\) 1.42776i 0.203966i
\(50\) −6.95839 + 1.26955i −0.984065 + 0.179542i
\(51\) 1.28233 + 0.488820i 0.179562 + 0.0684485i
\(52\) −0.000749304 0 0.000749304i −0.000103910 0 0.000103910i
\(53\) 6.92873 6.92873i 0.951734 0.951734i −0.0471539 0.998888i \(-0.515015\pi\)
0.998888 + 0.0471539i \(0.0150151\pi\)
\(54\) 6.52610 3.38280i 0.888090 0.460341i
\(55\) 0.507381 + 0.967652i 0.0684152 + 0.130478i
\(56\) 6.67460i 0.891931i
\(57\) 1.03472 + 2.30955i 0.137052 + 0.305907i
\(58\) 0.216834 + 0.216834i 0.0284717 + 0.0284717i
\(59\) 9.51422 1.23865 0.619323 0.785136i \(-0.287407\pi\)
0.619323 + 0.785136i \(0.287407\pi\)
\(60\) 0.00376351 + 0.00296125i 0.000485868 + 0.000382296i
\(61\) 3.65071 0.467425 0.233713 0.972306i \(-0.424912\pi\)
0.233713 + 0.972306i \(0.424912\pi\)
\(62\) 1.00031 + 1.00031i 0.127039 + 0.127039i
\(63\) 0.403534 + 7.07017i 0.0508404 + 0.890757i
\(64\) 7.99505i 0.999381i
\(65\) −1.82935 0.570833i −0.226903 0.0708031i
\(66\) 0.426457 1.11873i 0.0524933 0.137707i
\(67\) −4.73394 + 4.73394i −0.578342 + 0.578342i −0.934446 0.356104i \(-0.884105\pi\)
0.356104 + 0.934446i \(0.384105\pi\)
\(68\) 0.000692741 0 0.000692741i 8.40072e−5 0 8.40072e-5i
\(69\) −2.99101 + 7.84636i −0.360075 + 0.944591i
\(70\) −6.61310 + 3.46753i −0.790416 + 0.414449i
\(71\) 0.0865773i 0.0102748i 0.999987 + 0.00513742i \(0.00163530\pi\)
−0.999987 + 0.00513742i \(0.998365\pi\)
\(72\) 0.483365 + 8.46887i 0.0569652 + 0.998066i
\(73\) 1.94880 + 1.94880i 0.228090 + 0.228090i 0.811895 0.583804i \(-0.198436\pi\)
−0.583804 + 0.811895i \(0.698436\pi\)
\(74\) −10.4692 −1.21702
\(75\) −1.58220 + 8.51450i −0.182696 + 0.983169i
\(76\) 0.00180664 0.000207236
\(77\) 0.815601 + 0.815601i 0.0929464 + 0.0929464i
\(78\) 0.858567 + 1.91636i 0.0972135 + 0.216985i
\(79\) 8.96053i 1.00814i 0.863663 + 0.504069i \(0.168164\pi\)
−0.863663 + 0.504069i \(0.831836\pi\)
\(80\) −7.92628 + 4.15608i −0.886185 + 0.464664i
\(81\) −1.02402 8.94155i −0.113780 0.993506i
\(82\) −7.11850 + 7.11850i −0.786107 + 0.786107i
\(83\) −0.345948 + 0.345948i −0.0379727 + 0.0379727i −0.725838 0.687865i \(-0.758548\pi\)
0.687865 + 0.725838i \(0.258548\pi\)
\(84\) 0.00472388 + 0.00180073i 0.000515417 + 0.000196475i
\(85\) 1.69126 + 0.527742i 0.183443 + 0.0572417i
\(86\) 8.29227i 0.894179i
\(87\) 0.342636 0.153508i 0.0367344 0.0164578i
\(88\) 0.976954 + 0.976954i 0.104144 + 0.104144i
\(89\) 12.2175 1.29505 0.647525 0.762044i \(-0.275804\pi\)
0.647525 + 0.762044i \(0.275804\pi\)
\(90\) 8.13972 4.87858i 0.858002 0.514247i
\(91\) −2.02303 −0.212071
\(92\) 0.00423877 + 0.00423877i 0.000441922 + 0.000441922i
\(93\) 1.58066 0.708168i 0.163907 0.0734337i
\(94\) 12.7612i 1.31622i
\(95\) 1.51720 + 2.89353i 0.155661 + 0.296870i
\(96\) 0.0113203 + 0.00431527i 0.00115538 + 0.000440425i
\(97\) −1.33436 + 1.33436i −0.135484 + 0.135484i −0.771596 0.636113i \(-0.780541\pi\)
0.636113 + 0.771596i \(0.280541\pi\)
\(98\) 1.42821 1.42821i 0.144271 0.144271i
\(99\) −1.09392 0.975787i −0.109943 0.0980703i
\(100\) 0.00508525 + 0.00351596i 0.000508525 + 0.000351596i
\(101\) 13.5503i 1.34830i 0.738593 + 0.674152i \(0.235491\pi\)
−0.738593 + 0.674152i \(0.764509\pi\)
\(102\) −0.793755 1.77170i −0.0785935 0.175424i
\(103\) −3.23911 3.23911i −0.319159 0.319159i 0.529285 0.848444i \(-0.322460\pi\)
−0.848444 + 0.529285i \(0.822460\pi\)
\(104\) −2.42325 −0.237620
\(105\) 1.08301 + 9.07803i 0.105691 + 0.885925i
\(106\) −13.8617 −1.34637
\(107\) 5.66961 + 5.66961i 0.548102 + 0.548102i 0.925891 0.377790i \(-0.123316\pi\)
−0.377790 + 0.925891i \(0.623316\pi\)
\(108\) −0.00612416 0.00194270i −0.000589298 0.000186937i
\(109\) 14.9745i 1.43430i −0.696921 0.717148i \(-0.745447\pi\)
0.696921 0.717148i \(-0.254553\pi\)
\(110\) 0.460414 1.47549i 0.0438987 0.140682i
\(111\) −4.56575 + 11.9774i −0.433361 + 1.13684i
\(112\) −6.68079 + 6.68079i −0.631276 + 0.631276i
\(113\) −0.606854 + 0.606854i −0.0570880 + 0.0570880i −0.735074 0.677986i \(-0.762853\pi\)
0.677986 + 0.735074i \(0.262853\pi\)
\(114\) 1.27522 3.34530i 0.119435 0.313316i
\(115\) −3.22917 + 10.3485i −0.301121 + 0.965004i
\(116\) 0 0.000268027i 0 2.48857e-5i
\(117\) 2.56687 0.146505i 0.237307 0.0135444i
\(118\) −9.51716 9.51716i −0.876126 0.876126i
\(119\) 1.87032 0.171452
\(120\) 1.29726 + 10.8740i 0.118423 + 0.992652i
\(121\) 10.7612 0.978295
\(122\) −3.65184 3.65184i −0.330622 0.330622i
\(123\) 5.03954 + 11.2485i 0.454400 + 1.01424i
\(124\) 0.00123647i 0.000111039i
\(125\) −1.36065 + 11.0972i −0.121701 + 0.992567i
\(126\) 6.66870 7.47601i 0.594095 0.666016i
\(127\) 7.09372 7.09372i 0.629466 0.629466i −0.318468 0.947934i \(-0.603168\pi\)
0.947934 + 0.318468i \(0.103168\pi\)
\(128\) −8.00741 + 8.00741i −0.707762 + 0.707762i
\(129\) −9.48688 3.61637i −0.835273 0.318403i
\(130\) 1.25891 + 2.40092i 0.110413 + 0.210575i
\(131\) 13.4920i 1.17881i 0.807839 + 0.589403i \(0.200637\pi\)
−0.807839 + 0.589403i \(0.799363\pi\)
\(132\) −0.000954999 0 0.000427858i −8.31220e−5 0 3.72403e-5i
\(133\) 2.43886 + 2.43886i 0.211476 + 0.211476i
\(134\) 9.47080 0.818153
\(135\) −2.03156 11.4400i −0.174849 0.984595i
\(136\) 2.24033 0.192107
\(137\) −12.2568 12.2568i −1.04717 1.04717i −0.998831 0.0483356i \(-0.984608\pi\)
−0.0483356 0.998831i \(-0.515392\pi\)
\(138\) 10.8407 4.85686i 0.922823 0.413443i
\(139\) 1.52125i 0.129031i 0.997917 + 0.0645155i \(0.0205502\pi\)
−0.997917 + 0.0645155i \(0.979450\pi\)
\(140\) 0.00623029 + 0.00194411i 0.000526556 + 0.000164307i
\(141\) 14.5996 + 5.56532i 1.22951 + 0.468684i
\(142\) 0.0866040 0.0866040i 0.00726765 0.00726765i
\(143\) 0.296109 0.296109i 0.0247619 0.0247619i
\(144\) 7.99291 8.96054i 0.666076 0.746712i
\(145\) 0.429274 0.225086i 0.0356493 0.0186924i
\(146\) 3.89881i 0.322668i
\(147\) −1.01110 2.25682i −0.0833940 0.186139i
\(148\) 0.00647044 + 0.00647044i 0.000531867 + 0.000531867i
\(149\) 19.3963 1.58900 0.794502 0.607261i \(-0.207732\pi\)
0.794502 + 0.607261i \(0.207732\pi\)
\(150\) 10.0998 6.93444i 0.824646 0.566195i
\(151\) −18.4786 −1.50376 −0.751882 0.659298i \(-0.770854\pi\)
−0.751882 + 0.659298i \(0.770854\pi\)
\(152\) 2.92134 + 2.92134i 0.236952 + 0.236952i
\(153\) −2.37310 + 0.135446i −0.191854 + 0.0109502i
\(154\) 1.63171i 0.131487i
\(155\) 1.98035 1.03838i 0.159065 0.0834046i
\(156\) 0.000653764 0.00171503i 5.23430e−5 0.000137312i
\(157\) 16.0623 16.0623i 1.28191 1.28191i 0.342336 0.939578i \(-0.388782\pi\)
0.939578 0.342336i \(-0.111218\pi\)
\(158\) 8.96330 8.96330i 0.713082 0.713082i
\(159\) −6.04528 + 15.8587i −0.479422 + 1.25768i
\(160\) 0.0149303 + 0.00465887i 0.00118034 + 0.000368316i
\(161\) 11.4442i 0.901927i
\(162\) −7.91998 + 9.96866i −0.622252 + 0.783212i
\(163\) 3.67219 + 3.67219i 0.287628 + 0.287628i 0.836142 0.548514i \(-0.184806\pi\)
