Properties

Label 465.2.k.b.218.22
Level $465$
Weight $2$
Character 465.218
Analytic conductor $3.713$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(32,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,0,0,-4,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 218.22
Character \(\chi\) \(=\) 465.218
Dual form 465.2.k.b.32.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00031 + 1.00031i) q^{2} +(0.708168 - 1.58066i) q^{3} +0.00123647i q^{4} +(1.98035 - 1.03838i) q^{5} +(2.28954 - 0.872765i) q^{6} +(-1.66917 + 1.66917i) q^{7} +(1.99938 - 1.99938i) q^{8} +(-1.99699 - 2.23875i) q^{9} +(3.01966 + 0.942258i) q^{10} +0.488628i q^{11} +(0.00195445 + 0.000875632i) q^{12} +(0.606001 + 0.606001i) q^{13} -3.33937 q^{14} +(-0.238909 - 3.86561i) q^{15} +4.00247 q^{16} +(0.560255 + 0.560255i) q^{17} +(0.241832 - 4.23706i) q^{18} -1.46112i q^{19} +(0.00128393 + 0.00244865i) q^{20} +(1.45634 + 3.82044i) q^{21} +(-0.488779 + 0.488779i) q^{22} +(-3.42811 + 3.42811i) q^{23} +(-1.74445 - 4.57625i) q^{24} +(2.84354 - 4.11270i) q^{25} +1.21238i q^{26} +(-4.95292 + 1.57116i) q^{27} +(-0.00206388 - 0.00206388i) q^{28} +0.216767 q^{29} +(3.62782 - 4.10578i) q^{30} -1.00000 q^{31} +(0.00494590 + 0.00494590i) q^{32} +(0.772356 + 0.346031i) q^{33} +1.12086i q^{34} +(-1.57230 + 5.03875i) q^{35} +(0.00276816 - 0.00246923i) q^{36} +(5.23298 - 5.23298i) q^{37} +(1.46158 - 1.46158i) q^{38} +(1.38703 - 0.528733i) q^{39} +(1.88335 - 6.03558i) q^{40} +7.11630i q^{41} +(-2.36483 + 5.27841i) q^{42} +(4.14486 + 4.14486i) q^{43} -0.000604176 q^{44} +(-6.27941 - 2.35987i) q^{45} -6.85833 q^{46} +(6.37862 + 6.37862i) q^{47} +(2.83442 - 6.32656i) q^{48} +1.42776i q^{49} +(6.95839 - 1.26955i) q^{50} +(1.28233 - 0.488820i) q^{51} +(-0.000749304 + 0.000749304i) q^{52} +(-6.92873 + 6.92873i) q^{53} +(-6.52610 - 3.38280i) q^{54} +(0.507381 + 0.967652i) q^{55} +6.67460i q^{56} +(-2.30955 - 1.03472i) q^{57} +(0.216834 + 0.216834i) q^{58} -9.51422 q^{59} +(0.00477972 - 0.000295405i) q^{60} +3.65071 q^{61} +(-1.00031 - 1.00031i) q^{62} +(7.07017 + 0.403534i) q^{63} -7.99505i q^{64} +(1.82935 + 0.570833i) q^{65} +(0.426457 + 1.11873i) q^{66} +(-4.73394 + 4.73394i) q^{67} +(-0.000692741 + 0.000692741i) q^{68} +(2.99101 + 7.84636i) q^{69} +(-6.61310 + 3.46753i) q^{70} -0.0865773i q^{71} +(-8.46887 - 0.483365i) q^{72} +(1.94880 + 1.94880i) q^{73} +10.4692 q^{74} +(-4.48709 - 7.40716i) q^{75} +0.00180664 q^{76} +(-0.815601 - 0.815601i) q^{77} +(1.91636 + 0.858567i) q^{78} +8.96053i q^{79} +(7.92628 - 4.15608i) q^{80} +(-1.02402 + 8.94155i) q^{81} +(-7.11850 + 7.11850i) q^{82} +(0.345948 - 0.345948i) q^{83} +(-0.00472388 + 0.00180073i) q^{84} +(1.69126 + 0.527742i) q^{85} +8.29227i q^{86} +(0.153508 - 0.342636i) q^{87} +(0.976954 + 0.976954i) q^{88} -12.2175 q^{89} +(-3.92076 - 8.64195i) q^{90} -2.02303 q^{91} +(-0.00423877 - 0.00423877i) q^{92} +(-0.708168 + 1.58066i) q^{93} +12.7612i q^{94} +(-1.51720 - 2.89353i) q^{95} +(0.0113203 - 0.00431527i) q^{96} +(-1.33436 + 1.33436i) q^{97} +(-1.42821 + 1.42821i) q^{98} +(1.09392 - 0.975787i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{6} + 16 q^{10} - 12 q^{13} - 8 q^{15} - 60 q^{16} + 34 q^{18} - 4 q^{21} + 8 q^{22} + 8 q^{25} - 6 q^{27} - 80 q^{28} - 54 q^{30} - 60 q^{31} + 10 q^{33} + 28 q^{36} - 12 q^{37} + 60 q^{40}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00031 + 1.00031i 0.707325 + 0.707325i 0.965972 0.258647i \(-0.0832765\pi\)
−0.258647 + 0.965972i \(0.583277\pi\)
\(3\) 0.708168 1.58066i 0.408861 0.912597i
\(4\) 0.00123647i 0.000618237i
\(5\) 1.98035 1.03838i 0.885638 0.464377i
\(6\) 2.28954 0.872765i 0.934701 0.356305i
\(7\) −1.66917 + 1.66917i −0.630886 + 0.630886i −0.948290 0.317405i \(-0.897189\pi\)
0.317405 + 0.948290i \(0.397189\pi\)
\(8\) 1.99938 1.99938i 0.706888 0.706888i
\(9\) −1.99699 2.23875i −0.665665 0.746251i
\(10\) 3.01966 + 0.942258i 0.954900 + 0.297968i
\(11\) 0.488628i 0.147327i 0.997283 + 0.0736634i \(0.0234691\pi\)
−0.997283 + 0.0736634i \(0.976531\pi\)
\(12\) 0.00195445 0.000875632i 0.000564201 0.000252773i
\(13\) 0.606001 + 0.606001i 0.168074 + 0.168074i 0.786132 0.618058i \(-0.212080\pi\)
−0.618058 + 0.786132i \(0.712080\pi\)
\(14\) −3.33937 −0.892483
\(15\) −0.238909 3.86561i −0.0616860 0.998096i
\(16\) 4.00247 1.00062
\(17\) 0.560255 + 0.560255i 0.135882 + 0.135882i 0.771776 0.635894i \(-0.219369\pi\)
−0.635894 + 0.771776i \(0.719369\pi\)
\(18\) 0.241832 4.23706i 0.0570004 0.998684i
\(19\) 1.46112i 0.335205i −0.985855 0.167602i \(-0.946397\pi\)
0.985855 0.167602i \(-0.0536025\pi\)
\(20\) 0.00128393 + 0.00244865i 0.000287095 + 0.000547534i
\(21\) 1.45634 + 3.82044i 0.317799 + 0.833689i
\(22\) −0.488779 + 0.488779i −0.104208 + 0.104208i
\(23\) −3.42811 + 3.42811i −0.714810 + 0.714810i −0.967537 0.252728i \(-0.918672\pi\)
0.252728 + 0.967537i \(0.418672\pi\)
\(24\) −1.74445 4.57625i −0.356084 0.934123i
\(25\) 2.84354 4.11270i 0.568708 0.822540i
\(26\) 1.21238i 0.237767i
\(27\) −4.95292 + 1.57116i −0.953190 + 0.302370i
\(28\) −0.00206388 0.00206388i −0.000390037 0.000390037i
\(29\) 0.216767 0.0402527 0.0201263 0.999797i \(-0.493593\pi\)
0.0201263 + 0.999797i \(0.493593\pi\)
\(30\) 3.62782 4.10578i 0.662346 0.749610i
\(31\) −1.00000 −0.179605
\(32\) 0.00494590 + 0.00494590i 0.000874319 + 0.000874319i
\(33\) 0.772356 + 0.346031i 0.134450 + 0.0602362i
\(34\) 1.12086i 0.192225i
\(35\) −1.57230 + 5.03875i −0.265767 + 0.851705i
\(36\) 0.00276816 0.00246923i 0.000461360 0.000411539i
\(37\) 5.23298 5.23298i 0.860296 0.860296i −0.131076 0.991372i \(-0.541843\pi\)
0.991372 + 0.131076i \(0.0418433\pi\)
\(38\) 1.46158 1.46158i 0.237099 0.237099i
\(39\) 1.38703 0.528733i 0.222103 0.0846650i
\(40\) 1.88335 6.03558i 0.297784 0.954309i
\(41\) 7.11630i 1.11138i 0.831390 + 0.555690i \(0.187546\pi\)
−0.831390 + 0.555690i \(0.812454\pi\)
\(42\) −2.36483 + 5.27841i −0.364902 + 0.814477i
\(43\) 4.14486 + 4.14486i 0.632084 + 0.632084i 0.948591 0.316506i \(-0.102510\pi\)
−0.316506 + 0.948591i \(0.602510\pi\)
\(44\) −0.000604176 0 −9.10829e−5 0
\(45\) −6.27941 2.35987i −0.936080 0.351788i
\(46\) −6.85833 −1.01121
\(47\) 6.37862 + 6.37862i 0.930418 + 0.930418i 0.997732 0.0673142i \(-0.0214430\pi\)
−0.0673142 + 0.997732i \(0.521443\pi\)
\(48\) 2.83442 6.32656i 0.409114 0.913160i
\(49\) 1.42776i 0.203966i
\(50\) 6.95839 1.26955i 0.984065 0.179542i
\(51\) 1.28233 0.488820i 0.179562 0.0684485i
\(52\) −0.000749304 0 0.000749304i −0.000103910 0 0.000103910i
\(53\) −6.92873 + 6.92873i −0.951734 + 0.951734i −0.998888 0.0471539i \(-0.984985\pi\)
0.0471539 + 0.998888i \(0.484985\pi\)
\(54\) −6.52610 3.38280i −0.888090 0.460341i
\(55\) 0.507381 + 0.967652i 0.0684152 + 0.130478i
\(56\) 6.67460i 0.891931i
\(57\) −2.30955 1.03472i −0.305907 0.137052i
\(58\) 0.216834 + 0.216834i 0.0284717 + 0.0284717i
\(59\) −9.51422 −1.23865 −0.619323 0.785136i \(-0.712593\pi\)
−0.619323 + 0.785136i \(0.712593\pi\)
\(60\) 0.00477972 0.000295405i 0.000617060 3.81366e-5i
\(61\) 3.65071 0.467425 0.233713 0.972306i \(-0.424912\pi\)
0.233713 + 0.972306i \(0.424912\pi\)
\(62\) −1.00031 1.00031i −0.127039 0.127039i
\(63\) 7.07017 + 0.403534i 0.890757 + 0.0508404i
\(64\) 7.99505i 0.999381i
\(65\) 1.82935 + 0.570833i 0.226903 + 0.0708031i
\(66\) 0.426457 + 1.11873i 0.0524933 + 0.137707i
\(67\) −4.73394 + 4.73394i −0.578342 + 0.578342i −0.934446 0.356104i \(-0.884105\pi\)
0.356104 + 0.934446i \(0.384105\pi\)
\(68\) −0.000692741 0 0.000692741i −8.40072e−5 0 8.40072e-5i
