Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [465,2,Mod(32,465)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("465.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −1.79339 | + | 1.79339i | 1.53667 | + | 0.799162i | − | 4.43246i | −1.30480 | − | 1.81590i | −4.18904 | + | 1.32263i | −1.69682 | − | 1.69682i | 4.36234 | + | 4.36234i | 1.72268 | + | 2.45609i | 5.59662 | + | 0.916593i | |
32.2 | −1.79199 | + | 1.79199i | −0.946283 | + | 1.45071i | − | 4.42248i | −1.54734 | − | 1.61423i | −0.903922 | − | 4.29539i | 1.64971 | + | 1.64971i | 4.34106 | + | 4.34106i | −1.20910 | − | 2.74556i | 5.66551 | + | 0.119858i | |
32.3 | −1.78894 | + | 1.78894i | −0.177331 | + | 1.72295i | − | 4.40062i | 2.22867 | − | 0.181744i | −2.76502 | − | 3.39949i | −2.03308 | − | 2.03308i | 4.29457 | + | 4.29457i | −2.93711 | − | 0.611065i | −3.66183 | + | 4.31209i | |
32.4 | −1.67772 | + | 1.67772i | −0.586503 | − | 1.62973i | − | 3.62946i | 1.63852 | + | 1.52159i | 3.71821 | + | 1.75024i | −2.99940 | − | 2.99940i | 2.73377 | + | 2.73377i | −2.31203 | + | 1.91168i | −5.30178 | + | 0.196172i | |
32.5 | −1.54899 | + | 1.54899i | −1.05387 | − | 1.37454i | − | 2.79873i | 0.879189 | − | 2.05597i | 3.76158 | + | 0.496709i | 0.747956 | + | 0.747956i | 1.23723 | + | 1.23723i | −0.778710 | + | 2.89717i | 1.82283 | + | 4.54653i | |
32.6 | −1.50242 | + | 1.50242i | 1.66548 | − | 0.475577i | − | 2.51453i | −1.96356 | + | 1.06978i | −1.78774 | + | 3.21677i | −0.886503 | − | 0.886503i | 0.773042 | + | 0.773042i | 2.54765 | − | 1.58413i | 1.34283 | − | 4.55735i | |
32.7 | −1.35339 | + | 1.35339i | 0.765677 | − | 1.55362i | − | 1.66332i | 0.838484 | + | 2.07291i | 1.06639 | + | 3.13891i | 1.94800 | + | 1.94800i | −0.455658 | − | 0.455658i | −1.82748 | − | 2.37914i | −3.94024 | − | 1.67065i | |
32.8 | −1.13436 | + | 1.13436i | 0.328624 | + | 1.70059i | − | 0.573551i | −1.95786 | + | 1.08018i | −2.30186 | − | 1.55631i | 1.84589 | + | 1.84589i | −1.61811 | − | 1.61811i | −2.78401 | + | 1.11771i | 0.995598 | − | 3.44624i | |
32.9 | −1.00031 | + | 1.00031i | −1.58066 | − | 0.708168i | − | 0.00123647i | −1.98035 | − | 1.03838i | 2.28954 | − | 0.872765i | −1.66917 | − | 1.66917i | −1.99938 | − | 1.99938i | 1.99699 | + | 2.23875i | 3.01966 | − | 0.942258i | |
32.10 | −0.814482 | + | 0.814482i | 0.360092 | − | 1.69421i | 0.673239i | 1.17287 | − | 1.90378i | 1.08661 | + | 1.67319i | −0.307284 | − | 0.307284i | −2.17730 | − | 2.17730i | −2.74067 | − | 1.22014i | 0.595315 | + | 2.50587i | ||
32.11 | −0.523880 | + | 0.523880i | 1.58624 | + | 0.695595i | 1.45110i | 2.20857 | + | 0.349585i | −1.19541 | + | 0.466589i | 2.00309 | + | 2.00309i | −1.80796 | − | 1.80796i | 2.03230 | + | 2.20676i | −1.34017 | + | 0.973885i | ||