−0.548514 + 0.836142i \(0.684806\pi\)
\(164\) 0.00879913 0.000687096
\(165\) −1.48726 1.17022i −0.115783 0.0911016i
\(166\) 0.692110 0.0537181
\(167\) −14.2829 14.2829i −1.10524 1.10524i −0.993767 0.111477i \(-0.964442\pi\)
−0.111477 0.993767i \(-0.535558\pi\)
\(168\) 4.72674 + 10.5503i 0.364676 + 0.813973i
\(169\) 12.2655i 0.943502i
\(170\) −1.16387 2.21968i −0.0892650 0.170242i
\(171\) −3.27110 2.91786i −0.250147 0.223134i
\(172\) −0.00512501 + 0.00512501i −0.000390778 + 0.000390778i
\(173\) −3.63506 + 3.63506i −0.276369 + 0.276369i −0.831658 0.555289i \(-0.812608\pi\)
0.555289 + 0.831658i \(0.312608\pi\)
\(174\) −0.496297 0.189187i −0.0376242 0.0143422i
\(175\) 2.11844 + 11.6111i 0.160139 + 0.877718i
\(176\) 1.95572i 0.147418i
\(177\) −15.0388 + 6.73767i −1.13038 + 0.506434i
\(178\) −12.2212 12.2212i −0.916021 0.916021i
\(179\) 20.8745 1.56023 0.780116 0.625635i \(-0.215160\pi\)
0.780116 + 0.625635i \(0.215160\pi\)
\(180\) −0.00804591 0.00201554i −0.000599707 0.000150229i
\(181\) −19.2211 −1.42870 −0.714348 0.699791i \(-0.753277\pi\)
−0.714348 + 0.699791i \(0.753277\pi\)
\(182\) 2.02366 + 2.02366i 0.150004 + 0.150004i
\(183\) −5.77054 + 2.58532i −0.426571 + 0.191112i
\(184\) 13.7082i 1.01058i
\(185\) −4.92929 + 15.7969i −0.362409 + 1.16141i
\(186\) −2.28954 0.872765i −0.167877 0.0639942i
\(187\) −0.273756 + 0.273756i −0.0200190 + 0.0200190i
\(188\) 0.00788700 0.00788700i 0.000575219 0.000575219i
\(189\) −5.64472 10.8898i −0.410593 0.792115i
\(190\) 1.37676 4.41210i 0.0998804 0.320087i
\(191\) 24.3776i 1.76390i −0.471339 0.881952i \(-0.656229\pi\)
0.471339 0.881952i \(-0.343771\pi\)
\(192\) 5.66184 + 12.6375i 0.408608 + 0.912032i
\(193\) −5.95019 5.95019i −0.428304 0.428304i 0.459746 0.888050i \(-0.347940\pi\)
−0.888050 + 0.459746i \(0.847940\pi\)
\(194\) 2.66954 0.191662
\(195\) 3.29583 0.393193i 0.236019 0.0281571i
\(196\) −0.00176539 −0.000126100
\(197\) −15.7539 15.7539i −1.12242 1.12242i −0.991376 0.131046i \(-0.958167\pi\)
−0.131046 0.991376i \(-0.541833\pi\)
\(198\) 0.118166 + 2.07034i 0.00839769 + 0.147133i
\(199\) 4.09660i 0.290400i −0.989402 0.145200i \(-0.953617\pi\)
0.989402 0.145200i \(-0.0463826\pi\)
\(200\) 2.53753 + 13.9082i 0.179431 + 0.983456i
\(201\) 4.13034 10.8352i 0.291332 0.764255i
\(202\) 13.5545 13.5545i 0.953689 0.953689i
\(203\) 0.361821 0.361821i 0.0253948 0.0253948i
\(204\) −0.000604413 0.00158557i −4.23174e−5 0.000111012i
\(205\) 7.38942 + 14.0927i 0.516099 + 0.984280i
\(206\) 6.48022i 0.451499i
\(207\) −0.828771 14.5206i −0.0576035 1.00925i
\(208\) 2.42550 + 2.42550i 0.168178 + 0.168178i
\(209\) −0.713946 −0.0493847
\(210\) 7.99749 10.1642i 0.551879 0.701395i
\(211\) −0.945083 −0.0650622 −0.0325311 0.999471i \(-0.510357\pi\)
−0.0325311 + 0.999471i \(0.510357\pi\)
\(212\) 0.00856719 + 0.00856719i 0.000588397 + 0.000588397i
\(213\) −0.0613113 0.136850i −0.00420098 0.00937677i
\(214\) 11.3427i 0.775372i
\(215\) −12.5122 3.90432i −0.853323 0.266272i
\(216\) −6.76143 13.0441i −0.460057 0.887541i
\(217\) 1.66917 1.66917i 0.113310 0.113310i
\(218\) −14.9791 + 14.9791i −1.01451 + 1.01451i
\(219\) −4.46049 1.70032i −0.301412 0.114897i
\(220\) −0.00119648 0.000627363i −8.06665e−5 4.22968e-5i
\(221\) 0.679030i 0.0456765i
\(222\) 16.5483 7.41395i 1.11065 0.497592i
\(223\) 3.30852 + 3.30852i 0.221555 + 0.221555i 0.809153 0.587598i \(-0.199926\pi\)
−0.587598 + 0.809153i \(0.699926\pi\)
\(224\) 0.0165111 0.00110319
\(225\) −3.52878 14.5790i −0.235252 0.971934i
\(226\) 1.21408 0.0807596
\(227\) −4.51141 4.51141i −0.299433 0.299433i 0.541359 0.840792i \(-0.317910\pi\)
−0.840792 + 0.541359i \(0.817910\pi\)
\(228\) −0.00285569 + 0.00127941i −0.000189123 + 8.47308e-5i
\(229\) 23.0217i 1.52132i −0.649151 0.760660i \(-0.724876\pi\)
0.649151 0.760660i \(-0.275124\pi\)
\(230\) 13.5819 7.12155i 0.895562 0.469581i
\(231\) −1.86677 0.711608i −0.122825 0.0468204i
\(232\) 0.433400 0.433400i 0.0284541 0.0284541i
\(233\) 19.6190 19.6190i 1.28528 1.28528i 0.347666 0.937618i \(-0.386974\pi\)
0.937618 0.347666i \(-0.113026\pi\)
\(234\) −2.71421 2.42111i −0.177433 0.158273i
\(235\) 19.2553 + 6.00845i 1.25608 + 0.391948i
\(236\) 0.0117641i 0.000765777i
\(237\) −6.34556 14.1636i −0.412189 0.920023i
\(238\) −1.87090 1.87090i −0.121272 0.121272i
\(239\) −8.66511 −0.560499 −0.280250 0.959927i \(-0.590417\pi\)
−0.280250 + 0.959927i \(0.590417\pi\)
\(240\) 9.58557 12.1825i 0.618746 0.786377i
\(241\) −19.4767 −1.25460 −0.627302 0.778776i \(-0.715841\pi\)
−0.627302 + 0.778776i \(0.715841\pi\)
\(242\) −10.7646 10.7646i −0.691973 0.691973i
\(243\) 7.95076 + 13.4084i 0.510042 + 0.860150i
\(244\) 0.00451401i 0.000288980i
\(245\) −1.48256 2.82747i −0.0947173 0.180640i
\(246\) 6.21086 16.2931i 0.395990 1.03881i
\(247\) 0.885442 0.885442i 0.0563394 0.0563394i
\(248\) 1.99938 1.99938i 0.126961 0.126961i
\(249\) 0.301838 0.791817i 0.0191282 0.0501794i
\(250\) 12.4617 9.73959i 0.788150 0.615986i
\(251\) 6.66638i 0.420778i 0.977618 + 0.210389i \(0.0674731\pi\)
−0.977618 + 0.210389i \(0.932527\pi\)
\(252\) −0.00874208 0.000498959i −0.000550699 3.14315e-5i
\(253\) −1.67507 1.67507i −0.105311 0.105311i
\(254\) −14.1918 −0.890474
\(255\) −3.04704 + 0.363512i −0.190813 + 0.0227640i
\(256\) 0.0296754 0.00185471
\(257\) 4.13272 + 4.13272i 0.257792 + 0.257792i 0.824155 0.566364i \(-0.191650\pi\)
−0.566364 + 0.824155i \(0.691650\pi\)
\(258\) 5.87233 + 13.1073i 0.365595 + 0.816024i
\(259\) 17.4694i 1.08550i
\(260\) 0.000705820 0.00226194i 4.37731e−5 0.000140280i
\(261\) −0.432883 + 0.485288i −0.0267948 + 0.0300386i
\(262\) 13.4962 13.4962i 0.833799 0.833799i
\(263\) −2.14753 + 2.14753i −0.132423 + 0.132423i −0.770211 0.637789i \(-0.779849\pi\)
0.637789 + 0.770211i \(0.279849\pi\)
\(264\) −2.23608 0.852387i −0.137621 0.0524608i
\(265\) −6.52663 + 20.9159i −0.400928 + 1.28485i
\(266\) 4.87923i 0.299165i
\(267\) −19.3117 + 8.65203i −1.18186 + 0.529496i
\(268\) −0.00585339 0.00585339i −0.000357553 0.000357553i
\(269\) −16.1691 −0.985846 −0.492923 0.870073i \(-0.664072\pi\)
−0.492923 + 0.870073i \(0.664072\pi\)
\(270\) −9.41131 + 13.4757i −0.572754 + 0.820104i
\(271\) 27.6629 1.68040 0.840200 0.542277i \(-0.182438\pi\)
0.840200 + 0.542277i \(0.182438\pi\)
\(272\) −2.24241 2.24241i −0.135966 0.135966i
\(273\) 3.19773 1.43265i 0.193536 0.0867078i
\(274\) 24.5211i 1.48138i
\(275\) −2.00958 1.38943i −0.121182 0.0837860i
\(276\) −0.00970183 0.00369830i −0.000583981 0.000222612i
\(277\) 16.0299 16.0299i 0.963141 0.963141i −0.0362031 0.999344i \(-0.511526\pi\)
0.999344 + 0.0362031i \(0.0115263\pi\)
\(278\) 1.52172 1.52172i 0.0912669 0.0912669i
\(279\) −1.99699 + 2.23875i −0.119557 + 0.134031i