\(69\) 2.99101 + 7.84636i 0.360075 + 0.944591i
\(70\) −6.61310 + 3.46753i −0.790416 + 0.414449i
\(71\) 0.0865773i 0.0102748i −0.999987 0.00513742i \(-0.998365\pi\)
0.999987 0.00513742i \(-0.00163530\pi\)
\(72\) −8.46887 0.483365i −0.998066 0.0569652i
\(73\) 1.94880 + 1.94880i 0.228090 + 0.228090i 0.811895 0.583804i \(-0.198436\pi\)
−0.583804 + 0.811895i \(0.698436\pi\)
\(74\) 10.4692 1.21702
\(75\) −4.48709 7.40716i −0.518124 0.855305i
\(76\) 0.00180664 0.000207236
\(77\) −0.815601 0.815601i −0.0929464 0.0929464i
\(78\) 1.91636 + 0.858567i 0.216985 + 0.0972135i
\(79\) 8.96053i 1.00814i 0.863663 + 0.504069i \(0.168164\pi\)
−0.863663 + 0.504069i \(0.831836\pi\)
\(80\) 7.92628 4.15608i 0.886185 0.464664i
\(81\) −1.02402 + 8.94155i −0.113780 + 0.993506i
\(82\) −7.11850 + 7.11850i −0.786107 + 0.786107i
\(83\) 0.345948 0.345948i 0.0379727 0.0379727i −0.687865 0.725838i \(-0.741452\pi\)
0.725838 + 0.687865i \(0.241452\pi\)
\(84\) −0.00472388 + 0.00180073i −0.000515417 + 0.000196475i
\(85\) 1.69126 + 0.527742i 0.183443 + 0.0572417i
\(86\) 8.29227i 0.894179i
\(87\) 0.153508 0.342636i 0.0164578 0.0367344i
\(88\) 0.976954 + 0.976954i 0.104144 + 0.104144i
\(89\) −12.2175 −1.29505 −0.647525 0.762044i \(-0.724196\pi\)
−0.647525 + 0.762044i \(0.724196\pi\)
\(90\) −3.92076 8.64195i −0.413284 0.910942i
\(91\) −2.02303 −0.212071
\(92\) −0.00423877 0.00423877i −0.000441922 0.000441922i
\(93\) −0.708168 + 1.58066i −0.0734337 + 0.163907i
\(94\) 12.7612i 1.31622i
\(95\) −1.51720 2.89353i −0.155661 0.296870i
\(96\) 0.0113203 0.00431527i 0.00115538 0.000440425i
\(97\) −1.33436 + 1.33436i −0.135484 + 0.135484i −0.771596 0.636113i \(-0.780541\pi\)
0.636113 + 0.771596i \(0.280541\pi\)
\(98\) −1.42821 + 1.42821i −0.144271 + 0.144271i
\(99\) 1.09392 0.975787i 0.109943 0.0980703i
\(100\) 0.00508525 + 0.00351596i 0.000508525 + 0.000351596i
\(101\) 13.5503i 1.34830i −0.738593 0.674152i \(-0.764509\pi\)
0.738593 0.674152i \(-0.235491\pi\)
\(102\) 1.77170 + 0.793755i 0.175424 + 0.0785935i
\(103\) −3.23911 3.23911i −0.319159 0.319159i 0.529285 0.848444i \(-0.322460\pi\)
−0.848444 + 0.529285i \(0.822460\pi\)
\(104\) 2.42325 0.237620
\(105\) 6.85112 + 6.05357i 0.668601 + 0.590767i
\(106\) −13.8617 −1.34637
\(107\) −5.66961 5.66961i −0.548102 0.548102i 0.377790 0.925891i \(-0.376684\pi\)
−0.925891 + 0.377790i \(0.876684\pi\)
\(108\) −0.00194270 0.00612416i −0.000186937 0.000589298i
\(109\) 14.9745i 1.43430i −0.696921 0.717148i \(-0.745447\pi\)
0.696921 0.717148i \(-0.254553\pi\)
\(110\) −0.460414 + 1.47549i −0.0438987 + 0.140682i
\(111\) −4.56575 11.9774i −0.433361 1.13684i
\(112\) −6.68079 + 6.68079i −0.631276 + 0.631276i
\(113\) 0.606854 0.606854i 0.0570880 0.0570880i −0.677986 0.735074i \(-0.737147\pi\)
0.735074 + 0.677986i \(0.237147\pi\)
\(114\) −1.27522 3.34530i −0.119435 0.313316i
\(115\) −3.22917 + 10.3485i −0.301121 + 0.965004i
\(116\) 0 0.000268027i 0 2.48857e-5i
\(117\) 0.146505 2.56687i 0.0135444 0.237307i
\(118\) −9.51716 9.51716i −0.876126 0.876126i
\(119\) −1.87032 −0.171452
\(120\) −8.20649 7.25115i −0.749147 0.661937i
\(121\) 10.7612 0.978295
\(122\) 3.65184 + 3.65184i 0.330622 + 0.330622i
\(123\) 11.2485 + 5.03954i 1.01424 + 0.454400i
\(124\) 0.00123647i 0.000111039i
\(125\) 1.36065 11.0972i 0.121701 0.992567i
\(126\) 6.66870 + 7.47601i 0.594095 + 0.666016i
\(127\) 7.09372 7.09372i 0.629466 0.629466i −0.318468 0.947934i \(-0.603168\pi\)
0.947934 + 0.318468i \(0.103168\pi\)
\(128\) 8.00741 8.00741i 0.707762 0.707762i
\(129\) 9.48688 3.61637i 0.835273 0.318403i
\(130\) 1.25891 + 2.40092i 0.110413 + 0.210575i
\(131\) 13.4920i 1.17881i −0.807839 0.589403i \(-0.799363\pi\)
0.807839 0.589403i \(-0.200637\pi\)
\(132\) −0.000427858 0 0.000954999i −3.72403e−5 0 8.31220e-5i
\(133\) 2.43886 + 2.43886i 0.211476 + 0.211476i
\(134\) −9.47080 −0.818153
\(135\) −8.17704 + 8.25446i −0.703767 + 0.710430i
\(136\) 2.24033 0.192107
\(137\) 12.2568 + 12.2568i 1.04717 + 1.04717i 0.998831 + 0.0483356i \(0.0153917\pi\)
0.0483356 + 0.998831i \(0.484608\pi\)
\(138\) −4.85686 + 10.8407i −0.413443 + 0.922823i
\(139\) 1.52125i 0.129031i 0.997917 + 0.0645155i \(0.0205502\pi\)
−0.997917 + 0.0645155i \(0.979450\pi\)
\(140\) −0.00623029 0.00194411i −0.000526556 0.000164307i
\(141\) 14.5996 5.56532i 1.22951 0.468684i
\(142\) 0.0866040 0.0866040i 0.00726765 0.00726765i
\(143\) −0.296109 + 0.296109i −0.0247619 + 0.0247619i
\(144\) −7.99291 8.96054i −0.666076 0.746712i
\(145\) 0.429274 0.225086i 0.0356493 0.0186924i
\(146\) 3.89881i 0.322668i
\(147\) 2.25682 + 1.01110i 0.186139 + 0.0833940i
\(148\) 0.00647044 + 0.00647044i 0.000531867 + 0.000531867i
\(149\) −19.3963 −1.58900 −0.794502 0.607261i \(-0.792268\pi\)
−0.794502 + 0.607261i \(0.792268\pi\)
\(150\) 2.92098 11.8979i 0.238497 0.971462i
\(151\) −18.4786 −1.50376 −0.751882 0.659298i \(-0.770854\pi\)
−0.751882 + 0.659298i \(0.770854\pi\)
\(152\) −2.92134 2.92134i −0.236952 0.236952i
\(153\) 0.135446 2.37310i 0.0109502 0.191854i
\(154\) 1.63171i 0.131487i
\(155\) −1.98035 + 1.03838i −0.159065 + 0.0834046i
\(156\) 0.000653764 0.00171503i 5.23430e−5 0.000137312i
\(157\) 16.0623 16.0623i 1.28191 1.28191i 0.342336 0.939578i \(-0.388782\pi\)
0.939578 0.342336i \(-0.111218\pi\)
\(158\) −8.96330 + 8.96330i −0.713082 + 0.713082i
\(159\) 6.04528 + 15.8587i 0.479422 + 1.25768i
\(160\) 0.0149303 + 0.00465887i 0.00118034 + 0.000368316i
\(161\) 11.4442i 0.901927i
\(162\) −9.96866 + 7.91998i −0.783212 + 0.622252i
\(163\) 3.67219 + 3.67219i 0.287628 + 0.287628i 0.836142 0.548514i \(-0.184806\pi\)
−0.548514 + 0.836142i \(0.684806\pi\)
\(164\) −0.00879913 −0.000687096
\(165\) 1.88884 0.116737i 0.147046 0.00908800i
\(166\) 0.692110 0.0537181
\(167\) 14.2829 + 14.2829i 1.10524 + 1.10524i 0.993767 + 0.111477i \(0.0355581\pi\)
0.111477 + 0.993767i \(0.464442\pi\)
\(168\) 10.5503 + 4.72674i 0.813973 + 0.364676i
\(169\) 12.2655i 0.943502i
\(170\) 1.16387 + 2.21968i 0.0892650 + 0.170242i
\(171\) −3.27110 + 2.91786i −0.250147 + 0.223134i
\(172\) −0.00512501 + 0.00512501i −0.000390778 + 0.000390778i
\(173\) 3.63506 3.63506i 0.276369 0.276369i −0.555289 0.831658i \(-0.687392\pi\)
0.831658 + 0.555289i \(0.187392\pi\)
\(174\) 0.496297 0.189187i 0.0376242 0.0143422i
\(175\) 2.11844 + 11.6111i 0.160139 + 0.877718i
\(176\) 1.95572i 0.147418i
\(177\) −6.73767 + 15.0388i −0.506434 + 1.13038i
\(178\) −12.2212 12.2212i −0.916021 0.916021i
\(179\) −20.8745 −1.56023 −0.780116 0.625635i \(-0.784840\pi\)
−0.780116 + 0.625635i \(0.784840\pi\)
\(180\) 0.00291792 0.00776433i 0.000217489 0.000578719i
\(181\) −19.2211 −1.42870 −0.714348 0.699791i \(-0.753277\pi\)
−0.714348 + 0.699791i \(0.753277\pi\)
\(182\) −2.02366 2.02366i −0.150004 0.150004i
\(183\) 2.58532 5.77054i 0.191112 0.426571i
\(184\) 13.7082i 1.01058i
\(185\) 4.92929 15.7969i 0.362409 1.16141i
\(186\) −2.28954 + 0.872765i −0.167877 + 0.0639942i
\(187\) −0.273756 + 0.273756i −0.0200190 + 0.0200190i
\(188\) −0.00788700 + 0.00788700i −0.000575219 + 0.000575219i
\(189\) 5.64472 10.8898i 0.410593 0.792115i
\(190\) 1.37676 4.41210i 0.0998804 0.320087i
\(191\) 24.3776i 1.76390i 0.471339 + 0.881952i \(0.343771\pi\)
−0.471339 + 0.881952i \(0.656229\pi\)
\(192\) −12.6375 5.66184i −0.912032 0.408608i
\(193\) −5.95019 5.95019i −0.428304 0.428304i 0.459746 0.888050i \(-0.347940\pi\)
−0.888050 + 0.459746i \(0.847940\pi\)
\(194\) −2.66954 −0.191662
\(195\) 2.19778 2.48734i 0.157386 0.178122i
\(196\) −0.00176539 −0.000126100