32.12 | −0.450085 | + | 0.450085i | −1.67224 | + | 0.451241i | 1.59485i | −1.55533 | + | 1.60653i | 0.549552 | − | 0.955745i | 3.64223 | + | 3.64223i | −1.61799 | − | 1.61799i | 2.59276 | − | 1.50917i | −0.0230453 | − | 1.42311i | ||
32.13 | −0.283833 | + | 0.283833i | 1.57294 | − | 0.725164i | 1.83888i | 0.380129 | + | 2.20352i | −0.240626 | + | 0.652276i | 0.900008 | + | 0.900008i | −1.08960 | − | 1.08960i | 1.94827 | − | 2.28128i | −0.733324 | − | 0.517538i | ||
32.14 | −0.195513 | + | 0.195513i | −1.67938 | + | 0.423882i | 1.92355i | 2.09279 | − | 0.787555i | 0.245466 | − | 0.411215i | −2.75743 | − | 2.75743i | −0.767103 | − | 0.767103i | 2.64065 | − | 1.42372i | −0.255189 | + | 0.563143i | ||
32.15 | −0.150369 | + | 0.150369i | 0.591574 | + | 1.62789i | 1.95478i | 0.684260 | − | 2.12880i | −0.333740 | − | 0.155831i | −0.387197 | − | 0.387197i | −0.594677 | − | 0.594677i | −2.30008 | + | 1.92604i | 0.217214 | + | 0.422998i | ||
32.16 | 0.150369 | − | 0.150369i | −1.62789 | − | 0.591574i | 1.95478i | −0.684260 | + | 2.12880i | −0.333740 | + | 0.155831i | −0.387197 | − | 0.387197i | 0.594677 | + | 0.594677i | 2.30008 | + | 1.92604i | 0.217214 | + | 0.422998i | ||
32.17 | 0.195513 | − | 0.195513i | −0.423882 | + | 1.67938i | 1.92355i | −2.09279 | + | 0.787555i | 0.245466 | + | 0.411215i | −2.75743 | − | 2.75743i | 0.767103 | + | 0.767103i | −2.64065 | − | 1.42372i | −0.255189 | + | 0.563143i | ||
32.18 | 0.283833 | − | 0.283833i | 0.725164 | − | 1.57294i | 1.83888i | −0.380129 | − | 2.20352i | −0.240626 | − | 0.652276i | 0.900008 | + | 0.900008i | 1.08960 | + | 1.08960i | −1.94827 | − | 2.28128i | −0.733324 | − | 0.517538i | ||
32.19 | 0.450085 | − | 0.450085i | −0.451241 | + | 1.67224i | 1.59485i | 1.55533 | − | 1.60653i | 0.549552 | + | 0.955745i | 3.64223 | + | 3.64223i | 1.61799 | + | 1.61799i | −2.59276 | − | 1.50917i | −0.0230453 | − | 1.42311i | ||
32.20 | 0.523880 | − | 0.523880i | −0.695595 | − | 1.58624i | 1.45110i | −2.20857 | − | 0.349585i | −1.19541 | − | 0.466589i | 2.00309 | + | 2.00309i | 1.80796 | + | 1.80796i | −2.03230 | + | 2.20676i | −1.34017 | + | 0.973885i | ||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.k.b | ✓ | 60 |
3.b | odd | 2 | 1 | inner | 465.2.k.b | ✓ | 60 |
5.c | odd | 4 | 1 | inner | 465.2.k.b | ✓ | 60 |
15.e | even | 4 | 1 | inner | 465.2.k.b | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.k.b | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
465.2.k.b | ✓ | 60 | 3.b | odd | 2 | 1 | inner |
465.2.k.b | ✓ | 60 | 5.c | odd | 4 | 1 | inner |
465.2.k.b | ✓ | 60 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{60} + 225 T_{2}^{56} + 21670 T_{2}^{52} + 1167228 T_{2}^{48} + 38564715 T_{2}^{44} + 806935409 T_{2}^{40} + \cdots + 10000 \)
acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\).