\(280\) 6.93076 + 13.2180i 0.414192 + 0.789928i
\(281\) 27.0910i 1.61611i 0.589104 + 0.808057i \(0.299481\pi\)
−0.589104 + 0.808057i \(0.700519\pi\)
\(282\) −9.03707 20.1711i −0.538150 1.20117i
\(283\) −7.86447 7.86447i −0.467494 0.467494i 0.433608 0.901102i \(-0.357240\pi\)
−0.901102 + 0.433608i \(0.857240\pi\)
\(284\) −0.000107051 0 −6.35228e−6 0
\(285\) −4.44729 3.49927i −0.263435 0.207279i
\(286\) −0.592401 −0.0350294
\(287\) 11.8783 + 11.8783i 0.701154 + 0.701154i
\(288\) −0.0209496 + 0.00119571i −0.00123447 + 7.04577e-5i
\(289\) 16.3722i 0.963072i
\(290\) −0.654563 0.204251i −0.0384372 0.0119940i
\(291\) 1.16422 3.05412i 0.0682479 0.179036i
\(292\) −0.00240965 + 0.00240965i −0.000141014 + 0.000141014i
\(293\) −10.7917 + 10.7917i −0.630460 + 0.630460i −0.948183 0.317723i \(-0.897082\pi\)
0.317723 + 0.948183i \(0.397082\pi\)
\(294\) −1.24610 + 3.26892i −0.0726742 + 0.190648i
\(295\) −18.8415 + 9.87936i −1.09699 + 0.575199i
\(296\) 20.9254i 1.21627i
\(297\) 2.42014 + 0.767714i 0.140431 + 0.0445473i
\(298\) −19.4023 19.4023i −1.12394 1.12394i
\(299\) 4.15487 0.240282
\(300\) −0.0105280 0.00195635i −0.000607832 0.000112950i
\(301\) −13.8369 −0.797546
\(302\) 18.4843 + 18.4843i 1.06365 + 1.06365i
\(303\) −9.59588 21.4184i −0.551269 1.23046i
\(304\) 5.84811i 0.335412i
\(305\) −7.22967 + 3.79082i −0.413970 + 0.217062i
\(306\) 2.50932 + 2.23835i 0.143448 + 0.127958i
\(307\) 12.8025 12.8025i 0.730678 0.730678i −0.240076 0.970754i \(-0.577172\pi\)
0.970754 + 0.240076i \(0.0771723\pi\)
\(308\) −0.00100847 + 0.00100847i −5.74629e−5 + 5.74629e-5i
\(309\) 7.41378 + 2.82611i 0.421755 + 0.160772i
\(310\) −3.01966 0.942258i −0.171505 0.0535167i
\(311\) 21.6644i 1.22847i 0.789121 + 0.614237i \(0.210536\pi\)
−0.789121 + 0.614237i \(0.789464\pi\)
\(312\) 3.83035 1.71607i 0.216851 0.0971534i
\(313\) 15.5220 + 15.5220i 0.877353 + 0.877353i 0.993260 0.115907i \(-0.0369774\pi\)
−0.115907 + 0.993260i \(0.536977\pi\)
\(314\) −32.1346 −1.81346
\(315\) −8.14065 13.5824i −0.458674 0.765279i
\(316\) −0.0110795 −0.000623268
\(317\) 13.7279 + 13.7279i 0.771035 + 0.771035i 0.978288 0.207252i \(-0.0664521\pi\)
−0.207252 + 0.978288i \(0.566452\pi\)
\(318\) 21.9107 9.81644i 1.22869 0.550479i
\(319\) 0.105919i 0.00593030i
\(320\) 8.30189 + 15.8330i 0.464090 + 0.885089i
\(321\) −12.9768 4.94671i −0.724293 0.276098i
\(322\) 11.4477 11.4477i 0.637956 0.637956i
\(323\) −0.818603 + 0.818603i −0.0455483 + 0.0455483i
\(324\) 0.0110560 0.00126618i 0.000614222 7.03433e-5i
\(325\) 4.21549 0.769111i 0.233833 0.0426626i
\(326\) 7.34665i 0.406893i
\(327\) 10.6045 + 23.6696i 0.586428 + 1.30893i
\(328\) 14.2282 + 14.2282i 0.785621 + 0.785621i
\(329\) 21.2940 1.17397
\(330\) 0.317135 + 2.65830i 0.0174577 + 0.146335i
\(331\) −16.4734 −0.905461 −0.452731 0.891647i \(-0.649550\pi\)
−0.452731 + 0.891647i \(0.649550\pi\)
\(332\) −0.000427756 0 0.000427756i −2.34762e−5 0 2.34762e-5i
\(333\) −1.26511 22.1656i −0.0693277 1.21467i
\(334\) 28.5746i 1.56353i
\(335\) 4.45921 14.2905i 0.243633 0.780771i
\(336\) 5.82896 15.2912i 0.317996 0.834204i
\(337\) 18.6177 18.6177i 1.01417 1.01417i 0.0142748 0.999898i \(-0.495456\pi\)
0.999898 0.0142748i \(-0.00454395\pi\)
\(338\) −12.2693 + 12.2693i −0.667363 + 0.667363i
\(339\) 0.529477 1.38899i 0.0287573 0.0754394i
\(340\) −0.000652540 0.00209120i −3.53889e−5 0.000113411i
\(341\) 0.488628i 0.0264607i
\(342\) 0.353347 + 6.19087i 0.0191068 + 0.334764i
\(343\) −14.0673 14.0673i −0.759565 0.759565i
\(344\) −16.5743 −0.893626
\(345\) −2.22427 18.6443i −0.119750 1.00378i
\(346\) 7.27238 0.390965
\(347\) 21.7272 + 21.7272i 1.16637 + 1.16637i 0.983053 + 0.183322i \(0.0586850\pi\)
0.183322 + 0.983053i \(0.441315\pi\)
\(348\) 0.000189808 0 0.000423661i 1.01748e−5 0 2.27106e-5i
\(349\) 2.53205i 0.135537i −0.997701 0.0677687i \(-0.978412\pi\)
0.997701 0.0677687i \(-0.0215880\pi\)
\(350\) 9.49562 13.7338i 0.507562 0.734102i
\(351\) −3.95360 + 2.04935i −0.211028 + 0.109386i
\(352\) −0.00241670 + 0.00241670i −0.000128811 + 0.000128811i
\(353\) 5.70119 5.70119i 0.303444 0.303444i −0.538916 0.842360i \(-0.681166\pi\)
0.842360 + 0.538916i \(0.181166\pi\)
\(354\) 21.7832 + 8.30368i 1.15776 + 0.441336i
\(355\) −0.0899000 0.171453i −0.00477140 0.00909978i
\(356\) 0.0151066i 0.000800648i
\(357\) −2.95635 + 1.32450i −0.156466 + 0.0701000i
\(358\) −20.8809 20.8809i −1.10359 1.10359i
\(359\) 16.7850 0.885877 0.442938 0.896552i \(-0.353936\pi\)
0.442938 + 0.896552i \(0.353936\pi\)
\(360\) −9.75113 16.2694i −0.513930 0.857472i
\(361\) 16.8651 0.887638
\(362\) 19.2271 + 19.2271i 1.01055 + 1.01055i
\(363\) −17.0099 + 7.62077i −0.892788 + 0.399987i
\(364\) 0.00250143i 0.000131110i
\(365\) −5.88290 1.83571i −0.307925 0.0960855i
\(366\) 8.35844 + 3.18621i 0.436903 + 0.166546i
\(367\) −25.1508 + 25.1508i −1.31286 + 1.31286i −0.393560 + 0.919299i \(0.628757\pi\)
−0.919299 + 0.393560i \(0.871243\pi\)
\(368\) 13.7209 13.7209i 0.715252 0.715252i
\(369\) −15.9316 14.2112i −0.829368 0.739807i
\(370\) 20.7326 10.8710i 1.07784 0.565155i
\(371\) 23.1304i 1.20087i
\(372\) 0.000875632 0.00195445i 4.53994e−5 0.000101334i
\(373\) −1.28708 1.28708i −0.0666427 0.0666427i 0.673000 0.739643i \(-0.265005\pi\)
−0.739643 + 0.673000i \(0.765005\pi\)
\(374\) 0.547682 0.0283200
\(375\) −5.70797 18.5046i −0.294759 0.955572i
\(376\) 25.5066 1.31540
\(377\) −0.131361 0.131361i −0.00676544 0.00676544i
\(378\) −5.24669 + 16.5396i −0.269861 + 0.850706i
\(379\) 26.9785i 1.38579i 0.721038 + 0.692896i \(0.243665\pi\)
−0.721038 + 0.692896i \(0.756335\pi\)
\(380\) −0.00357778 + 0.00187598i −0.000183536 + 9.62357e-5i
\(381\) −6.18924 + 16.2363i −0.317084 + 0.831812i
\(382\) −24.3852 + 24.3852i −1.24765 + 1.24765i
\(383\) 9.28532 9.28532i 0.474458 0.474458i −0.428896 0.903354i \(-0.641097\pi\)
0.903354 + 0.428896i \(0.141097\pi\)
\(384\) 6.98643 18.3276i 0.356525 0.935277i
\(385\) −2.46208 0.768270i −0.125479 0.0391547i
\(386\) 11.9041i 0.605901i
\(387\) 17.5566 1.00205i 0.892450 0.0509370i
\(388\) −0.00164990 0.00164990i −8.37611e−5 8.37611e-5i
\(389\) 5.45183 0.276419 0.138209 0.990403i \(-0.455865\pi\)
0.138209 + 0.990403i \(0.455865\pi\)
\(390\) −3.69016 2.90354i −0.186859 0.147026i
\(391\) −3.84123 −0.194259
\(392\) −2.85465 2.85465i −0.144181 0.144181i
\(393\) −9.55464 21.3264i −0.481968 1.07577i
\(394\) 31.5176i 1.58783i
\(395\) −9.30442 17.7449i −0.468156 0.892845i
\(396\) 0.00120654 0.00135260i 6.06307e−5 6.79707e-5i
\(397\) 12.6464 12.6464i 0.634706 0.634706i −0.314538 0.949245i \(-0.601850\pi\)
0.949245 + 0.314538i \(0.101850\pi\)
\(398\) −4.09787 + 4.09787i −0.205408 + 0.205408i
\(399\) −5.58214 2.12789i −0.279457 0.106528i
\(400\) 11.3812 16.4610i 0.569059 0.823048i