\(197\) 15.7539 + 15.7539i 1.12242 + 1.12242i 0.991376 + 0.131046i \(0.0418334\pi\)
0.131046 + 0.991376i \(0.458167\pi\)
\(198\) 2.07034 + 0.118166i 0.147133 + 0.00839769i
\(199\) 4.09660i 0.290400i −0.989402 0.145200i \(-0.953617\pi\)
0.989402 0.145200i \(-0.0463826\pi\)
\(200\) −2.53753 13.9082i −0.179431 0.983456i
\(201\) 4.13034 + 10.8352i 0.291332 + 0.764255i
\(202\) 13.5545 13.5545i 0.953689 0.953689i
\(203\) −0.361821 + 0.361821i −0.0253948 + 0.0253948i
\(204\) 0.000604413 0.00158557i 4.23174e−5 0.000111012i
\(205\) 7.38942 + 14.0927i 0.516099 + 0.984280i
\(206\) 6.48022i 0.451499i
\(207\) 14.5206 + 0.828771i 1.00925 + 0.0576035i
\(208\) 2.42550 + 2.42550i 0.168178 + 0.168178i
\(209\) 0.713946 0.0493847
\(210\) 0.797803 + 12.9087i 0.0550537 + 0.890783i
\(211\) −0.945083 −0.0650622 −0.0325311 0.999471i \(-0.510357\pi\)
−0.0325311 + 0.999471i \(0.510357\pi\)
\(212\) −0.00856719 0.00856719i −0.000588397 0.000588397i
\(213\) −0.136850 0.0613113i −0.00937677 0.00420098i
\(214\) 11.3427i 0.775372i
\(215\) 12.5122 + 3.90432i 0.853323 + 0.266272i
\(216\) −6.76143 + 13.0441i −0.460057 + 0.887541i
\(217\) 1.66917 1.66917i 0.113310 0.113310i
\(218\) 14.9791 14.9791i 1.01451 1.01451i
\(219\) 4.46049 1.70032i 0.301412 0.114897i
\(220\) −0.00119648 0.000627363i −8.06665e−5 4.22968e-5i
\(221\) 0.679030i 0.0456765i
\(222\) 7.41395 16.5483i 0.497592 1.11065i
\(223\) 3.30852 + 3.30852i 0.221555 + 0.221555i 0.809153 0.587598i \(-0.199926\pi\)
−0.587598 + 0.809153i \(0.699926\pi\)
\(224\) −0.0165111 −0.00110319
\(225\) −14.8858 + 1.84705i −0.992390 + 0.123137i
\(226\) 1.21408 0.0807596
\(227\) 4.51141 + 4.51141i 0.299433 + 0.299433i 0.840792 0.541359i \(-0.182090\pi\)
−0.541359 + 0.840792i \(0.682090\pi\)
\(228\) 0.00127941 0.00285569i 8.47308e−5 0.000189123i
\(229\) 23.0217i 1.52132i −0.649151 0.760660i \(-0.724876\pi\)
0.649151 0.760660i \(-0.275124\pi\)
\(230\) −13.5819 + 7.12155i −0.895562 + 0.469581i
\(231\) −1.86677 + 0.711608i −0.122825 + 0.0468204i
\(232\) 0.433400 0.433400i 0.0284541 0.0284541i
\(233\) −19.6190 + 19.6190i −1.28528 + 1.28528i −0.347666 + 0.937618i \(0.613026\pi\)
−0.937618 + 0.347666i \(0.886974\pi\)
\(234\) 2.71421 2.42111i 0.177433 0.158273i
\(235\) 19.2553 + 6.00845i 1.25608 + 0.391948i
\(236\) 0.0117641i 0.000765777i
\(237\) 14.1636 + 6.34556i 0.920023 + 0.412189i
\(238\) −1.87090 1.87090i −0.121272 0.121272i
\(239\) 8.66511 0.560499 0.280250 0.959927i \(-0.409583\pi\)
0.280250 + 0.959927i \(0.409583\pi\)
\(240\) −0.956225 15.4720i −0.0617241 0.998712i
\(241\) −19.4767 −1.25460 −0.627302 0.778776i \(-0.715841\pi\)
−0.627302 + 0.778776i \(0.715841\pi\)
\(242\) 10.7646 + 10.7646i 0.691973 + 0.691973i
\(243\) 13.4084 + 7.95076i 0.860150 + 0.510042i
\(244\) 0.00451401i 0.000288980i
\(245\) 1.48256 + 2.82747i 0.0947173 + 0.180640i
\(246\) 6.21086 + 16.2931i 0.395990 + 1.03881i
\(247\) 0.885442 0.885442i 0.0563394 0.0563394i
\(248\) −1.99938 + 1.99938i −0.126961 + 0.126961i
\(249\) −0.301838 0.791817i −0.0191282 0.0501794i
\(250\) 12.4617 9.73959i 0.788150 0.615986i
\(251\) 6.66638i 0.420778i −0.977618 0.210389i \(-0.932527\pi\)
0.977618 0.210389i \(-0.0674731\pi\)
\(252\) −0.000498959 0.00874208i −3.14315e−5 0.000550699i
\(253\) −1.67507 1.67507i −0.105311 0.105311i
\(254\) 14.1918 0.890474
\(255\) 2.03188 2.29958i 0.127241 0.144005i
\(256\) 0.0296754 0.00185471
\(257\) −4.13272 4.13272i −0.257792 0.257792i 0.566364 0.824155i \(-0.308350\pi\)
−0.824155 + 0.566364i \(0.808350\pi\)
\(258\) 13.1073 + 5.87233i 0.816024 + 0.365595i
\(259\) 17.4694i 1.08550i
\(260\) −0.000705820 0.00226194i −4.37731e−5 0.000140280i
\(261\) −0.432883 0.485288i −0.0267948 0.0300386i
\(262\) 13.4962 13.4962i 0.833799 0.833799i
\(263\) 2.14753 2.14753i 0.132423 0.132423i −0.637789 0.770211i \(-0.720151\pi\)
0.770211 + 0.637789i \(0.220151\pi\)
\(264\) 2.23608 0.852387i 0.137621 0.0524608i
\(265\) −6.52663 + 20.9159i −0.400928 + 1.28485i
\(266\) 4.87923i 0.299165i
\(267\) −8.65203 + 19.3117i −0.529496 + 1.18186i
\(268\) −0.00585339 0.00585339i −0.000357553 0.000357553i
\(269\) 16.1691 0.985846 0.492923 0.870073i \(-0.335928\pi\)
0.492923 + 0.870073i \(0.335928\pi\)
\(270\) −16.4366 + 0.0774414i −1.00030 + 0.00471293i
\(271\) 27.6629 1.68040 0.840200 0.542277i \(-0.182438\pi\)
0.840200 + 0.542277i \(0.182438\pi\)
\(272\) 2.24241 + 2.24241i 0.135966 + 0.135966i
\(273\) −1.43265 + 3.19773i −0.0867078 + 0.193536i
\(274\) 24.5211i 1.48138i
\(275\) 2.00958 + 1.38943i 0.121182 + 0.0837860i
\(276\) −0.00970183 + 0.00369830i −0.000583981 + 0.000222612i
\(277\) 16.0299 16.0299i 0.963141 0.963141i −0.0362031 0.999344i \(-0.511526\pi\)
0.999344 + 0.0362031i \(0.0115263\pi\)
\(278\) −1.52172 + 1.52172i −0.0912669 + 0.0912669i
\(279\) 1.99699 + 2.23875i 0.119557 + 0.134031i
\(280\) 6.93076 + 13.2180i 0.414192 + 0.789928i
\(281\) 27.0910i 1.61611i −0.589104 0.808057i \(-0.700519\pi\)
0.589104 0.808057i \(-0.299481\pi\)
\(282\) 20.1711 + 9.03707i 1.20117 + 0.538150i
\(283\) −7.86447 7.86447i −0.467494 0.467494i 0.433608 0.901102i \(-0.357240\pi\)
−0.901102 + 0.433608i \(0.857240\pi\)
\(284\) 0.000107051 0 6.35228e−6 0
\(285\) −5.64813 + 0.349075i −0.334567 + 0.0206774i
\(286\) −0.592401 −0.0350294
\(287\) −11.8783 11.8783i −0.701154 0.701154i
\(288\) 0.00119571 0.0209496i 7.04577e−5 0.00123447i
\(289\) 16.3722i 0.963072i
\(290\) 0.654563 + 0.204251i 0.0384372 + 0.0119940i
\(291\) 1.16422 + 3.05412i 0.0682479 + 0.179036i
\(292\) −0.00240965 + 0.00240965i −0.000141014 + 0.000141014i
\(293\) 10.7917 10.7917i 0.630460 0.630460i −0.317723 0.948183i \(-0.602918\pi\)
0.948183 + 0.317723i \(0.102918\pi\)
\(294\) 1.24610 + 3.26892i 0.0726742 + 0.190648i
\(295\) −18.8415 + 9.87936i −1.09699 + 0.575199i
\(296\) 20.9254i 1.21627i
\(297\) −0.767714 2.42014i −0.0445473 0.140431i
\(298\) −19.4023 19.4023i −1.12394 1.12394i
\(299\) −4.15487 −0.240282
\(300\) 0.00915877 0.00554817i 0.000528782 0.000320324i
\(301\) −13.8369 −0.797546
\(302\) −18.4843 18.4843i −1.06365 1.06365i
\(303\) −21.4184 9.59588i −1.23046 0.551269i
\(304\) 5.84811i 0.335412i
\(305\) 7.22967 3.79082i 0.413970 0.217062i
\(306\) 2.50932 2.23835i 0.143448 0.127958i
\(307\) 12.8025 12.8025i 0.730678 0.730678i −0.240076 0.970754i \(-0.577172\pi\)
0.970754 + 0.240076i \(0.0771723\pi\)
\(308\) 0.00100847 0.00100847i 5.74629e−5 5.74629e-5i
\(309\) −7.41378 + 2.82611i −0.421755 + 0.160772i
\(310\) −3.01966 0.942258i −0.171505 0.0535167i
\(311\) 21.6644i 1.22847i −0.789121 0.614237i \(-0.789464\pi\)
0.789121 0.614237i \(-0.210536\pi\)
\(312\) 1.71607 3.83035i 0.0971534 0.216851i
\(313\) 15.5220 + 15.5220i 0.877353 + 0.877353i 0.993260 0.115907i \(-0.0369774\pi\)
−0.115907 + 0.993260i \(0.536977\pi\)
\(314\) 32.1346 1.81346
\(315\) 14.4204 6.54238i 0.812497 0.368621i
\(316\) −0.0110795 −0.000623268
\(317\) −13.7279 13.7279i −0.771035 0.771035i 0.207252 0.978288i \(-0.433548\pi\)
−0.978288 + 0.207252i \(0.933548\pi\)
\(318\) −9.81644 + 21.9107i −0.550479 + 1.22869i
\(319\) 0.105919i 0.00593030i
\(320\) −8.30189 15.8330i −0.464090 0.885089i
\(321\) −12.9768 + 4.94671i −0.724293 + 0.276098i
\(322\) 11.4477 11.4477i 0.637956 0.637956i
\(323\) 0.818603 0.818603i 0.0455483 0.0455483i
\(324\) −0.0110560 0.00126618i −0.000614222 7.03433e-5i
\(325\) 4.21549 0.769111i 0.233833 0.0426626i
\(326\) 7.34665i 0.406893i
\(327\) −23.6696 10.6045i −1.30893 0.586428i
\(328\) 14.2282 + 14.2282i 0.785621 + 0.785621i
\(329\) −21.2940 −1.17397
\(330\) 2.00620 + 1.77265i 0.110438 + 0.0975814i
\(331\) −16.4734 −0.905461 −0.452731 0.891647i \(-0.649550\pi\)
−0.452731 + 0.891647i \(0.649550\pi\)
\(332\) 0.000427756 0 0.000427756i 2.34762e−5 0 2.34762e-5i
\(333\) −22.1656 1.26511i −1.21467 0.0693277i
\(334\) 28.5746i 1.56353i
\(335\) −4.45921 + 14.2905i −0.243633 + 0.780771i
\(336\) 5.82896 + 15.2912i 0.317996 + 0.834204i
\(337\) 18.6177 18.6177i 1.01417 1.01417i 0.0142748 0.999898i \(-0.495456\pi\)
0.999898 0.0142748i \(-0.00454395\pi\)
\(338\) 12.2693 12.2693i 0.667363 0.667363i
\(339\) −0.529477 1.38899i −0.0287573 0.0754394i
\(340\) −0.000652540 0.00209120i −3.53889e−5 0.000113411i
\(341\) 0.488628i 0.0264607i
\(342\) −6.19087 0.353347i −0.334764 0.0191068i
\(343\) −14.0673 14.0673i −0.759565 0.759565i
\(344\) 16.5743 0.893626
\(345\) 14.0707 + 12.4327i 0.757542 + 0.669355i
\(346\) 7.27238 0.390965
\(347\) −21.7272 21.7272i −1.16637 1.16637i −0.983053 0.183322i \(-0.941315\pi\)
−0.183322 0.983053i \(-0.558685\pi\)
\(348\) 0.000423661 0 0.000189808i 2.27106e−5 0 1.01748e-5i
\(349\) 2.53205i 0.135537i −0.997701 0.0677687i \(-0.978412\pi\)
0.997701 0.0677687i \(-0.0215880\pi\)
\(350\) −9.49562 + 13.7338i −0.507562 + 0.734102i
\(351\) −3.95360 2.04935i −0.211028 0.109386i
\(352\) −0.00241670 + 0.00241670i −0.000128811 + 0.000128811i
\(353\) −5.70119 + 5.70119i −0.303444 + 0.303444i −0.842360 0.538916i \(-0.818834\pi\)
0.538916 + 0.842360i \(0.318834\pi\)
\(354\) −21.7832 + 8.30368i −1.15776 + 0.441336i
\(355\) −0.0899000 0.171453i −0.00477140 0.00909978i
\(356\) 0.0151066i 0.000800648i
\(357\) −1.32450 + 2.95635i −0.0701000 + 0.156466i
\(358\) −20.8809 20.8809i −1.10359 1.10359i
\(359\) −16.7850 −0.885877 −0.442938 0.896552i \(-0.646064\pi\)
−0.442938 + 0.896552i \(0.646064\pi\)
\(360\) −17.2732 + 7.83667i −0.910378 + 0.413029i
\(361\) 16.8651 0.887638
\(362\) −19.2271 19.2271i −1.01055 1.01055i
\(363\) 7.62077 17.0099i 0.399987 0.892788i
\(364\) 0.00250143i 0.000131110i
\(365\) 5.88290 + 1.83571i 0.307925 + 0.0960855i
\(366\) 8.35844 3.18621i 0.436903 0.166546i
\(367\) −25.1508 + 25.1508i −1.31286 + 1.31286i −0.393560 + 0.919299i \(0.628757\pi\)
−0.919299 + 0.393560i \(0.871243\pi\)
\(368\) −13.7209 + 13.7209i −0.715252 + 0.715252i
\(369\) 15.9316 14.2112i 0.829368 0.739807i
\(370\) 20.7326 10.8710i 1.07784 0.565155i
\(371\) 23.1304i 1.20087i
\(372\) −0.00195445 0.000875632i −0.000101334 4.53994e-5i
\(373\) −1.28708 1.28708i −0.0666427 0.0666427i 0.673000 0.739643i \(-0.265005\pi\)
−0.739643 + 0.673000i \(0.765005\pi\)
\(374\) −0.547682 −0.0283200
\(375\) −16.5774 10.0094i −0.856054 0.516886i
\(376\) 25.5066 1.31540
\(377\) 0.131361 + 0.131361i 0.00676544 + 0.00676544i
\(378\) 16.5396 5.24669i 0.850706 0.269861i
\(379\) 26.9785i 1.38579i 0.721038 + 0.692896i \(0.243665\pi\)
−0.721038 + 0.692896i \(0.756335\pi\)
\(380\) 0.00357778 0.00187598i 0.000183536 9.62357e-5i
\(381\) −6.18924 16.2363i −0.317084 0.831812i
\(382\) −24.3852 + 24.3852i −1.24765 + 1.24765i
\(383\) −9.28532 + 9.28532i −0.474458 + 0.474458i −0.903354 0.428896i \(-0.858903\pi\)
0.428896 + 0.903354i \(0.358903\pi\)
\(384\) −6.98643 18.3276i −0.356525 0.935277i
\(385\) −2.46208 0.768270i −0.125479 0.0391547i
\(386\) 11.9041i 0.605901i
\(387\) 1.00205 17.5566i 0.0509370 0.892450i
\(388\) −0.00164990 0.00164990i −8.37611e−5 8.37611e-5i
\(389\) −5.45183 −0.276419 −0.138209 0.990403i \(-0.544135\pi\)
−0.138209 + 0.990403i \(0.544135\pi\)
\(390\) 4.68657 0.289647i 0.237314 0.0146669i
\(391\) −3.84123 −0.194259
\(392\) 2.85465 + 2.85465i 0.144181 + 0.144181i
\(393\) −21.3264 9.55464i −1.07577 0.481968i
\(394\) 31.5176i 1.58783i
\(395\) 9.30442 + 17.7449i 0.468156 + 0.892845i
\(396\) 0.00120654 + 0.00135260i 6.06307e−5 + 6.79707e-5i
\(397\) 12.6464 12.6464i 0.634706 0.634706i −0.314538 0.949245i \(-0.601850\pi\)
0.949245 + 0.314538i \(0.101850\pi\)
\(398\) 4.09787 4.09787i 0.205408 0.205408i
\(399\) 5.58214 2.12789i 0.279457 0.106528i
\(400\) 11.3812 16.4610i 0.569059 0.823048i
\(401\) 23.2395i 1.16053i 0.814429 + 0.580264i \(0.197050\pi\)
−0.814429 + 0.580264i \(0.802950\pi\)
\(402\) −6.70692 + 14.9701i −0.334511 + 0.746643i
\(403\) −0.606001 0.606001i −0.0301870 0.0301870i
\(404\) 0.0167546 0.000833571
\(405\) 7.25680 + 18.7707i 0.360593 + 0.932723i
\(406\) −0.723865 −0.0359248
\(407\) 2.55698 + 2.55698i 0.126745 + 0.126745i
\(408\) 1.58653 3.54120i 0.0785449 0.175316i
\(409\) 20.9451i 1.03567i 0.855480 + 0.517835i \(0.173262\pi\)
−0.855480 + 0.517835i \(0.826738\pi\)
\(410\) −6.70540 + 21.4888i −0.331156 + 1.06126i
\(411\) 28.0537 10.6940i 1.38379 0.527495i
\(412\) 0.00400508 0.00400508i 0.000197316 0.000197316i
\(413\) 15.8808 15.8808i 0.781444 0.781444i
\(414\) 13.6961 + 15.3541i 0.673125 + 0.754613i
\(415\) 0.325872 1.04432i 0.0159964 0.0512637i
\(416\) 0.00599443i 0.000293901i
\(417\) 2.40459 + 1.07730i 0.117753 + 0.0527558i
\(418\) 0.714167 + 0.714167i 0.0349310 + 0.0349310i
\(419\) 8.76420 0.428159 0.214080 0.976816i \(-0.431325\pi\)
0.214080 + 0.976816i \(0.431325\pi\)
\(420\) −0.00748508 + 0.00847124i −0.000365234 + 0.000413354i
\(421\) 6.41350 0.312575 0.156287 0.987712i \(-0.450047\pi\)
0.156287 + 0.987712i \(0.450047\pi\)
\(422\) −0.945375 0.945375i −0.0460202 0.0460202i
\(423\) 1.54208 27.0182i 0.0749785 1.31367i
\(424\) 27.7063i 1.34554i
\(425\) 3.89727 0.711052i 0.189045 0.0344911i
\(426\) −0.0755616 0.198222i −0.00366097 0.00960389i
\(427\) −6.09364 + 6.09364i −0.294892 + 0.294892i
\(428\) 0.00701032 0.00701032i 0.000338857 0.000338857i
\(429\) 0.258354 + 0.677744i 0.0124734 + 0.0327218i
\(430\) 8.61052 + 16.4216i 0.415236 + 0.791918i
\(431\) 2.35265i 0.113323i −0.998393 0.0566616i \(-0.981954\pi\)
0.998393 0.0566616i \(-0.0180456\pi\)
\(432\) −19.8239 + 6.28854i −0.953779 + 0.302557i
\(433\) 16.6004 + 16.6004i 0.797762 + 0.797762i 0.982742 0.184980i \(-0.0592221\pi\)
−0.184980 + 0.982742i \(0.559222\pi\)
\(434\) 3.33937 0.160295
\(435\) −0.0517876 0.837937i −0.00248302 0.0401760i
\(436\) 0.0185156 0.000886735
\(437\) 5.00889 + 5.00889i 0.239608 + 0.239608i
\(438\) 6.16271 + 2.76102i 0.294466 + 0.131927i
\(439\) 11.3213i 0.540337i −0.962813 0.270169i \(-0.912921\pi\)
0.962813 0.270169i \(-0.0870795\pi\)
\(440\) 2.94915 + 0.920258i 0.140595 + 0.0438716i
\(441\) 3.19641 2.85124i 0.152210 0.135773i
\(442\) −0.679240 + 0.679240i −0.0323082 + 0.0323082i
\(443\) 0.123239 0.123239i 0.00585525 0.00585525i −0.704173 0.710028i \(-0.748682\pi\)
0.710028 + 0.704173i \(0.248682\pi\)
\(444\) 0.0148098 0.00564543i 0.000702840 0.000267920i
\(445\) −24.1948 + 12.6864i −1.14694 + 0.601391i
\(446\) 6.61909i 0.313423i
\(447\) −13.7358 + 30.6590i −0.649682 + 1.45012i
\(448\) 13.3451 + 13.3451i 0.630495 + 0.630495i
\(449\) −5.58480 −0.263563 −0.131782 0.991279i \(-0.542070\pi\)
−0.131782 + 0.991279i \(0.542070\pi\)
\(450\) −16.7381 13.0428i −0.789040 0.614844i
\(451\) −3.47722 −0.163736
\(452\) 0.000750360 0 0.000750360i 3.52940e−5 0 3.52940e-5i
\(453\) −13.0859 + 29.2084i −0.614831 + 1.37233i
\(454\) 9.02561i 0.423593i
\(455\) −4.00630 + 2.10067i −0.187818 + 0.0984811i
\(456\) −6.68647 + 2.54886i −0.313123 + 0.119361i
\(457\) −18.7342 + 18.7342i −0.876347 + 0.876347i −0.993155 0.116808i \(-0.962734\pi\)
0.116808 + 0.993155i \(0.462734\pi\)
\(458\) 23.0289 23.0289i 1.07607 1.07607i
\(459\) −3.65515 1.89465i −0.170608 0.0884346i
\(460\) −0.0127957 0.00399278i −0.000596601 0.000186164i
\(461\) 1.80178i 0.0839173i 0.999119 + 0.0419587i \(0.0133598\pi\)
−0.999119 + 0.0419587i \(0.986640\pi\)