\(401\) 23.2395i 1.16053i −0.814429 0.580264i \(-0.802950\pi\)
0.814429 0.580264i \(-0.197050\pi\)
\(402\) −14.9701 + 6.70692i −0.746643 + 0.334511i
\(403\) −0.606001 0.606001i −0.0301870 0.0301870i
\(404\) −0.0167546 −0.000833571
\(405\) 11.3126 + 16.6440i 0.562130 + 0.827049i
\(406\) −0.723865 −0.0359248
\(407\) −2.55698 2.55698i −0.126745 0.126745i
\(408\) −3.54120 + 1.58653i −0.175316 + 0.0785449i
\(409\) 20.9451i 1.03567i 0.855480 + 0.517835i \(0.173262\pi\)
−0.855480 + 0.517835i \(0.826738\pi\)
\(410\) 6.70540 21.4888i 0.331156 1.06126i
\(411\) 28.0537 + 10.6940i 1.38379 + 0.527495i
\(412\) 0.00400508 0.00400508i 0.000197316 0.000197316i
\(413\) −15.8808 + 15.8808i −0.781444 + 0.781444i
\(414\) −13.6961 + 15.3541i −0.673125 + 0.754613i
\(415\) 0.325872 1.04432i 0.0159964 0.0512637i
\(416\) 0.00599443i 0.000293901i
\(417\) −1.07730 2.40459i −0.0527558 0.117753i
\(418\) 0.714167 + 0.714167i 0.0349310 + 0.0349310i
\(419\) −8.76420 −0.428159 −0.214080 0.976816i \(-0.568675\pi\)
−0.214080 + 0.976816i \(0.568675\pi\)
\(420\) −0.0112248 + 0.00133911i −0.000547712 + 6.53420e-5i
\(421\) 6.41350 0.312575 0.156287 0.987712i \(-0.450047\pi\)
0.156287 + 0.987712i \(0.450047\pi\)
\(422\) 0.945375 + 0.945375i 0.0460202 + 0.0460202i
\(423\) −27.0182 + 1.54208i −1.31367 + 0.0749785i
\(424\) 27.7063i 1.34554i
\(425\) −3.89727 + 0.711052i −0.189045 + 0.0344911i
\(426\) −0.0755616 + 0.198222i −0.00366097 + 0.00960389i
\(427\) −6.09364 + 6.09364i −0.294892 + 0.294892i
\(428\) −0.00701032 + 0.00701032i −0.000338857 + 0.000338857i
\(429\) −0.258354 + 0.677744i −0.0124734 + 0.0327218i
\(430\) 8.61052 + 16.4216i 0.415236 + 0.791918i
\(431\) 2.35265i 0.113323i 0.998393 + 0.0566616i \(0.0180456\pi\)
−0.998393 + 0.0566616i \(0.981954\pi\)
\(432\) −6.28854 + 19.8239i −0.302557 + 0.953779i
\(433\) 16.6004 + 16.6004i 0.797762 + 0.797762i 0.982742 0.184980i \(-0.0592221\pi\)
−0.184980 + 0.982742i \(0.559222\pi\)
\(434\) −3.33937 −0.160295
\(435\) −0.519139 + 0.659784i −0.0248908 + 0.0316342i
\(436\) 0.0185156 0.000886735
\(437\) −5.00889 5.00889i −0.239608 0.239608i
\(438\) 2.76102 + 6.16271i 0.131927 + 0.294466i
\(439\) 11.3213i 0.540337i −0.962813 0.270169i \(-0.912921\pi\)
0.962813 0.270169i \(-0.0870795\pi\)
\(440\) −2.94915 0.920258i −0.140595 0.0438716i
\(441\) 3.19641 + 2.85124i 0.152210 + 0.135773i
\(442\) −0.679240 + 0.679240i −0.0323082 + 0.0323082i
\(443\) −0.123239 + 0.123239i −0.00585525 + 0.00585525i −0.710028 0.704173i \(-0.751318\pi\)
0.704173 + 0.710028i \(0.251318\pi\)
\(444\) −0.0148098 0.00564543i −0.000702840 0.000267920i
\(445\) −24.1948 + 12.6864i −1.14694 + 0.601391i
\(446\) 6.61909i 0.313423i
\(447\) −30.6590 + 13.7358i −1.45012 + 0.649682i
\(448\) 13.3451 + 13.3451i 0.630495 + 0.630495i
\(449\) 5.58480 0.263563 0.131782 0.991279i \(-0.457930\pi\)
0.131782 + 0.991279i \(0.457930\pi\)
\(450\) −11.0537 + 18.1134i −0.521074 + 0.853873i
\(451\) −3.47722 −0.163736
\(452\) −0.000750360 0 0.000750360i −3.52940e−5 0 3.52940e-5i
\(453\) 29.2084 13.0859i 1.37233 0.614831i
\(454\) 9.02561i 0.423593i
\(455\) 4.00630 2.10067i 0.187818 0.0984811i
\(456\) −6.68647 2.54886i −0.313123 0.119361i
\(457\) −18.7342 + 18.7342i −0.876347 + 0.876347i −0.993155 0.116808i \(-0.962734\pi\)
0.116808 + 0.993155i \(0.462734\pi\)
\(458\) −23.0289 + 23.0289i −1.07607 + 1.07607i
\(459\) 3.65515 1.89465i 0.170608 0.0884346i
\(460\) −0.0127957 0.00399278i −0.000596601 0.000186164i
\(461\) 1.80178i 0.0839173i −0.999119 0.0419587i \(-0.986640\pi\)
0.999119 0.0419587i \(-0.0133598\pi\)
\(462\) 1.15552 + 2.57918i 0.0537598 + 0.119994i
\(463\) −28.8896 28.8896i −1.34261 1.34261i −0.893450 0.449162i \(-0.851723\pi\)
−0.449162 0.893450i \(-0.648277\pi\)
\(464\) −0.867605 −0.0402775
\(465\) −2.39491 + 3.04375i −0.111061 + 0.141150i
\(466\) −39.2502 −1.81823
\(467\) 1.77213 + 1.77213i 0.0820043 + 0.0820043i 0.746919 0.664915i \(-0.231532\pi\)
−0.664915 + 0.746919i \(0.731532\pi\)
\(468\) 0.000181150 0.00317386i 8.37366e−6 0.000146712i
\(469\) 15.8035i 0.729736i
\(470\) −13.2509 25.2716i −0.611220 1.16569i
\(471\) −14.0143 + 36.7640i −0.645745 + 1.69399i
\(472\) −19.0226 + 19.0226i −0.875584 + 0.875584i
\(473\) 2.02529 2.02529i 0.0931230 0.0931230i
\(474\) −7.82043 + 20.5155i −0.359204 + 0.942307i
\(475\) −6.00916 4.15477i −0.275719 0.190634i
\(476\) 0.00231260i 0.000105998i
\(477\) −1.67507 29.3483i −0.0766962 1.34377i
\(478\) 8.66779 + 8.66779i 0.396455 + 0.396455i
\(479\) −36.3824 −1.66236 −0.831178 0.556007i \(-0.812333\pi\)
−0.831178 + 0.556007i \(0.812333\pi\)
\(480\) −0.0268990 + 0.00320906i −0.00122777 + 0.000146473i
\(481\) 6.34237 0.289187
\(482\) 19.4827 + 19.4827i 0.887414 + 0.887414i
\(483\) −8.10440 18.0894i −0.368763 0.823095i
\(484\) 0.0133060i 0.000604818i
\(485\) 1.25692 4.02806i 0.0570739 0.182905i
\(486\) 5.45933 21.3658i 0.247640 0.969171i
\(487\) −16.8813 + 16.8813i −0.764966 + 0.764966i −0.977215 0.212250i \(-0.931921\pi\)
0.212250 + 0.977215i \(0.431921\pi\)
\(488\) −7.29916 + 7.29916i −0.330417 + 0.330417i
\(489\) −8.40502 3.20397i −0.380088 0.144888i
\(490\) −1.34532 + 4.31136i −0.0607755 + 0.194767i
\(491\) 3.75278i 0.169361i 0.996408 + 0.0846803i \(0.0269869\pi\)
−0.996408 + 0.0846803i \(0.973013\pi\)
\(492\) −0.0139085 + 0.00623126i −0.000627042 + 0.000280927i
\(493\) 0.121445 + 0.121445i 0.00546961 + 0.00546961i
\(494\) −1.77143 −0.0797005
\(495\) 3.17957 + 0.796497i 0.142911 + 0.0357999i
\(496\) −4.00247 −0.179716
\(497\) −0.144512 0.144512i −0.00648224 0.00648224i
\(498\) −1.09399 + 0.490130i −0.0490230 + 0.0219633i
\(499\) 6.14567i 0.275118i 0.990494 + 0.137559i \(0.0439257\pi\)
−0.990494 + 0.137559i \(0.956074\pi\)
\(500\) −0.0137214 0.00168241i −0.000613642 7.52399e-5i
\(501\) 32.6912 + 12.4618i 1.46053 + 0.556750i
\(502\) 6.66844 6.66844i 0.297627 0.297627i
\(503\) 10.0046 10.0046i 0.446084 0.446084i −0.447966 0.894050i \(-0.647852\pi\)
0.894050 + 0.447966i \(0.147852\pi\)
\(504\) −14.9428 13.3291i −0.665604 0.593727i
\(505\) −14.0703 26.8342i −0.626121 1.19411i
\(506\) 3.35117i 0.148978i
\(507\) 8.68606 + 19.3877i 0.385761 + 0.861037i
\(508\) 0.00877120 + 0.00877120i 0.000389159 + 0.000389159i
\(509\) 8.38449 0.371636 0.185818 0.982584i \(-0.440506\pi\)
0.185818 + 0.982584i \(0.440506\pi\)
\(510\) 3.41160 + 2.68436i 0.151068 + 0.118865i
\(511\) −6.50576 −0.287798
\(512\) 15.9851 + 15.9851i 0.706450 + 0.706450i
\(513\) 7.23684 + 2.29566i 0.319514 + 0.101356i
\(514\) 8.26799i 0.364685i
\(515\) 9.77798 + 3.05114i 0.430869 + 0.134449i
\(516\) 0.00447154 0.0117303i 0.000196849 0.000516397i
\(517\) −3.11677 + 3.11677i −0.137076 + 0.137076i
\(518\) 17.4748 17.4748i 0.767799 0.767799i
\(519\) 3.17158 8.32005i 0.139217 0.365210i
\(520\) 4.79888 2.51625i 0.210445 0.110345i
\(521\) 16.8731i 0.739225i −0.929186 0.369613i \(-0.879490\pi\)
0.929186 0.369613i \(-0.120510\pi\)
\(522\) 0.918455 0.0524213i 0.0401997 0.00229442i
\(523\) 7.41293 + 7.41293i 0.324145 + 0.324145i 0.850355 0.526210i \(-0.176387\pi\)
−0.526210 + 0.850355i \(0.676387\pi\)
\(524\) −0.0166826 −0.000728781
\(525\) −11.5712 16.8531i −0.505007 0.735528i
\(526\) 4.29640 0.187332
\(527\) 0.560255 + 0.560255i 0.0244051 + 0.0244051i
\(528\) 1.38498 + 3.09133i 0.0602735 + 0.134533i
\(529\) 0.503846i 0.0219063i
\(530\) 27.4510 14.3937i 1.19240 0.625224i
\(531\) 18.9999 21.3000i 0.824523 0.924341i
\(532\) −0.00301559 + 0.00301559i −0.000130742 + 0.000130742i
\(533\) 4.31249 4.31249i 0.186794 0.186794i
\(534\) 27.9724 + 10.6630i 1.21048 + 0.461432i
\(535\) −17.1150 5.34059i −0.739945 0.230894i
\(536\) 18.9299i 0.817647i
\(537\) −32.9955 + 14.7826i −1.42386 + 0.637918i
\(538\) 16.1741 + 16.1741i 0.697314 + 0.697314i
\(539\) 0.697646 0.0300497
\(540\) 0.0141452 0.00251198i 0.000608713 0.000108098i
\(541\) 5.37201 0.230961 0.115480 0.993310i \(-0.463159\pi\)
0.115480 + 0.993310i \(0.463159\pi\)
\(542\) −27.6714 27.6714i −1.18859 1.18859i
\(543\) 30.3821 13.6118i 1.30382 0.584138i
\(544\) 0.00554193i 0.000237608i
\(545\) 15.5492 + 29.6547i 0.666054 + 1.27027i
\(546\) −4.63181 1.76563i −0.198223 0.0755621i
\(547\) 1.42656 1.42656i 0.0609951 0.0609951i −0.675951 0.736946i \(-0.736267\pi\)
0.736946 + 0.675951i \(0.236267\pi\)
\(548\) 0.0151552 0.0151552i 0.000647397 0.000647397i
\(549\) 7.29045 8.17303i 0.311149 0.348817i
\(550\) 0.620338 + 3.40006i 0.0264513 + 0.144979i
\(551\) 0.316724i 0.0134929i
\(552\) −9.70771 21.6680i −0.413187 0.922253i
\(553\) −14.9566 14.9566i −0.636020 0.636020i
\(554\) −32.0696 −1.36251
\(555\) −3.39532 28.4604i −0.144123 1.20808i
\(556\) −0.00188099 −7.97718e−5
\(557\) 15.6580 + 15.6580i 0.663449 + 0.663449i 0.956191 0.292742i \(-0.0945678\pi\)
−0.292742 + 0.956191i \(0.594568\pi\)
\(558\) 4.23706 0.241832i 0.179369 0.0102376i
\(559\) 5.02357i 0.212474i
\(560\) 6.29309 20.1675i 0.265931 0.852231i
\(561\) 0.238851 0.626582i 0.0100843 0.0264543i
\(562\) 27.0994 27.0994i 1.14312 1.14312i
\(563\) 22.2250 22.2250i 0.936673 0.936673i −0.0614379 0.998111i \(-0.519569\pi\)
0.998111 + 0.0614379i \(0.0195686\pi\)
\(564\) −0.00688137 + 0.0180520i −0.000289758 + 0.000760127i
\(565\) 0.571637 1.83193i 0.0240489 0.0770697i
\(566\) 15.7338i 0.661341i
\(567\) 16.6342 + 13.2157i 0.698571 + 0.555006i
\(568\) −0.173101 0.173101i −0.00726315 0.00726315i
\(569\) −36.0307 −1.51048 −0.755242 0.655446i \(-0.772481\pi\)
−0.755242 + 0.655446i \(0.772481\pi\)
\(570\) 0.948317 + 7.94901i 0.0397206 + 0.332948i
\(571\) −35.3321 −1.47860 −0.739302 0.673374i \(-0.764844\pi\)
−0.739302 + 0.673374i \(0.764844\pi\)
\(572\) 0.000366131 0 0.000366131i 1.53087e−5 0 1.53087e-5i
\(573\) 17.2635 + 38.5328i 0.721192 + 1.60973i
\(574\) 23.7639i 0.991888i
\(575\) −4.35081 23.8467i −0.181441 0.994477i
\(576\) −17.8989 15.9661i −0.745789 0.665253i
\(577\) 0.737957 0.737957i 0.0307216 0.0307216i −0.691579 0.722301i \(-0.743085\pi\)
0.722301 + 0.691579i \(0.243085\pi\)
\(578\) −16.3773 + 16.3773i −0.681205 + 0.681205i
\(579\) 13.6190 + 5.19151i 0.565986 + 0.215752i
\(580\) 0.000278314 0 0.000530786i 1.15563e−5 0 2.20397e-5i
\(581\) 1.15489i 0.0479129i
\(582\) −4.21965 + 1.89049i −0.174910 + 0.0783632i
\(583\) −3.38557 3.38557i −0.140216 0.140216i
\(584\) −7.79281 −0.322469
\(585\) −4.93115 + 2.95551i −0.203878 + 0.122195i
\(586\) 21.5901 0.891881
\(587\) −3.85573 3.85573i −0.159143 0.159143i 0.623044 0.782187i \(-0.285896\pi\)
−0.782187 + 0.623044i \(0.785896\pi\)
\(588\) 0.00279049 0.00125020i 0.000115078 5.15572e-5i
\(589\) 1.46112i 0.0602046i
\(590\) 28.7297 + 8.96486i 1.18278 + 0.369077i
\(591\) 36.0581 + 13.7452i 1.48323 + 0.565404i
\(592\) 20.9448 20.9448i 0.860827 0.860827i
\(593\) 27.6856 27.6856i 1.13691 1.13691i 0.147910 0.989001i \(-0.452745\pi\)
0.989001 0.147910i \(-0.0472546\pi\)
\(594\) −1.65293 3.18884i −0.0678207 0.130840i
\(595\) −3.70388 + 1.94210i −0.151844 + 0.0796183i
\(596\) 0.0239830i 0.000982382i
\(597\) 2.90108 + 6.47535i 0.118733 + 0.265018i
\(598\) −4.15616 4.15616i −0.169958 0.169958i
\(599\) 43.2024 1.76520 0.882600 0.470124i \(-0.155791\pi\)
0.882600 + 0.470124i \(0.155791\pi\)
\(600\) −13.8603 20.1871i −0.565845 0.824137i
\(601\) 13.9160 0.567646 0.283823 0.958877i \(-0.408397\pi\)
0.283823 + 0.958877i \(0.408397\pi\)
\(602\) 13.8412 + 13.8412i 0.564125 + 0.564125i
\(603\) 1.14446 + 20.0518i 0.0466062 + 0.816571i
\(604\) 0.0228483i 0.000929683i
\(605\) −21.3110 + 11.1742i −0.866415 + 0.454298i
\(606\) −11.8262 + 31.0239i −0.480407 + 1.26026i
\(607\) 15.2786 15.2786i 0.620137 0.620137i −0.325429 0.945566i \(-0.605509\pi\)
0.945566 + 0.325429i \(0.105509\pi\)
\(608\) −0.00722657 + 0.00722657i −0.000293076 + 0.000293076i
\(609\) −0.315687 + 0.828147i −0.0127923 + 0.0335582i
\(610\) 11.0239 + 3.43991i 0.446344 + 0.139278i
\(611\) 7.73090i 0.312759i
\(612\) −0.000167475 0.00293428i −6.76979e−6 0.000118611i
\(613\) −4.86567 4.86567i −0.196523 0.196523i 0.601985 0.798507i \(-0.294377\pi\)
−0.798507 + 0.601985i \(0.794377\pi\)
\(614\) −25.6130 −1.03365
\(615\) −21.6602 17.0429i −0.873424 0.687237i
\(616\) −3.26140 −0.131405
\(617\) −16.5719 16.5719i −0.667160 0.667160i 0.289897 0.957058i \(-0.406379\pi\)
−0.957058 + 0.289897i \(0.906379\pi\)
\(618\) −4.58909 10.2431i −0.184600 0.412036i
\(619\) 22.9117i 0.920899i −0.887686 0.460450i \(-0.847688\pi\)
0.887686 0.460450i \(-0.152312\pi\)
\(620\) 0.00128393 + 0.00244865i 5.15638e−5 + 9.83400e-5i
\(621\) 11.5930 + 22.3653i 0.465213 + 0.897487i
\(622\) 21.6711 21.6711i 0.868931 0.868931i
\(623\) −20.3930 + 20.3930i −0.817028 + 0.817028i
\(624\) −5.55156 2.11624i −0.222240 0.0847173i
\(625\) −8.82856 23.3892i −0.353143 0.935570i
\(626\) 31.0535i 1.24115i
\(627\) 1.12851 0.505594i 0.0450683 0.0201915i
\(628\) 0.0198607 + 0.0198607i 0.000792527 + 0.000792527i
\(629\) −5.86360 −0.233797
\(630\) −5.44339 + 21.7297i −0.216870 + 0.865733i
\(631\) −5.03474 −0.200430 −0.100215 0.994966i \(-0.531953\pi\)
−0.100215 + 0.994966i \(0.531953\pi\)
\(632\) −17.9155 17.9155i −0.712641 0.712641i
\(633\) 1.49386 0.669278i 0.0593756 0.0266014i
\(634\) 27.4643i 1.09075i
\(635\) −6.68205 + 21.4140i −0.265169 + 0.849788i
\(636\) −0.0196089 0.00747483i −0.000777542 0.000296396i
\(637\) −0.865227 + 0.865227i −0.0342815 + 0.0342815i
\(638\) 0.105951 0.105951i 0.00419465 0.00419465i
\(639\) 0.193825 + 0.172894i 0.00766760 + 0.00683959i
\(640\) 7.54272 24.1722i 0.298152 0.955489i