\(462\) −2.57918 1.15552i −0.119994 0.0537598i
\(463\) −28.8896 28.8896i −1.34261 1.34261i −0.893450 0.449162i \(-0.851723\pi\)
−0.449162 0.893450i \(-0.648277\pi\)
\(464\) 0.867605 0.0402775
\(465\) 0.238909 + 3.86561i 0.0110791 + 0.179263i
\(466\) −39.2502 −1.81823
\(467\) −1.77213 1.77213i −0.0820043 0.0820043i 0.664915 0.746919i \(-0.268468\pi\)
−0.746919 + 0.664915i \(0.768468\pi\)
\(468\) 0.00317386 0.000181150i 0.000146712 8.37366e-6i
\(469\) 15.8035i 0.729736i
\(470\) 13.2509 + 25.2716i 0.611220 + 1.16569i
\(471\) −14.0143 36.7640i −0.645745 1.69399i
\(472\) −19.0226 + 19.0226i −0.875584 + 0.875584i
\(473\) −2.02529 + 2.02529i −0.0931230 + 0.0931230i
\(474\) 7.82043 + 20.5155i 0.359204 + 0.942307i
\(475\) −6.00916 4.15477i −0.275719 0.190634i
\(476\) 0.00231260i 0.000105998i
\(477\) 29.3483 + 1.67507i 1.34377 + 0.0766962i
\(478\) 8.66779 + 8.66779i 0.396455 + 0.396455i
\(479\) 36.3824 1.66236 0.831178 0.556007i \(-0.187667\pi\)
0.831178 + 0.556007i \(0.187667\pi\)
\(480\) 0.0179373 0.0203005i 0.000818721 0.000926587i
\(481\) 6.34237 0.289187
\(482\) −19.4827 19.4827i −0.887414 0.887414i
\(483\) −18.0894 8.10440i −0.823095 0.368763i
\(484\) 0.0133060i 0.000604818i
\(485\) −1.25692 + 4.02806i −0.0570739 + 0.182905i
\(486\) 5.45933 + 21.3658i 0.247640 + 0.969171i
\(487\) −16.8813 + 16.8813i −0.764966 + 0.764966i −0.977215 0.212250i \(-0.931921\pi\)
0.212250 + 0.977215i \(0.431921\pi\)
\(488\) 7.29916 7.29916i 0.330417 0.330417i
\(489\) 8.40502 3.20397i 0.380088 0.144888i
\(490\) −1.34532 + 4.31136i −0.0607755 + 0.194767i
\(491\) 3.75278i 0.169361i −0.996408 0.0846803i \(-0.973013\pi\)
0.996408 0.0846803i \(-0.0269869\pi\)
\(492\) −0.00623126 + 0.0139085i −0.000280927 + 0.000627042i
\(493\) 0.121445 + 0.121445i 0.00546961 + 0.00546961i
\(494\) 1.77143 0.0797005
\(495\) 1.15310 3.06830i 0.0518279 0.137910i
\(496\) −4.00247 −0.179716
\(497\) 0.144512 + 0.144512i 0.00648224 + 0.00648224i
\(498\) 0.490130 1.09399i 0.0219633 0.0490230i
\(499\) 6.14567i 0.275118i 0.990494 + 0.137559i \(0.0439257\pi\)
−0.990494 + 0.137559i \(0.956074\pi\)
\(500\) 0.0137214 + 0.00168241i 0.000613642 + 7.52399e-5i
\(501\) 32.6912 12.4618i 1.46053 0.556750i
\(502\) 6.66844 6.66844i 0.297627 0.297627i
\(503\) −10.0046 + 10.0046i −0.446084 + 0.446084i −0.894050 0.447966i \(-0.852148\pi\)
0.447966 + 0.894050i \(0.352148\pi\)
\(504\) 14.9428 13.3291i 0.665604 0.593727i
\(505\) −14.0703 26.8342i −0.626121 1.19411i
\(506\) 3.35117i 0.148978i
\(507\) −19.3877 8.68606i −0.861037 0.385761i
\(508\) 0.00877120 + 0.00877120i 0.000389159 + 0.000389159i
\(509\) −8.38449 −0.371636 −0.185818 0.982584i \(-0.559494\pi\)
−0.185818 + 0.982584i \(0.559494\pi\)
\(510\) 4.33279 0.267782i 0.191859 0.0118576i
\(511\) −6.50576 −0.287798
\(512\) −15.9851 15.9851i −0.706450 0.706450i
\(513\) 2.29566 + 7.23684i 0.101356 + 0.319514i
\(514\) 8.26799i 0.364685i
\(515\) −9.77798 3.05114i −0.430869 0.134449i
\(516\) 0.00447154 + 0.0117303i 0.000196849 + 0.000516397i
\(517\) −3.11677 + 3.11677i −0.137076 + 0.137076i
\(518\) −17.4748 + 17.4748i −0.767799 + 0.767799i
\(519\) −3.17158 8.32005i −0.139217 0.365210i
\(520\) 4.79888 2.51625i 0.210445 0.110345i
\(521\) 16.8731i 0.739225i 0.929186 + 0.369613i \(0.120510\pi\)
−0.929186 + 0.369613i \(0.879490\pi\)
\(522\) 0.0524213 0.918455i 0.00229442 0.0401997i
\(523\) 7.41293 + 7.41293i 0.324145 + 0.324145i 0.850355 0.526210i \(-0.176387\pi\)
−0.526210 + 0.850355i \(0.676387\pi\)
\(524\) 0.0166826 0.000728781
\(525\) 19.8535 + 4.87409i 0.866477 + 0.212723i
\(526\) 4.29640 0.187332
\(527\) −0.560255 0.560255i −0.0244051 0.0244051i
\(528\) 3.09133 + 1.38498i 0.134533 + 0.0602735i
\(529\) 0.503846i 0.0219063i
\(530\) −27.4510 + 14.3937i −1.19240 + 0.625224i
\(531\) 18.9999 + 21.3000i 0.824523 + 0.924341i
\(532\) −0.00301559 + 0.00301559i −0.000130742 + 0.000130742i
\(533\) −4.31249 + 4.31249i −0.186794 + 0.186794i
\(534\) −27.9724 + 10.6630i −1.21048 + 0.461432i
\(535\) −17.1150 5.34059i −0.739945 0.230894i
\(536\) 18.9299i 0.817647i
\(537\) −14.7826 + 32.9955i −0.637918 + 1.42386i
\(538\) 16.1741 + 16.1741i 0.697314 + 0.697314i
\(539\) −0.697646 −0.0300497
\(540\) −0.0102064 0.0101107i −0.000439215 0.000435095i
\(541\) 5.37201 0.230961 0.115480 0.993310i \(-0.463159\pi\)
0.115480 + 0.993310i \(0.463159\pi\)
\(542\) 27.6714 + 27.6714i 1.18859 + 1.18859i
\(543\) −13.6118 + 30.3821i −0.584138 + 1.30382i
\(544\) 0.00554193i 0.000237608i
\(545\) −15.5492 29.6547i −0.666054 1.27027i
\(546\) −4.63181 + 1.76563i −0.198223 + 0.0755621i
\(547\) 1.42656 1.42656i 0.0609951 0.0609951i −0.675951 0.736946i \(-0.736267\pi\)
0.736946 + 0.675951i \(0.236267\pi\)
\(548\) −0.0151552 + 0.0151552i −0.000647397 + 0.000647397i
\(549\) −7.29045 8.17303i −0.311149 0.348817i
\(550\) 0.620338 + 3.40006i 0.0264513 + 0.144979i
\(551\) 0.316724i 0.0134929i
\(552\) 21.6680 + 9.70771i 0.922253 + 0.413187i
\(553\) −14.9566 14.9566i −0.636020 0.636020i
\(554\) 32.0696 1.36251
\(555\) −21.4788 18.9784i −0.911726 0.805589i
\(556\) −0.00188099 −7.97718e−5
\(557\) −15.6580 15.6580i −0.663449 0.663449i 0.292742 0.956191i \(-0.405432\pi\)
−0.956191 + 0.292742i \(0.905432\pi\)
\(558\) −0.241832 + 4.23706i −0.0102376 + 0.179369i
\(559\) 5.02357i 0.212474i
\(560\) −6.29309 + 20.1675i −0.265931 + 0.852231i
\(561\) 0.238851 + 0.626582i 0.0100843 + 0.0264543i
\(562\) 27.0994 27.0994i 1.14312 1.14312i
\(563\) −22.2250 + 22.2250i −0.936673 + 0.936673i −0.998111 0.0614379i \(-0.980431\pi\)
0.0614379 + 0.998111i \(0.480431\pi\)
\(564\) 0.00688137 + 0.0180520i 0.000289758 + 0.000760127i
\(565\) 0.571637 1.83193i 0.0240489 0.0770697i
\(566\) 15.7338i 0.661341i
\(567\) −13.2157 16.6342i −0.555006 0.698571i
\(568\) −0.173101 0.173101i −0.00726315 0.00726315i
\(569\) 36.0307 1.51048 0.755242 0.655446i \(-0.227519\pi\)
0.755242 + 0.655446i \(0.227519\pi\)
\(570\) −5.99906 5.30070i −0.251273 0.222022i
\(571\) −35.3321 −1.47860 −0.739302 0.673374i \(-0.764844\pi\)
−0.739302 + 0.673374i \(0.764844\pi\)
\(572\) −0.000366131 0 0.000366131i −1.53087e−5 0 1.53087e-5i
\(573\) 38.5328 + 17.2635i 1.60973 + 0.721192i
\(574\) 23.7639i 0.991888i
\(575\) 4.35081 + 23.8467i 0.181441 + 0.994477i
\(576\) −17.8989 + 15.9661i −0.745789 + 0.665253i
\(577\) 0.737957 0.737957i 0.0307216 0.0307216i −0.691579 0.722301i \(-0.743085\pi\)
0.722301 + 0.691579i \(0.243085\pi\)
\(578\) 16.3773 16.3773i 0.681205 0.681205i
\(579\) −13.6190 + 5.19151i −0.565986 + 0.215752i
\(580\) 0.000278314 0 0.000530786i 1.15563e−5 0 2.20397e-5i
\(581\) 1.15489i 0.0479129i
\(582\) −1.89049 + 4.21965i −0.0783632 + 0.174910i
\(583\) −3.38557 3.38557i −0.140216 0.140216i
\(584\) 7.79281 0.322469
\(585\) −2.37525 5.23541i −0.0982044 0.216458i
\(586\) 21.5901 0.891881
\(587\) 3.85573 + 3.85573i 0.159143 + 0.159143i 0.782187 0.623044i \(-0.214104\pi\)
−0.623044 + 0.782187i \(0.714104\pi\)
\(588\) −0.00125020 + 0.00279049i −5.15572e−5 + 0.000115078i
\(589\) 1.46112i 0.0602046i
\(590\) −28.7297 8.96486i −1.18278 0.369077i
\(591\) 36.0581 13.7452i 1.48323 0.565404i
\(592\) 20.9448 20.9448i 0.860827 0.860827i
\(593\) −27.6856 + 27.6856i −1.13691 + 1.13691i −0.147910 + 0.989001i \(0.547255\pi\)
−0.989001 + 0.147910i \(0.952745\pi\)
\(594\) 1.65293 3.18884i 0.0678207 0.130840i
\(595\) −3.70388 + 1.94210i −0.151844 + 0.0796183i
\(596\) 0.0239830i 0.000982382i
\(597\) −6.47535 2.90108i −0.265018 0.118733i
\(598\) −4.15616 4.15616i −0.169958 0.169958i
\(599\) −43.2024 −1.76520 −0.882600 0.470124i \(-0.844209\pi\)