\(641\) 2.56260i 0.101216i 0.998719 + 0.0506082i \(0.0161160\pi\)
−0.998719 + 0.0506082i \(0.983884\pi\)
\(642\) 8.03256 + 17.9290i 0.317020 + 0.707602i
\(643\) 27.8538 + 27.8538i 1.09845 + 1.09845i 0.994592 + 0.103856i \(0.0331181\pi\)
0.103856 + 0.994592i \(0.466882\pi\)
\(644\) −0.0141504 −0.000557605
\(645\) 22.5425 2.68932i 0.887608 0.105892i
\(646\) 1.63771 0.0644349
\(647\) 8.41427 + 8.41427i 0.330799 + 0.330799i 0.852890 0.522091i \(-0.174848\pi\)
−0.522091 + 0.852890i \(0.674848\pi\)
\(648\) 19.9250 + 15.8302i 0.782727 + 0.621867i
\(649\) 4.64891i 0.182486i
\(650\) −4.98614 3.44744i −0.195572 0.135220i
\(651\) −1.45634 + 3.82044i −0.0570785 + 0.149735i
\(652\) −0.00454057 + 0.00454057i −0.000177822 + 0.000177822i
\(653\) −15.4098 + 15.4098i −0.603031 + 0.603031i −0.941116 0.338085i \(-0.890221\pi\)
0.338085 + 0.941116i \(0.390221\pi\)
\(654\) 13.0692 34.2847i 0.511046 1.34064i
\(655\) −14.0099 26.7189i −0.547410 1.04399i
\(656\) 28.4828i 1.11207i
\(657\) 8.25464 0.471138i 0.322044 0.0183808i
\(658\) −21.3005 21.3005i −0.830382 0.830382i
\(659\) −1.48765 −0.0579506 −0.0289753 0.999580i \(-0.509224\pi\)
−0.0289753 + 0.999580i \(0.509224\pi\)
\(660\) 0.00144695 0.00183896i 5.63224e−5 7.15813e-5i
\(661\) −10.9973 −0.427747 −0.213873 0.976861i \(-0.568608\pi\)
−0.213873 + 0.976861i \(0.568608\pi\)
\(662\) 16.4785 + 16.4785i 0.640456 + 0.640456i
\(663\) 0.480868 + 1.07332i 0.0186754 + 0.0416842i
\(664\) 1.38336i 0.0536849i
\(665\) −7.36225 2.29733i −0.285496 0.0890865i
\(666\) −20.9069 + 23.4379i −0.810126 + 0.908201i
\(667\) −0.743101 + 0.743101i −0.0287730 + 0.0287730i
\(668\) 0.0176604 0.0176604i 0.000683303 0.000683303i
\(669\) −7.57265 2.88667i −0.292776 0.111605i
\(670\) −18.7555 + 9.83428i −0.724587 + 0.379931i
\(671\) 1.78384i 0.0688643i
\(672\) −0.0260984 + 0.0116926i −0.00100677 + 0.000451052i
\(673\) 9.80668 + 9.80668i 0.378020 + 0.378020i 0.870387 0.492367i \(-0.163868\pi\)
−0.492367 + 0.870387i \(0.663868\pi\)
\(674\) −37.2470 −1.43470
\(675\) 15.9022 + 20.5456i 0.612076 + 0.790799i
\(676\) 0.0151660 0.000583308
\(677\) 25.2317 + 25.2317i 0.969733 + 0.969733i 0.999555 0.0298219i \(-0.00949402\pi\)
−0.0298219 + 0.999555i \(0.509494\pi\)
\(678\) −1.91906 + 0.859776i −0.0737010 + 0.0330195i
\(679\) 4.45454i 0.170949i
\(680\) −4.43662 + 2.32631i −0.170137 + 0.0892099i
\(681\) 10.3259 + 3.93619i 0.395688 + 0.150835i
\(682\) 0.488779 0.488779i 0.0187163 0.0187163i
\(683\) 31.5979 31.5979i 1.20906 1.20906i 0.237731 0.971331i \(-0.423596\pi\)
0.971331 0.237731i \(-0.0764036\pi\)
\(684\) 0.00360786 0.00404463i 0.000137950 0.000154650i
\(685\) 36.9998 + 11.5455i 1.41369 + 0.441130i
\(686\) 28.1434i 1.07452i
\(687\) 16.3033 + 36.3896i 0.622009 + 1.38835i
\(688\) 16.5897 + 16.5897i 0.632475 + 0.632475i
\(689\) 8.39763 0.319924
\(690\) −16.4251 + 20.8750i −0.625294 + 0.794699i
\(691\) 23.7307 0.902758 0.451379 0.892332i \(-0.350932\pi\)
0.451379 + 0.892332i \(0.350932\pi\)
\(692\) −0.00449466 0.00449466i −0.000170861 0.000170861i
\(693\) 3.45468 0.197178i 0.131233 0.00749016i
\(694\) 43.4677i 1.65001i
\(695\) −1.57964 3.01261i −0.0599191 0.114275i
\(696\) −0.378140 + 0.991980i −0.0143333 + 0.0376009i
\(697\) −3.98695 + 3.98695i −0.151016 + 0.151016i
\(698\) −2.53283 + 2.53283i −0.0958690 + 0.0958690i
\(699\) −17.1175 + 44.9046i −0.647443 + 1.69845i
\(700\) −0.0143569 + 0.00261939i −0.000542638 + 9.90037e-5i
\(701\) 9.19645i 0.347345i −0.984803 0.173672i \(-0.944437\pi\)
0.984803 0.173672i \(-0.0555634\pi\)
\(702\) 6.00481 + 1.90484i 0.226637 + 0.0718936i
\(703\) −7.64603 7.64603i −0.288375 0.288375i
\(704\) −3.90660 −0.147236
\(705\) −34.6912 + 4.13865i −1.30654 + 0.155871i
\(706\) −11.4059 −0.429267
\(707\) −22.6177 22.6177i −0.850625 0.850625i
\(708\) −0.00833096 0.0185951i −0.000313097 0.000698846i
\(709\) 37.0608i 1.39185i 0.718115 + 0.695924i \(0.245005\pi\)
−0.718115 + 0.695924i \(0.754995\pi\)
\(710\) −0.0815782 + 0.261434i −0.00306157 + 0.00981143i
\(711\) 20.0604 + 17.8941i 0.752324 + 0.671082i
\(712\) −24.4274 + 24.4274i −0.915455 + 0.915455i
\(713\) −3.42811 + 3.42811i −0.128384 + 0.128384i
\(714\) 4.28217 + 1.63235i 0.160256 + 0.0610891i
\(715\) −0.278925 + 0.893871i −0.0104312 + 0.0334289i
\(716\) 0.0258108i 0.000964593i
\(717\) 13.6966 6.13636i 0.511510 0.229167i
\(718\) −16.7902 16.7902i −0.626603 0.626603i
\(719\) −22.4294 −0.836477 −0.418238 0.908337i \(-0.637352\pi\)
−0.418238 + 0.908337i \(0.637352\pi\)
\(720\) −6.52430 + 26.0446i −0.243146 + 0.970627i
\(721\) 10.8132 0.402706
\(722\) −16.8703 16.8703i −0.627849 0.627849i
\(723\) 30.7861 13.7928i 1.14495 0.512959i
\(724\) 0.0237664i 0.000883273i
\(725\) −0.616386 + 0.891498i −0.0228920 + 0.0331094i
\(726\) 24.6383 + 9.39203i 0.914413 + 0.348571i
\(727\) 17.7622 17.7622i 0.658763 0.658763i −0.296325 0.955087i \(-0.595761\pi\)
0.955087 + 0.296325i \(0.0957610\pi\)
\(728\) 4.04481 4.04481i 0.149911 0.149911i
\(729\) −22.0629 15.5637i −0.817144 0.576433i
\(730\) 4.04845 + 7.72100i 0.149840 + 0.285767i
\(731\) 4.64435i 0.171778i
\(732\) −0.00319668 0.00713513i −0.000118153 0.000263722i
\(733\) 14.5129 + 14.5129i 0.536046 + 0.536046i 0.922365 0.386319i \(-0.126254\pi\)
−0.386319 + 0.922365i \(0.626254\pi\)
\(734\) 50.3171 1.85724
\(735\) 4.34575 + 3.41937i 0.160296 + 0.126125i
\(736\) −0.0339101 −0.00124994
\(737\) 2.31313 + 2.31313i 0.0852054 + 0.0852054i
\(738\) 1.72095 + 30.1522i 0.0633491 + 1.10992i
\(739\) 32.9388i 1.21167i −0.795589 0.605837i \(-0.792838\pi\)
0.795589 0.605837i \(-0.207162\pi\)
\(740\) −0.0195325 0.00609494i −0.000718028 0.000224055i
\(741\) −0.772544 + 2.02663i −0.0283801 + 0.0744501i
\(742\) 23.1375 23.1375i 0.849406 0.849406i
\(743\) −3.09833 + 3.09833i −0.113667 + 0.113667i −0.761652 0.647986i \(-0.775612\pi\)
0.647986 + 0.761652i \(0.275612\pi\)
\(744\) −1.74445 + 4.57625i −0.0639547 + 0.167773i
\(745\) −38.4113 + 20.1407i −1.40728 + 0.737897i
\(746\) 2.57496i 0.0942761i
\(747\) 0.0836355 + 1.46535i 0.00306006 + 0.0536143i
\(748\) −0.000338493 0 0.000338493i −1.23765e−5 0 1.23765e-5i
\(749\) −18.9270 −0.691579
\(750\) −12.8005 + 24.2200i −0.467410 + 0.884390i
\(751\) 30.1178 1.09901 0.549507 0.835489i \(-0.314816\pi\)
0.549507 + 0.835489i \(0.314816\pi\)
\(752\) −25.5303 25.5303i −0.930992 0.930992i
\(753\) −4.72092 10.5373i −0.172040 0.384001i
\(754\) 0.262803i 0.00957073i
\(755\) 36.5939 19.1877i 1.33179 0.698314i
\(756\) 0.0134649 0.00697955i 0.000489715 0.000253844i
\(757\) −21.3145 + 21.3145i −0.774689 + 0.774689i −0.978922 0.204233i \(-0.934530\pi\)
0.204233 + 0.978922i \(0.434530\pi\)
\(758\) 26.9868 26.9868i 0.980205 0.980205i
\(759\) 3.83395 + 1.46149i 0.139164 + 0.0530487i
\(760\) −8.81874 2.75181i −0.319889 0.0998187i