−0.882600 + 0.470124i \(0.844209\pi\)
\(600\) −23.7811 5.83835i −0.970861 0.238349i
\(601\) 13.9160 0.567646 0.283823 0.958877i \(-0.408397\pi\)
0.283823 + 0.958877i \(0.408397\pi\)
\(602\) −13.8412 13.8412i −0.564125 0.564125i
\(603\) 20.0518 + 1.14446i 0.816571 + 0.0466062i
\(604\) 0.0228483i 0.000929683i
\(605\) 21.3110 11.1742i 0.866415 0.454298i
\(606\) −11.8262 31.0239i −0.480407 1.26026i
\(607\) 15.2786 15.2786i 0.620137 0.620137i −0.325429 0.945566i \(-0.605509\pi\)
0.945566 + 0.325429i \(0.105509\pi\)
\(608\) 0.00722657 0.00722657i 0.000293076 0.000293076i
\(609\) 0.315687 + 0.828147i 0.0127923 + 0.0335582i
\(610\) 11.0239 + 3.43991i 0.446344 + 0.139278i
\(611\) 7.73090i 0.312759i
\(612\) 0.00293428 0.000167475i 0.000118611 6.76979e-6i
\(613\) −4.86567 4.86567i −0.196523 0.196523i 0.601985 0.798507i \(-0.294377\pi\)
−0.798507 + 0.601985i \(0.794377\pi\)
\(614\) 25.6130 1.03365
\(615\) 27.5088 1.70015i 1.10926 0.0685565i
\(616\) −3.26140 −0.131405
\(617\) 16.5719 + 16.5719i 0.667160 + 0.667160i 0.957058 0.289897i \(-0.0936212\pi\)
−0.289897 + 0.957058i \(0.593621\pi\)
\(618\) −10.2431 4.58909i −0.412036 0.184600i
\(619\) 22.9117i 0.920899i −0.887686 0.460450i \(-0.847688\pi\)
0.887686 0.460450i \(-0.152312\pi\)
\(620\) −0.00128393 0.00244865i −5.15638e−5 9.83400e-5i
\(621\) 11.5930 22.3653i 0.465213 0.897487i
\(622\) 21.6711 21.6711i 0.868931 0.868931i
\(623\) 20.3930 20.3930i 0.817028 0.817028i
\(624\) 5.55156 2.11624i 0.222240 0.0847173i
\(625\) −8.82856 23.3892i −0.353143 0.935570i
\(626\) 31.0535i 1.24115i
\(627\) 0.505594 1.12851i 0.0201915 0.0450683i
\(628\) 0.0198607 + 0.0198607i 0.000792527 + 0.000792527i
\(629\) 5.86360 0.233797
\(630\) 20.9693 + 7.88046i 0.835435 + 0.313965i
\(631\) −5.03474 −0.200430 −0.100215 0.994966i \(-0.531953\pi\)
−0.100215 + 0.994966i \(0.531953\pi\)
\(632\) 17.9155 + 17.9155i 0.712641 + 0.712641i
\(633\) −0.669278 + 1.49386i −0.0266014 + 0.0593756i
\(634\) 27.4643i 1.09075i
\(635\) 6.68205 21.4140i 0.265169 0.849788i
\(636\) −0.0196089 + 0.00747483i −0.000777542 + 0.000296396i
\(637\) −0.865227 + 0.865227i −0.0342815 + 0.0342815i
\(638\) −0.105951 + 0.105951i −0.00419465 + 0.00419465i
\(639\) −0.193825 + 0.172894i −0.00766760 + 0.00683959i
\(640\) 7.54272 24.1722i 0.298152 0.955489i
\(641\) 2.56260i 0.101216i −0.998719 0.0506082i \(-0.983884\pi\)
0.998719 0.0506082i \(-0.0161160\pi\)
\(642\) −17.9290 8.03256i −0.707602 0.317020i
\(643\) 27.8538 + 27.8538i 1.09845 + 1.09845i 0.994592 + 0.103856i \(0.0331181\pi\)
0.103856 + 0.994592i \(0.466882\pi\)
\(644\) 0.0141504 0.000557605
\(645\) 15.0321 17.0126i 0.591890 0.669872i
\(646\) 1.63771 0.0644349
\(647\) −8.41427 8.41427i −0.330799 0.330799i 0.522091 0.852890i \(-0.325152\pi\)
−0.852890 + 0.522091i \(0.825152\pi\)
\(648\) 15.8302 + 19.9250i 0.621867 + 0.782727i
\(649\) 4.64891i 0.182486i
\(650\) 4.98614 + 3.44744i 0.195572 + 0.135220i
\(651\) −1.45634 3.82044i −0.0570785 0.149735i
\(652\) −0.00454057 + 0.00454057i −0.000177822 + 0.000177822i
\(653\) 15.4098 15.4098i 0.603031 0.603031i −0.338085 0.941116i \(-0.609779\pi\)
0.941116 + 0.338085i \(0.109779\pi\)
\(654\) −13.0692 34.2847i −0.511046 1.34064i
\(655\) −14.0099 26.7189i −0.547410 1.04399i
\(656\) 28.4828i 1.11207i
\(657\) 0.471138 8.25464i 0.0183808 0.322044i
\(658\) −21.3005 21.3005i −0.830382 0.830382i
\(659\) 1.48765 0.0579506 0.0289753 0.999580i \(-0.490776\pi\)
0.0289753 + 0.999580i \(0.490776\pi\)
\(660\) 0.000144343 0.00233551i 5.61854e−6 9.09095e-5i
\(661\) −10.9973 −0.427747 −0.213873 0.976861i \(-0.568608\pi\)
−0.213873 + 0.976861i \(0.568608\pi\)
\(662\) −16.4785 16.4785i −0.640456 0.640456i
\(663\) 1.07332 + 0.480868i 0.0416842 + 0.0186754i
\(664\) 1.38336i 0.0536849i
\(665\) 7.36225 + 2.29733i 0.285496 + 0.0890865i
\(666\) −20.9069 23.4379i −0.810126 0.908201i
\(667\) −0.743101 + 0.743101i −0.0287730 + 0.0287730i
\(668\) −0.0176604 + 0.0176604i −0.000683303 + 0.000683303i
\(669\) 7.57265 2.88667i 0.292776 0.111605i
\(670\) −18.7555 + 9.83428i −0.724587 + 0.379931i
\(671\) 1.78384i 0.0688643i
\(672\) −0.0116926 + 0.0260984i −0.000451052 + 0.00100677i
\(673\) 9.80668 + 9.80668i 0.378020 + 0.378020i 0.870387 0.492367i \(-0.163868\pi\)
−0.492367 + 0.870387i \(0.663868\pi\)
\(674\) 37.2470 1.43470
\(675\) −7.62211 + 24.8375i −0.293375 + 0.955997i
\(676\) 0.0151660 0.000583308
\(677\) −25.2317 25.2317i −0.969733 0.969733i 0.0298219 0.999555i \(-0.490506\pi\)
−0.999555 + 0.0298219i \(0.990506\pi\)
\(678\) 0.859776 1.91906i 0.0330195 0.0737010i
\(679\) 4.45454i 0.170949i
\(680\) 4.43662 2.32631i 0.170137 0.0892099i
\(681\) 10.3259 3.93619i 0.395688 0.150835i
\(682\) 0.488779 0.488779i 0.0187163 0.0187163i
\(683\) −31.5979 + 31.5979i −1.20906 + 1.20906i −0.237731 + 0.971331i \(0.576404\pi\)
−0.971331 + 0.237731i \(0.923596\pi\)
\(684\) −0.00360786 0.00404463i −0.000137950 0.000154650i
\(685\) 36.9998 + 11.5455i 1.41369 + 0.441130i
\(686\) 28.1434i 1.07452i
\(687\) −36.3896 16.3033i −1.38835 0.622009i
\(688\) 16.5897 + 16.5897i 0.632475 + 0.632475i
\(689\) −8.39763 −0.319924
\(690\) 1.63852 + 26.5116i 0.0623772 + 1.00928i
\(691\) 23.7307 0.902758 0.451379 0.892332i \(-0.350932\pi\)
0.451379 + 0.892332i \(0.350932\pi\)
\(692\) 0.00449466 + 0.00449466i 0.000170861 + 0.000170861i
\(693\) −0.197178 + 3.45468i −0.00749016 + 0.131233i
\(694\) 43.4677i 1.65001i
\(695\) 1.57964 + 3.01261i 0.0599191 + 0.114275i
\(696\) −0.378140 0.991980i −0.0143333 0.0376009i
\(697\) −3.98695 + 3.98695i −0.151016 + 0.151016i
\(698\) 2.53283 2.53283i 0.0958690 0.0958690i
\(699\) 17.1175 + 44.9046i 0.647443 + 1.69845i
\(700\) −0.0143569 + 0.00261939i −0.000542638 + 9.90037e-5i
\(701\) 9.19645i 0.347345i 0.984803 + 0.173672i \(0.0555634\pi\)
−0.984803 + 0.173672i \(0.944437\pi\)
\(702\) −1.90484 6.00481i −0.0718936 0.226637i
\(703\) −7.64603 7.64603i −0.288375 0.288375i
\(704\) 3.90660 0.147236
\(705\) 23.1333 26.1812i 0.871252 0.986039i
\(706\) −11.4059 −0.429267
\(707\) 22.6177 + 22.6177i 0.850625 + 0.850625i
\(708\) −0.0185951 0.00833096i −0.000698846 0.000313097i
\(709\) 37.0608i 1.39185i 0.718115 + 0.695924i \(0.245005\pi\)
−0.718115 + 0.695924i \(0.754995\pi\)
\(710\) 0.0815782 0.261434i 0.00306157 0.00981143i
\(711\) 20.0604 17.8941i 0.752324 0.671082i
\(712\) −24.4274 + 24.4274i −0.915455 + 0.915455i
\(713\) 3.42811 3.42811i 0.128384 0.128384i
\(714\) −4.28217 + 1.63235i −0.160256 + 0.0610891i
\(715\) −0.278925 + 0.893871i −0.0104312 + 0.0334289i
\(716\) 0.0258108i 0.000964593i
\(717\) 6.13636 13.6966i 0.229167 0.511510i
\(718\) −16.7902 16.7902i −0.626603 0.626603i
\(719\) 22.4294 0.836477 0.418238 0.908337i \(-0.362648\pi\)
0.418238 + 0.908337i \(0.362648\pi\)
\(720\) −25.1332 9.44530i −0.936658 0.352006i
\(721\) 10.8132 0.402706
\(722\) 16.8703 + 16.8703i 0.627849 + 0.627849i
\(723\) −13.7928 + 30.7861i −0.512959 + 1.14495i
\(724\) 0.0237664i 0.000883273i
\(725\) 0.616386 0.891498i 0.0228920 0.0331094i
\(726\) 24.6383 9.39203i 0.914413 0.348571i
\(727\) 17.7622 17.7622i 0.658763 0.658763i −0.296325 0.955087i \(-0.595761\pi\)
0.955087 + 0.296325i \(0.0957610\pi\)
\(728\) −4.04481 + 4.04481i −0.149911 + 0.149911i
\(729\) 22.0629 15.5637i 0.817144 0.576433i
\(730\) 4.04845 + 7.72100i 0.149840 + 0.285767i
\(731\) 4.64435i 0.171778i
\(732\) 0.00713513 + 0.00319668i 0.000263722 + 0.000118153i
\(733\) 14.5129 + 14.5129i 0.536046 + 0.536046i 0.922365 0.386319i \(-0.126254\pi\)
−0.386319 + 0.922365i \(0.626254\pi\)
\(734\) −50.3171 −1.85724
\(735\) 5.51918 0.341105i 0.203578 0.0125819i
\(736\) −0.0339101 −0.00124994
\(737\) −2.31313 2.31313i −0.0852054 0.0852054i
\(738\) 30.1522 + 1.72095i 1.10992 + 0.0633491i
\(739\) 32.9388i 1.21167i −0.795589 0.605837i \(-0.792838\pi\)
0.795589 0.605837i \(-0.207162\pi\)
\(740\) 0.0195325 + 0.00609494i 0.000718028 + 0.000224055i
\(741\) −0.772544 2.02663i −0.0283801 0.0744501i
\(742\) 23.1375 23.1375i 0.849406 0.849406i
\(743\) 3.09833 3.09833i 0.113667 0.113667i −0.647986 0.761652i \(-0.724388\pi\)
0.761652 + 0.647986i \(0.224388\pi\)
\(744\) 1.74445 + 4.57625i 0.0639547 + 0.167773i
\(745\) −38.4113 + 20.1407i −1.40728 + 0.737897i
\(746\) 2.57496i 0.0942761i
\(747\) −1.46535 0.0836355i −0.0536143 0.00306006i
\(748\) −0.000338493 0 0.000338493i −1.23765e−5 0 1.23765e-5i
\(749\) 18.9270 0.691579
\(750\) −6.57000 26.5951i −0.239903 0.971115i
\(751\) 30.1178 1.09901 0.549507 0.835489i \(-0.314816\pi\)
0.549507 + 0.835489i \(0.314816\pi\)
\(752\) 25.5303 + 25.5303i 0.930992 + 0.930992i
\(753\) −10.5373 4.72092i −0.384001 0.172040i
\(754\) 0.262803i 0.00957073i
\(755\) −36.5939 + 19.1877i −1.33179 + 0.698314i
\(756\) 0.0134649 + 0.00697955i 0.000489715 + 0.000253844i
\(757\) −21.3145 + 21.3145i −0.774689 + 0.774689i −0.978922 0.204233i \(-0.934530\pi\)
0.204233 + 0.978922i \(0.434530\pi\)
\(758\) −26.9868 + 26.9868i −0.980205 + 0.980205i
\(759\) −3.83395 + 1.46149i −0.139164 + 0.0530487i
\(760\) −8.81874 2.75181i −0.319889 0.0998187i
\(761\) 14.3563i 0.520417i 0.965552 + 0.260208i \(0.0837913\pi\)
−0.965552 + 0.260208i \(0.916209\pi\)
\(762\) 10.0502 22.4325i 0.364080 0.812644i
\(763\) 24.9949 + 24.9949i 0.904877 + 0.904877i
\(764\) −0.0301423 −0.00109051
\(765\) −2.19595 4.84020i −0.0793946 0.174998i
\(766\) −18.5764 −0.671192
\(767\) −5.76563 5.76563i −0.208185 0.208185i
\(768\) 0.0210152 0.0469068i 0.000758319 0.00169260i
\(769\) 38.8955i 1.40261i −0.712862 0.701304i \(-0.752601\pi\)
0.712862 0.701304i \(-0.247399\pi\)
\(770\) −1.69433 3.23134i −0.0610594 0.116450i
\(771\) −9.45910 + 3.60578i −0.340661 + 0.129859i
\(772\) 0.00735726 0.00735726i 0.000264794 0.000264794i
\(773\) 11.8920 11.8920i 0.427727 0.427727i −0.460127 0.887853i \(-0.652196\pi\)
0.887853 + 0.460127i \(0.152196\pi\)
\(774\) 18.5643 16.5596i 0.667282 0.595223i
\(775\) −2.84354 + 4.11270i −0.102143 + 0.147732i
\(776\) 5.33579i 0.191544i
\(777\) 27.6133 + 12.3713i 0.990621 + 0.443818i
\(778\) −5.45352 5.45352i −0.195518 0.195518i
\(779\) 10.3978 0.372540
\(780\) 0.00307553 + 0.00271750i 0.000110122 + 9.73022e-5i
\(781\) 0.0423041 0.00151376
\(782\) −3.84242 3.84242i −0.137405 0.137405i
\(783\) −1.07363 + 0.340577i −0.0383684 + 0.0121712i
\(784\) 5.71459i 0.204092i
\(785\) 15.1302 48.4878i 0.540020 1.73060i
\(786\) −11.7754 30.8906i −0.420014 1.10183i
\(787\) 18.9654 18.9654i 0.676044 0.676044i −0.283059 0.959103i \(-0.591349\pi\)
0.959103 + 0.283059i \(0.0913491\pi\)
\(788\) −0.0194793 + 0.0194793i −0.000693923 + 0.000693923i
\(789\) −1.87371 4.91534i −0.0667059 0.174991i
\(790\) −8.44313 + 27.0577i −0.300393 + 0.962671i
\(791\) 2.02588i 0.0720321i
\(792\) 0.236186 4.13813i 0.00839250 0.147042i
\(793\) 2.21233 + 2.21233i 0.0785622 + 0.0785622i
\(794\) 25.3007 0.897888
\(795\) 28.4391 + 25.1284i 1.00863 + 0.891213i
\(796\) 0.00506534 0.000179536
\(797\) 25.5972 + 25.5972i 0.906701 + 0.906701i 0.996004 0.0893038i \(-0.0284642\pi\)
−0.0893038 + 0.996004i \(0.528464\pi\)
\(798\) 7.71242 + 3.45532i 0.273017 + 0.122317i
\(799\) 7.14731i 0.252854i
\(800\) 0.0344048 0.00627712i 0.00121639 0.000221930i
\(801\) 24.3982 + 27.3519i 0.862069 + 0.966432i
\(802\) −23.2467 + 23.2467i −0.820870 + 0.820870i
\(803\) −0.952240 + 0.952240i −0.0336038 + 0.0336038i
\(804\) −0.0133974 + 0.00510706i −0.000472491 + 0.000180112i
\(805\) −11.8834 22.6634i −0.418834 0.798780i
\(806\) 1.21238i 0.0427041i
\(807\) 11.4504 25.5579i 0.403074 0.899680i
\(808\) −27.0922 27.0922i −0.953100 0.953100i
\(809\) 13.9192 0.489372 0.244686 0.969602i \(-0.421315\pi\)
0.244686 + 0.969602i \(0.421315\pi\)
\(810\) −11.5175 + 26.0355i −0.404682 + 0.914795i
\(811\) 40.5704 1.42462 0.712310 0.701865i \(-0.247649\pi\)
0.712310 + 0.701865i \(0.247649\pi\)
\(812\) −0.000447382 0 0.000447382i −1.57000e−5 0 1.57000e-5i
\(813\) 19.5900 43.7257i 0.687050 1.53353i
\(814\) 5.11554i 0.179299i
\(815\) 11.0853 + 3.45908i 0.388302 + 0.121166i
\(816\) 5.13249 1.95649i 0.179673 0.0684908i
\(817\) 6.05615 6.05615i 0.211878 0.211878i
\(818\) −20.9516 + 20.9516i −0.732556 + 0.732556i
\(819\) 4.03999 + 4.52907i 0.141169 + 0.158258i
\(820\) −0.0174253 + 0.00913683i −0.000608518 + 0.000319072i
\(821\) 22.8010i 0.795762i 0.917437 + 0.397881i \(0.130254\pi\)
−0.917437 + 0.397881i \(0.869746\pi\)
\(822\) 38.7596 + 17.3651i 1.35190 + 0.605677i
\(823\) −22.5406 22.5406i −0.785717 0.785717i 0.195072 0.980789i \(-0.437506\pi\)
−0.980789 + 0.195072i \(0.937506\pi\)
\(824\) −12.9524 −0.451219
\(825\) 3.61935 2.19252i 0.126009 0.0763336i
\(826\) 31.7715 1.10547
\(827\) −1.41043 1.41043i −0.0490454 0.0490454i 0.682159 0.731204i \(-0.261041\pi\)
−0.731204 + 0.682159i \(0.761041\pi\)
\(828\) −0.00102475 + 0.0179543i −3.56127e−5 + 0.000623957i
\(829\) 33.0090i 1.14645i 0.819398 + 0.573225i \(0.194308\pi\)
−0.819398 + 0.573225i \(0.805692\pi\)
\(830\) 1.37062 0.718672i 0.0475748 0.0249455i
\(831\) −13.9860 36.6897i −0.485168 1.27275i
\(832\) 4.84501 4.84501i 0.167970 0.167970i
\(833\) −0.799913 + 0.799913i −0.0277153 + 0.0277153i
\(834\) 1.32770 + 3.48297i 0.0459744 + 0.120605i
\(835\) 43.1161 + 13.4540i 1.49210 + 0.465596i
\(836\) 0 0.000882776i 0 3.05315e-5i
\(837\) 4.95292 1.57116i 0.171198 0.0543073i
\(838\) 8.76691 + 8.76691i 0.302848 + 0.302848i
\(839\) 37.0786 1.28009 0.640047 0.768336i \(-0.278915\pi\)
0.640047 + 0.768336i \(0.278915\pi\)
\(840\) 25.8014 1.59462i 0.890233 0.0550196i
\(841\) −28.9530 −0.998380
\(842\) 6.41548 + 6.41548i 0.221092 + 0.221092i
\(843\) −42.8218 19.1850i −1.47486 0.660767i
\(844\) 0.00116857i 4.02239e-5i
\(845\) −12.7363 24.2900i −0.438141 0.835601i
\(846\) 28.5691 25.4840i 0.982227 0.876159i
\(847\) −17.9623 + 17.9623i −0.617192 + 0.617192i
\(848\) −27.7320 + 27.7320i −0.952322 + 0.952322i
\(849\) −18.0004 + 6.86171i −0.617774 + 0.235493i
\(850\) 4.60975 + 3.18720i 0.158113 + 0.109320i
\(851\) 35.8784i 1.22990i
\(852\) 7.58098e−5 0 0.000169211i 2.59720e−6 0 5.79707e-6i
\(853\) 37.3086 + 37.3086i 1.27742 + 1.27742i 0.942106 + 0.335315i \(0.108843\pi\)
0.335315 + 0.942106i \(0.391157\pi\)
\(854\) −12.1911 −0.417169
\(855\) −3.44806 + 9.17500i −0.117921 + 0.313778i
\(856\) −22.6714 −0.774893
\(857\) −4.08616 4.08616i −0.139580 0.139580i 0.633864 0.773444i \(-0.281468\pi\)
−0.773444 + 0.633864i \(0.781468\pi\)
\(858\) −0.419520 + 0.936386i −0.0143222 + 0.0319677i
\(859\) 9.31165i 0.317709i 0.987302 + 0.158855i \(0.0507801\pi\)
−0.987302 + 0.158855i \(0.949220\pi\)
\(860\) −0.00482759 + 0.0154710i −0.000164619 + 0.000527556i
\(861\) −27.1874 + 10.3638i −0.926545 + 0.353196i
\(862\) 2.35338 2.35338i 0.0801563 0.0801563i
\(863\) 14.5615 14.5615i 0.495680 0.495680i −0.414411 0.910090i \(-0.636012\pi\)
0.910090 + 0.414411i \(0.136012\pi\)
\(864\) −0.0322675 0.0167258i −0.00109776 0.000569024i
\(865\) 3.42411 10.9733i 0.116423 0.373102i
\(866\) 33.2110i 1.12855i
\(867\) −25.8790 11.5943i −0.878896 0.393763i
\(868\) 0.00206388 + 0.00206388i 7.00527e−5 + 7.00527e-5i
\(869\) −4.37836 −0.148526