\(761\) 14.3563i 0.520417i −0.965552 0.260208i \(-0.916209\pi\)
0.965552 0.260208i \(-0.0837913\pi\)
\(762\) 22.4325 10.0502i 0.812644 0.364080i
\(763\) 24.9949 + 24.9949i 0.904877 + 0.904877i
\(764\) 0.0301423 0.00109051
\(765\) 4.55891 2.73241i 0.164828 0.0987903i
\(766\) −18.5764 −0.671192
\(767\) 5.76563 + 5.76563i 0.208185 + 0.208185i
\(768\) −0.0469068 + 0.0210152i −0.00169260 + 0.000758319i
\(769\) 38.8955i 1.40261i −0.712862 0.701304i \(-0.752601\pi\)
0.712862 0.701304i \(-0.247399\pi\)
\(770\) 1.69433 + 3.23134i 0.0610594 + 0.116450i
\(771\) −9.45910 3.60578i −0.340661 0.129859i
\(772\) 0.00735726 0.00735726i 0.000264794 0.000264794i
\(773\) −11.8920 + 11.8920i −0.427727 + 0.427727i −0.887853 0.460127i \(-0.847804\pi\)
0.460127 + 0.887853i \(0.347804\pi\)
\(774\) −18.5643 16.5596i −0.667282 0.595223i
\(775\) −2.84354 + 4.11270i −0.102143 + 0.147732i
\(776\) 5.33579i 0.191544i
\(777\) −12.3713 27.6133i −0.443818 0.990621i
\(778\) −5.45352 5.45352i −0.195518 0.195518i
\(779\) −10.3978 −0.372540
\(780\) 0.000486173 0.00407521i 1.74078e−5 0.000145916i
\(781\) 0.0423041 0.00151376
\(782\) 3.84242 + 3.84242i 0.137405 + 0.137405i
\(783\) 0.340577 1.07363i 0.0121712 0.0383684i
\(784\) 5.71459i 0.204092i
\(785\) −15.1302 + 48.4878i −0.540020 + 1.73060i
\(786\) −11.7754 + 30.8906i −0.420014 + 1.10183i
\(787\) 18.9654 18.9654i 0.676044 0.676044i −0.283059 0.959103i \(-0.591349\pi\)
0.959103 + 0.283059i \(0.0913491\pi\)
\(788\) 0.0194793 0.0194793i 0.000693923 0.000693923i
\(789\) 1.87371 4.91534i 0.0667059 0.174991i
\(790\) −8.44313 + 27.0577i −0.300393 + 0.962671i
\(791\) 2.02588i 0.0720321i
\(792\) 4.13813 0.236186i 0.147042 0.00839250i
\(793\) 2.21233 + 2.21233i 0.0785622 + 0.0785622i
\(794\) −25.3007 −0.897888
\(795\) −4.49558 37.6830i −0.159442 1.33648i
\(796\) 0.00506534 0.000179536
\(797\) −25.5972 25.5972i −0.906701 0.906701i 0.0893038 0.996004i \(-0.471536\pi\)
−0.996004 + 0.0893038i \(0.971536\pi\)
\(798\) 3.45532 + 7.71242i 0.122317 + 0.273017i
\(799\) 7.14731i 0.252854i
\(800\) −0.0344048 + 0.00627712i −0.00121639 + 0.000221930i
\(801\) 24.3982 27.3519i 0.862069 0.966432i
\(802\) −23.2467 + 23.2467i −0.820870 + 0.820870i
\(803\) 0.952240 0.952240i 0.0336038 0.0336038i
\(804\) 0.0133974 + 0.00510706i 0.000472491 + 0.000180112i
\(805\) −11.8834 22.6634i −0.418834 0.798780i
\(806\) 1.21238i 0.0427041i
\(807\) 25.5579 11.4504i 0.899680 0.403074i
\(808\) −27.0922 27.0922i −0.953100 0.953100i
\(809\) −13.9192 −0.489372 −0.244686 0.969602i \(-0.578685\pi\)
−0.244686 + 0.969602i \(0.578685\pi\)
\(810\) 5.33305 27.9653i 0.187384 0.982601i
\(811\) 40.5704 1.42462 0.712310 0.701865i \(-0.247649\pi\)
0.712310 + 0.701865i \(0.247649\pi\)
\(812\) 0.000447382 0 0.000447382i 1.57000e−5 0 1.57000e-5i
\(813\) −43.7257 + 19.5900i −1.53353 + 0.687050i
\(814\) 5.11554i 0.179299i
\(815\) −11.0853 3.45908i −0.388302 0.121166i
\(816\) 5.13249 + 1.95649i 0.179673 + 0.0684908i
\(817\) 6.05615 6.05615i 0.211878 0.211878i
\(818\) 20.9516 20.9516i 0.732556 0.732556i
\(819\) −4.03999 + 4.52907i −0.141169 + 0.158258i
\(820\) −0.0174253 + 0.00913683i −0.000608518 + 0.000319072i
\(821\) 22.8010i 0.795762i −0.917437 0.397881i \(-0.869746\pi\)
0.917437 0.397881i \(-0.130254\pi\)
\(822\) −17.3651 38.7596i −0.605677 1.35190i
\(823\) −22.5406 22.5406i −0.785717 0.785717i 0.195072 0.980789i \(-0.437506\pi\)
−0.980789 + 0.195072i \(0.937506\pi\)
\(824\) 12.9524 0.451219
\(825\) 4.16042 + 0.773106i 0.144847 + 0.0269161i
\(826\) 31.7715 1.10547
\(827\) 1.41043 + 1.41043i 0.0490454 + 0.0490454i 0.731204 0.682159i \(-0.238959\pi\)
−0.682159 + 0.731204i \(0.738959\pi\)
\(828\) 0.0179543 0.00102475i 0.000623957 3.56127e-5i
\(829\) 33.0090i 1.14645i 0.819398 + 0.573225i \(0.194308\pi\)
−0.819398 + 0.573225i \(0.805692\pi\)
\(830\) −1.37062 + 0.718672i −0.0475748 + 0.0249455i
\(831\) −13.9860 + 36.6897i −0.485168 + 1.27275i
\(832\) 4.84501 4.84501i 0.167970 0.167970i
\(833\) 0.799913 0.799913i 0.0277153 0.0277153i
\(834\) −1.32770 + 3.48297i −0.0459744 + 0.120605i
\(835\) 43.1161 + 13.4540i 1.49210 + 0.465596i
\(836\) 0 0.000882776i 0 3.05315e-5i
\(837\) 1.57116 4.95292i 0.0543073 0.171198i
\(838\) 8.76691 + 8.76691i 0.302848 + 0.302848i
\(839\) −37.0786 −1.28009 −0.640047 0.768336i \(-0.721085\pi\)
−0.640047 + 0.768336i \(0.721085\pi\)
\(840\) −20.3158 15.9851i −0.700961 0.551538i
\(841\) −28.9530 −0.998380
\(842\) −6.41548 6.41548i −0.221092 0.221092i
\(843\) −19.1850 42.8218i −0.660767 1.47486i
\(844\) 0.00116857i 4.02239e-5i
\(845\) 12.7363 + 24.2900i 0.438141 + 0.835601i
\(846\) 28.5691 + 25.4840i 0.982227 + 0.876159i
\(847\) −17.9623 + 17.9623i −0.617192 + 0.617192i
\(848\) 27.7320 27.7320i 0.952322 0.952322i
\(849\) 18.0004 + 6.86171i 0.617774 + 0.235493i
\(850\) 4.60975 + 3.18720i 0.158113 + 0.109320i
\(851\) 35.8784i 1.22990i
\(852\) 0.000169211 0 7.58098e-5i 5.79707e−6 0 2.59720e-6i
\(853\) 37.3086 + 37.3086i 1.27742 + 1.27742i 0.942106 + 0.335315i \(0.108843\pi\)
0.335315 + 0.942106i \(0.391157\pi\)
\(854\) 12.1911 0.417169
\(855\) 9.50774 + 2.38173i 0.325158 + 0.0814535i
\(856\) −22.6714 −0.774893
\(857\) 4.08616 + 4.08616i 0.139580 + 0.139580i 0.773444 0.633864i \(-0.218532\pi\)
−0.633864 + 0.773444i \(0.718532\pi\)
\(858\) 0.936386 0.419520i 0.0319677 0.0143222i
\(859\) 9.31165i 0.317709i 0.987302 + 0.158855i \(0.0507801\pi\)
−0.987302 + 0.158855i \(0.949220\pi\)
\(860\) 0.00482759 0.0154710i 0.000164619 0.000527556i
\(861\) −27.1874 10.3638i −0.926545 0.353196i
\(862\) 2.35338 2.35338i 0.0801563 0.0801563i
\(863\) −14.5615 + 14.5615i −0.495680 + 0.495680i −0.910090 0.414411i \(-0.863988\pi\)
0.414411 + 0.910090i \(0.363988\pi\)
\(864\) 0.0322675 0.0167258i 0.00109776 0.000569024i
\(865\) 3.42411 10.9733i 0.116423 0.373102i
\(866\) 33.2110i 1.12855i
\(867\) 11.5943 + 25.8790i 0.393763 + 0.878896i
\(868\) 0.00206388 + 0.00206388i 7.00527e−5 + 7.00527e-5i
\(869\) 4.37836 0.148526
\(870\) 1.17929 0.140689i 0.0399816 0.00476980i
\(871\) −5.73754 −0.194409
\(872\) 29.9397 + 29.9397i 1.01389 + 1.01389i
\(873\) 0.322591 + 5.65201i 0.0109181 + 0.191292i
\(874\) 10.0209i 0.338961i
\(875\) −16.2520 20.7943i −0.549417 0.702975i
\(876\) 0.00210241 0.00551528i 7.10337e−5 0.000186344i
\(877\) −18.7018 + 18.7018i −0.631515 + 0.631515i −0.948448 0.316933i \(-0.897347\pi\)
0.316933 + 0.948448i \(0.397347\pi\)
\(878\) −11.3248 + 11.3248i −0.382194 + 0.382194i
\(879\) 9.41574 24.7005i 0.317585 0.833126i
\(880\) 2.03078 + 3.87300i 0.0684575 + 0.130559i
\(881\) 17.4925i 0.589338i −0.955599 0.294669i \(-0.904791\pi\)
0.955599 0.294669i \(-0.0952093\pi\)
\(882\) −0.345279 6.04952i −0.0116262 0.203698i