\(870\) 0.786392 0.889999i 0.0266612 0.0301738i
\(871\) −5.73754 −0.194409
\(872\) −29.9397 29.9397i −1.01389 1.01389i
\(873\) 5.65201 + 0.322591i 0.191292 + 0.0109181i
\(874\) 10.0209i 0.338961i
\(875\) 16.2520 + 20.7943i 0.549417 + 0.702975i
\(876\) 0.00210241 + 0.00551528i 7.10337e−5 + 0.000186344i
\(877\) −18.7018 + 18.7018i −0.631515 + 0.631515i −0.948448 0.316933i \(-0.897347\pi\)
0.316933 + 0.948448i \(0.397347\pi\)
\(878\) 11.3248 11.3248i 0.382194 0.382194i
\(879\) −9.41574 24.7005i −0.317585 0.833126i
\(880\) 2.03078 + 3.87300i 0.0684575 + 0.130559i
\(881\) 17.4925i 0.589338i 0.955599 + 0.294669i \(0.0952093\pi\)
−0.955599 + 0.294669i \(0.904791\pi\)
\(882\) 6.04952 + 0.345279i 0.203698 + 0.0116262i
\(883\) −35.1699 35.1699i −1.18356 1.18356i −0.978815 0.204746i \(-0.934363\pi\)
−0.204746 0.978815i \(-0.565637\pi\)
\(884\) −0.000839603 0 −2.82389e−5 0
\(885\) 2.27303 + 36.7782i 0.0764071 + 1.23629i
\(886\) 0.246554 0.00828313
\(887\) −18.3427 18.3427i −0.615887 0.615887i 0.328587 0.944474i \(-0.393428\pi\)
−0.944474 + 0.328587i \(0.893428\pi\)
\(888\) −33.0761 14.8187i −1.10996 0.497284i
\(889\) 23.6812i 0.794242i
\(890\) −36.8926 11.5120i −1.23664 0.385884i
\(891\) −4.36909 0.500366i −0.146370 0.0167629i
\(892\) −0.00409090 + 0.00409090i −0.000136974 + 0.000136974i
\(893\) 9.31996 9.31996i 0.311881 0.311881i
\(894\) −44.4085 + 16.9284i −1.48524 + 0.566170i
\(895\) −41.3387 + 21.6756i −1.38180 + 0.724536i
\(896\) 26.7314i 0.893034i
\(897\) −2.94235 + 6.56745i −0.0982422 + 0.219281i
\(898\) −5.58653 5.58653i −0.186425 0.186425i
\(899\) −0.216767 −0.00722959
\(900\) −0.00228384 0.0184060i −7.61279e−5 0.000613532i
\(901\) −7.76371 −0.258647
\(902\) −3.47830 3.47830i −0.115815 0.115815i
\(903\) −9.79886 + 21.8715i −0.326086 + 0.727838i
\(904\) 2.42667i 0.0807097i
\(905\) −38.0645 + 19.9588i −1.26531 + 0.663453i
\(906\) −42.3074 + 16.1274i −1.40557 + 0.535798i
\(907\) −26.2609 + 26.2609i −0.871980 + 0.871980i −0.992688 0.120708i \(-0.961484\pi\)
0.120708 + 0.992688i \(0.461484\pi\)
\(908\) −0.00557825 + 0.00557825i −0.000185121 + 0.000185121i
\(909\) −30.3357 + 27.0598i −1.00617 + 0.897518i
\(910\) −6.10887 1.90622i −0.202507 0.0631906i
\(911\) 11.9878i 0.397172i 0.980083 + 0.198586i \(0.0636349\pi\)
−0.980083 + 0.198586i \(0.936365\pi\)
\(912\) −9.24389 4.14145i −0.306096 0.137137i
\(913\) 0.169040 + 0.169040i 0.00559440 + 0.00559440i
\(914\) −37.4799 −1.23972
\(915\) −0.872186 14.1122i −0.0288336 0.466535i
\(916\) 0.0284658 0.000940536
\(917\) 22.5205 + 22.5205i 0.743692 + 0.743692i
\(918\) −1.76105 5.55152i −0.0581233 0.183227i
\(919\) 26.1006i 0.860978i 0.902596 + 0.430489i \(0.141659\pi\)
−0.902596 + 0.430489i \(0.858341\pi\)
\(920\) 14.2343 + 27.1470i 0.469291 + 0.895009i
\(921\) −11.1701 29.3028i −0.368069 0.965561i
\(922\) −1.80234 + 1.80234i −0.0593569 + 0.0593569i
\(923\) 0.0524659 0.0524659i 0.00172694 0.00172694i
\(924\) −0.000879885 0.00230822i −2.89461e−5 7.59348e-5i
\(925\) −6.64147 36.4018i −0.218370 1.19688i
\(926\) 57.7970i 1.89933i
\(927\) −0.783079 + 13.7201i −0.0257197 + 0.450626i
\(928\) 0.00107211 + 0.00107211i 3.51937e−5 + 3.51937e-5i
\(929\) 15.4055 0.505437 0.252718 0.967540i \(-0.418675\pi\)
0.252718 + 0.967540i \(0.418675\pi\)
\(930\) −3.62782 + 4.10578i −0.118961 + 0.134634i
\(931\) 2.08614 0.0683705
\(932\) −0.0242584 0.0242584i −0.000794611 0.000794611i
\(933\) −34.2441 15.3420i −1.12110 0.502276i
\(934\) 3.54535i 0.116007i
\(935\) −0.257870 + 0.826395i −0.00843324 + 0.0270260i
\(936\) −4.83922 5.42506i −0.158175 0.177324i
\(937\) −38.8342 + 38.8342i −1.26866 + 1.26866i −0.321874 + 0.946782i \(0.604313\pi\)
−0.946782 + 0.321874i \(0.895687\pi\)
\(938\) 15.8083 15.8083i 0.516161 0.516161i
\(939\) 35.5272 13.5428i 1.15939 0.441954i
\(940\) −0.00742930 + 0.0238087i −0.000242317 + 0.000776554i
\(941\) 41.2021i 1.34315i −0.740937 0.671574i \(-0.765618\pi\)
0.740937 0.671574i \(-0.234382\pi\)
\(942\) 22.7567 50.7940i 0.741453 1.65496i
\(943\) −24.3955 24.3955i −0.794425 0.794425i
\(944\) −38.0804 −1.23941
\(945\) −0.129223 27.4269i −0.00420361 0.892197i
\(946\) −4.05184 −0.131737
\(947\) 16.9664 + 16.9664i 0.551332 + 0.551332i 0.926825 0.375493i \(-0.122527\pi\)
−0.375493 + 0.926825i \(0.622527\pi\)
\(948\) −0.00784613 + 0.0175129i −0.000254830 + 0.000568793i
\(949\) 2.36195i 0.0766723i
\(950\) −1.85497 10.1671i −0.0601832 0.329863i
\(951\) −31.4208 + 11.9775i −1.01889 + 0.388398i
\(952\) −3.73948 + 3.73948i −0.121197 + 0.121197i
\(953\) 19.9054 19.9054i 0.644799 0.644799i −0.306932 0.951731i \(-0.599303\pi\)
0.951731 + 0.306932i \(0.0993025\pi\)
\(954\) 27.6818 + 31.0330i 0.896232 + 1.00473i
\(955\) 25.3132 + 48.2762i 0.819116 + 1.56218i
\(956\) 0.0107142i 0.000346522i
\(957\) 0.167422 + 0.0750081i 0.00541197 + 0.00242467i
\(958\) 36.3937 + 36.3937i 1.17583 + 1.17583i
\(959\) −40.9172 −1.32129
\(960\) −30.9057 + 1.91009i −0.997478 + 0.0616478i
\(961\) 1.00000 0.0322581
\(962\) 6.34433 + 6.34433i 0.204550 + 0.204550i
\(963\) −1.37067 + 24.0150i −0.0441692 + 0.773873i
\(964\) 0.0240824i 0.000775643i
\(965\) −17.9620 5.60488i −0.578217 0.180428i
\(966\) −9.98807 26.2019i −0.321361 0.843031i
\(967\) 10.1993 10.1993i 0.327986 0.327986i −0.523834 0.851820i \(-0.675499\pi\)
0.851820 + 0.523834i \(0.175499\pi\)
\(968\) 21.5158 21.5158i 0.691545 0.691545i
\(969\) −0.714227 1.87364i −0.0229443 0.0601901i
\(970\) −5.28662 + 2.77200i −0.169743 + 0.0890035i
\(971\) 52.2148i 1.67565i 0.545937 + 0.837826i \(0.316174\pi\)
−0.545937 + 0.837826i \(0.683826\pi\)
\(972\) −0.00983091 + 0.0165792i −0.000315327 + 0.000531777i
\(973\) −2.53923 2.53923i −0.0814038 0.0814038i
\(974\) −33.7731 −1.08216
\(975\) 1.76957 7.20792i 0.0566715 0.230838i
\(976\) 14.6119 0.467714
\(977\) 16.2313 + 16.2313i 0.519287 + 0.519287i 0.917356 0.398069i \(-0.130319\pi\)
−0.398069 + 0.917356i \(0.630319\pi\)
\(978\) 11.6126 + 5.20266i 0.371329 + 0.166363i
\(979\) 5.96980i 0.190796i
\(980\) −0.00349609 + 0.00183315i −0.000111679 + 5.85578e-5i
\(981\) −33.5242 + 29.9040i −1.07034 + 0.954760i
\(982\) 3.75394 3.75394i 0.119793 0.119793i
\(983\) −3.80734 + 3.80734i −0.121435 + 0.121435i −0.765213 0.643777i \(-0.777366\pi\)
0.643777 + 0.765213i \(0.277366\pi\)
\(984\) 32.5660 12.4140i 1.03817 0.395745i
\(985\) 47.5568 + 14.8397i 1.51529 + 0.472832i
\(986\) 0.242965i 0.00773758i
\(987\) −15.0797 + 33.6586i −0.479993 + 1.07136i
\(988\) 0.00109483 + 0.00109483i 3.48311e−5 + 3.48311e-5i
\(989\) −28.4180 −0.903640
\(990\) 4.22270 1.91579i 0.134206 0.0608879i
\(991\) 26.4153 0.839111 0.419555 0.907730i \(-0.362186\pi\)
0.419555 + 0.907730i \(0.362186\pi\)
\(992\) −0.00494590 0.00494590i −0.000157032 0.000157032i
\(993\) −11.6660 + 26.0389i −0.370208 + 0.826321i
\(994\) 0.289113i 0.00917011i
\(995\) −4.25382 8.11269i −0.134855 0.257190i
\(996\) 0.000979061 0 0.000373215i 3.10227e−5 0 1.18258e-5i
\(997\) −1.90689 + 1.90689i −0.0603917 + 0.0603917i −0.736658 0.676266i \(-0.763597\pi\)
0.676266 + 0.736658i \(0.263597\pi\)
\(998\) −6.14757 + 6.14757i −0.194598 + 0.194598i
\(999\) −17.6967 + 34.1404i −0.559898 + 1.08015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.k.b.218.22 yes 60
3.2 odd 2 inner 465.2.k.b.218.9 yes 60
5.2 odd 4 inner 465.2.k.b.32.9 60
15.2 even 4 inner 465.2.k.b.32.22 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.k.b.32.9 60 5.2 odd 4 inner
465.2.k.b.32.22 yes 60 15.2 even 4 inner
465.2.k.b.218.9 yes 60 3.2 odd 2 inner
465.2.k.b.218.22 yes 60 1.1 even 1 trivial