\(883\) −35.1699 35.1699i −1.18356 1.18356i −0.978815 0.204746i \(-0.934363\pi\)
−0.204746 0.978815i \(-0.565637\pi\)
\(884\) 0.000839603 0 2.82389e−5 0
\(885\) 22.7857 28.9589i 0.765934 0.973442i
\(886\) 0.246554 0.00828313
\(887\) 18.3427 + 18.3427i 0.615887 + 0.615887i 0.944474 0.328587i \(-0.106572\pi\)
−0.328587 + 0.944474i \(0.606572\pi\)
\(888\) −14.8187 33.0761i −0.497284 1.10996i
\(889\) 23.6812i 0.794242i
\(890\) 36.8926 + 11.5120i 1.23664 + 0.385884i
\(891\) −4.36909 + 0.500366i −0.146370 + 0.0167629i
\(892\) −0.00409090 + 0.00409090i −0.000136974 + 0.000136974i
\(893\) −9.31996 + 9.31996i −0.311881 + 0.311881i
\(894\) 44.4085 + 16.9284i 1.48524 + 0.566170i
\(895\) −41.3387 + 21.6756i −1.38180 + 0.724536i
\(896\) 26.7314i 0.893034i
\(897\) −6.56745 + 2.94235i −0.219281 + 0.0982422i
\(898\) −5.58653 5.58653i −0.186425 0.186425i
\(899\) 0.216767 0.00722959
\(900\) 0.0180266 0.00436324i 0.000600886 0.000145441i
\(901\) −7.76371 −0.258647
\(902\) 3.47830 + 3.47830i 0.115815 + 0.115815i
\(903\) 21.8715 9.79886i 0.727838 0.326086i
\(904\) 2.42667i 0.0807097i
\(905\) 38.0645 19.9588i 1.26531 0.663453i
\(906\) −42.3074 16.1274i −1.40557 0.535798i
\(907\) −26.2609 + 26.2609i −0.871980 + 0.871980i −0.992688 0.120708i \(-0.961484\pi\)
0.120708 + 0.992688i \(0.461484\pi\)
\(908\) 0.00557825 0.00557825i 0.000185121 0.000185121i
\(909\) 30.3357 + 27.0598i 1.00617 + 0.897518i
\(910\) −6.10887 1.90622i −0.202507 0.0631906i
\(911\) 11.9878i 0.397172i −0.980083 0.198586i \(-0.936365\pi\)
0.980083 0.198586i \(-0.0636349\pi\)
\(912\) 4.14145 + 9.24389i 0.137137 + 0.306096i
\(913\) 0.169040 + 0.169040i 0.00559440 + 0.00559440i
\(914\) 37.4799 1.23972
\(915\) 8.74313 11.1118i 0.289039 0.367346i
\(916\) 0.0284658 0.000940536
\(917\) −22.5205 22.5205i −0.743692 0.743692i
\(918\) −5.55152 1.76105i −0.183227 0.0581233i
\(919\) 26.1006i 0.860978i 0.902596 + 0.430489i \(0.141659\pi\)
−0.902596 + 0.430489i \(0.858341\pi\)
\(920\) −14.2343 27.1470i −0.469291 0.895009i
\(921\) −11.1701 + 29.3028i −0.368069 + 0.965561i
\(922\) −1.80234 + 1.80234i −0.0593569 + 0.0593569i
\(923\) −0.0524659 + 0.0524659i −0.00172694 + 0.00172694i
\(924\) 0.000879885 0.00230822i 2.89461e−5 7.59348e-5i
\(925\) −6.64147 36.4018i −0.218370 1.19688i
\(926\) 57.7970i 1.89933i
\(927\) −13.7201 + 0.783079i −0.450626 + 0.0257197i
\(928\) 0.00107211 + 0.00107211i 3.51937e−5 + 3.51937e-5i
\(929\) −15.4055 −0.505437 −0.252718 0.967540i \(-0.581325\pi\)
−0.252718 + 0.967540i \(0.581325\pi\)
\(930\) 5.44034 0.649033i 0.178396 0.0212826i
\(931\) 2.08614 0.0683705
\(932\) 0.0242584 + 0.0242584i 0.000794611 + 0.000794611i
\(933\) −15.3420 34.2441i −0.502276 1.12110i
\(934\) 3.54535i 0.116007i
\(935\) 0.257870 0.826395i 0.00843324 0.0270260i
\(936\) −4.83922 + 5.42506i −0.158175 + 0.177324i
\(937\) −38.8342 + 38.8342i −1.26866 + 1.26866i −0.321874 + 0.946782i \(0.604313\pi\)
−0.946782 + 0.321874i \(0.895687\pi\)
\(938\) −15.8083 + 15.8083i −0.516161 + 0.516161i
\(939\) −35.5272 13.5428i −1.15939 0.441954i
\(940\) −0.00742930 + 0.0238087i −0.000242317 + 0.000776554i
\(941\) 41.2021i 1.34315i 0.740937 + 0.671574i \(0.234382\pi\)
−0.740937 + 0.671574i \(0.765618\pi\)
\(942\) 50.7940 22.7567i 1.65496 0.741453i
\(943\) −24.3955 24.3955i −0.794425 0.794425i
\(944\) 38.0804 1.23941
\(945\) 22.4862 + 15.7042i 0.731477 + 0.510857i
\(946\) −4.05184 −0.131737
\(947\) −16.9664 16.9664i −0.551332 0.551332i 0.375493 0.926825i \(-0.377473\pi\)
−0.926825 + 0.375493i \(0.877473\pi\)
\(948\) 0.0175129 0.00784613i 0.000568793 0.000254830i
\(949\) 2.36195i 0.0766723i
\(950\) 1.85497 + 10.1671i 0.0601832 + 0.329863i
\(951\) −31.4208 11.9775i −1.01889 0.388398i
\(952\) −3.73948 + 3.73948i −0.121197 + 0.121197i
\(953\) −19.9054 + 19.9054i −0.644799 + 0.644799i −0.951731 0.306932i \(-0.900697\pi\)
0.306932 + 0.951731i \(0.400697\pi\)
\(954\) −27.6818 + 31.0330i −0.896232 + 1.00473i
\(955\) 25.3132 + 48.2762i 0.819116 + 1.56218i
\(956\) 0.0107142i 0.000346522i
\(957\) −0.0750081 0.167422i −0.00242467 0.00541197i
\(958\) 36.3937 + 36.3937i 1.17583 + 1.17583i
\(959\) 40.9172 1.32129
\(960\) −24.3349 19.1474i −0.785405 0.617981i
\(961\) 1.00000 0.0322581
\(962\) −6.34433 6.34433i −0.204550 0.204550i
\(963\) 24.0150 1.37067i 0.773873 0.0441692i
\(964\) 0.0240824i 0.000775643i
\(965\) 17.9620 + 5.60488i 0.578217 + 0.180428i
\(966\) −9.98807 + 26.2019i −0.321361 + 0.843031i
\(967\) 10.1993 10.1993i 0.327986 0.327986i −0.523834 0.851820i \(-0.675499\pi\)
0.851820 + 0.523834i \(0.175499\pi\)
\(968\) −21.5158 + 21.5158i −0.691545 + 0.691545i
\(969\) 0.714227 1.87364i 0.0229443 0.0601901i
\(970\) −5.28662 + 2.77200i −0.169743 + 0.0890035i
\(971\) 52.2148i 1.67565i −0.545937 0.837826i \(-0.683826\pi\)
0.545937 0.837826i \(-0.316174\pi\)
\(972\) −0.0165792 + 0.00983091i −0.000531777 + 0.000315327i
\(973\) −2.53923 2.53923i −0.0814038 0.0814038i
\(974\) 33.7731 1.08216
\(975\) −6.11860 + 4.20098i −0.195952 + 0.134539i
\(976\) 14.6119 0.467714
\(977\) −16.2313 16.2313i −0.519287 0.519287i 0.398069 0.917356i \(-0.369681\pi\)
−0.917356 + 0.398069i \(0.869681\pi\)
\(978\) 5.20266 + 11.6126i 0.166363 + 0.371329i
\(979\) 5.96980i 0.190796i
\(980\) 0.00349609 0.00183315i 0.000111679 5.85578e-5i
\(981\) −33.5242 29.9040i −1.07034 0.954760i
\(982\) 3.75394 3.75394i 0.119793 0.119793i
\(983\) 3.80734 3.80734i 0.121435 0.121435i −0.643777 0.765213i \(-0.722634\pi\)
0.765213 + 0.643777i \(0.222634\pi\)
\(984\) −32.5660 12.4140i −1.03817 0.395745i
\(985\) 47.5568 + 14.8397i 1.51529 + 0.472832i
\(986\) 0.242965i 0.00773758i
\(987\) −33.6586 + 15.0797i −1.07136 + 0.479993i
\(988\) 0.00109483 + 0.00109483i 3.48311e−5 + 3.48311e-5i
\(989\) 28.4180 0.903640
\(990\) −2.38381 3.97730i −0.0757625 0.126407i
\(991\) 26.4153 0.839111 0.419555 0.907730i \(-0.362186\pi\)
0.419555 + 0.907730i \(0.362186\pi\)
\(992\) 0.00494590 + 0.00494590i 0.000157032 + 0.000157032i
\(993\) 26.0389 11.6660i 0.826321 0.370208i
\(994\) 0.289113i 0.00917011i
\(995\) 4.25382 + 8.11269i 0.134855 + 0.257190i
\(996\) 0.000979061 0 0.000373215i 3.10227e−5 0 1.18258e-5i
\(997\) −1.90689 + 1.90689i −0.0603917 + 0.0603917i −0.736658 0.676266i \(-0.763597\pi\)
0.676266 + 0.736658i \(0.263597\pi\)
\(998\) 6.14757 6.14757i 0.194598 0.194598i
\(999\) 17.6967 + 34.1404i 0.559898 + 1.08015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.k.b.218.9 yes 60
3.2 odd 2 inner 465.2.k.b.218.22 yes 60
5.2 odd 4 inner 465.2.k.b.32.22 yes 60
15.2 even 4 inner 465.2.k.b.32.9 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.k.b.32.9 60 15.2 even 4 inner
465.2.k.b.32.22 yes 60 5.2 odd 4 inner
465.2.k.b.218.9 yes 60 1.1 even 1 trivial
465.2.k.b.218.22 yes 60 3.2 odd 2 inner