Properties

Label 465.2.k.a.32.22
Level $465$
Weight $2$
Character 465.32
Analytic conductor $3.713$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(32,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,0,0,-4,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 32.22
Character \(\chi\) \(=\) 465.32
Dual form 465.2.k.a.218.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04043 - 1.04043i) q^{2} +(-1.52117 - 0.828268i) q^{3} -0.164984i q^{4} +(0.204789 + 2.22667i) q^{5} +(-2.44443 + 0.720921i) q^{6} +(-1.82623 - 1.82623i) q^{7} +(1.90920 + 1.90920i) q^{8} +(1.62795 + 2.51988i) q^{9} +(2.52976 + 2.10362i) q^{10} +5.69997i q^{11} +(-0.136651 + 0.250969i) q^{12} +(4.14610 - 4.14610i) q^{13} -3.80013 q^{14} +(1.53276 - 3.55678i) q^{15} +4.30275 q^{16} +(-0.349849 + 0.349849i) q^{17} +(4.31552 + 0.927994i) q^{18} +4.02199i q^{19} +(0.367365 - 0.0337869i) q^{20} +(1.26541 + 4.29062i) q^{21} +(5.93041 + 5.93041i) q^{22} +(3.77007 + 3.77007i) q^{23} +(-1.32290 - 4.48556i) q^{24} +(-4.91612 + 0.911995i) q^{25} -8.62745i q^{26} +(-0.389255 - 5.18155i) q^{27} +(-0.301299 + 0.301299i) q^{28} +4.44138 q^{29} +(-2.10584 - 5.29530i) q^{30} +1.00000 q^{31} +(0.658296 - 0.658296i) q^{32} +(4.72110 - 8.67065i) q^{33} +0.727986i q^{34} +(3.69242 - 4.44041i) q^{35} +(0.415740 - 0.268585i) q^{36} +(-2.31485 - 2.31485i) q^{37} +(4.18460 + 4.18460i) q^{38} +(-9.74103 + 2.87286i) q^{39} +(-3.86018 + 4.64215i) q^{40} -7.89322i q^{41} +(5.78066 + 3.14752i) q^{42} +(-3.86457 + 3.86457i) q^{43} +0.940404 q^{44} +(-5.27756 + 4.14094i) q^{45} +7.84498 q^{46} +(-7.41618 + 7.41618i) q^{47} +(-6.54523 - 3.56383i) q^{48} -0.329760i q^{49} +(-4.16601 + 6.06374i) q^{50} +(0.821950 - 0.242413i) q^{51} +(-0.684040 - 0.684040i) q^{52} +(2.50032 + 2.50032i) q^{53} +(-5.79603 - 4.98604i) q^{54} +(-12.6920 + 1.16729i) q^{55} -6.97329i q^{56} +(3.33129 - 6.11815i) q^{57} +(4.62094 - 4.62094i) q^{58} -6.80022 q^{59} +(-0.586811 - 0.252881i) q^{60} +11.1169 q^{61} +(1.04043 - 1.04043i) q^{62} +(1.62888 - 7.57489i) q^{63} +7.23568i q^{64} +(10.0811 + 8.38293i) q^{65} +(-4.10923 - 13.9332i) q^{66} +(-5.48050 - 5.48050i) q^{67} +(0.0577195 + 0.0577195i) q^{68} +(-2.61231 - 8.85756i) q^{69} +(-0.778224 - 8.46163i) q^{70} -1.37150i q^{71} +(-1.70288 + 7.91904i) q^{72} +(4.49182 - 4.49182i) q^{73} -4.81688 q^{74} +(8.23366 + 2.68456i) q^{75} +0.663564 q^{76} +(10.4095 - 10.4095i) q^{77} +(-7.14583 + 13.1239i) q^{78} -0.679232i q^{79} +(0.881155 + 9.58080i) q^{80} +(-3.69959 + 8.20445i) q^{81} +(-8.21233 - 8.21233i) q^{82} +(6.41272 + 6.41272i) q^{83} +(0.707884 - 0.208772i) q^{84} +(-0.850644 - 0.707353i) q^{85} +8.04162i q^{86} +(-6.75612 - 3.67865i) q^{87} +(-10.8824 + 10.8824i) q^{88} -8.86891 q^{89} +(-1.18257 + 9.79928i) q^{90} -15.1435 q^{91} +(0.622001 - 0.622001i) q^{92} +(-1.52117 - 0.828268i) q^{93} +15.4320i q^{94} +(-8.95565 + 0.823659i) q^{95} +(-1.54663 + 0.456138i) q^{96} +(7.46117 + 7.46117i) q^{97} +(-0.343092 - 0.343092i) q^{98} +(-14.3632 + 9.27924i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{6} - 32 q^{10} + 4 q^{13} + 20 q^{15} - 60 q^{16} - 46 q^{18} - 4 q^{21} + 8 q^{22} - 8 q^{25} - 6 q^{27} + 112 q^{28} + 54 q^{30} + 60 q^{31} - 30 q^{33} - 4 q^{36} - 36 q^{37} - 36 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04043 1.04043i 0.735694 0.735694i −0.236047 0.971742i \(-0.575852\pi\)
0.971742 + 0.236047i \(0.0758520\pi\)
\(3\) −1.52117 0.828268i −0.878251 0.478201i
\(4\) 0.164984i 0.0824920i
\(5\) 0.204789 + 2.22667i 0.0915844 + 0.995797i
\(6\) −2.44443 + 0.720921i −0.997933 + 0.294315i
\(7\) −1.82623 1.82623i −0.690250 0.690250i 0.272036 0.962287i \(-0.412303\pi\)
−0.962287 + 0.272036i \(0.912303\pi\)
\(8\) 1.90920 + 1.90920i 0.675005 + 0.675005i
\(9\) 1.62795 + 2.51988i 0.542648 + 0.839960i
\(10\) 2.52976 + 2.10362i 0.799980 + 0.665224i
\(11\) 5.69997i 1.71861i 0.511467 + 0.859303i \(0.329102\pi\)
−0.511467 + 0.859303i \(0.670898\pi\)
\(12\) −0.136651 + 0.250969i −0.0394477 + 0.0724486i
\(13\) 4.14610 4.14610i 1.14992 1.14992i 0.163354 0.986568i \(-0.447769\pi\)
0.986568 0.163354i \(-0.0522313\pi\)
\(14\) −3.80013 −1.01563
\(15\) 1.53276 3.55678i 0.395757 0.918355i
\(16\) 4.30275 1.07569
\(17\) −0.349849 + 0.349849i −0.0848509 + 0.0848509i −0.748258 0.663407i \(-0.769110\pi\)
0.663407 + 0.748258i \(0.269110\pi\)
\(18\) 4.31552 + 0.927994i 1.01718 + 0.218730i
\(19\) 4.02199i 0.922708i 0.887216 + 0.461354i \(0.152636\pi\)
−0.887216 + 0.461354i \(0.847364\pi\)
\(20\) 0.367365 0.0337869i 0.0821453 0.00755498i
\(21\) 1.26541 + 4.29062i 0.276135 + 0.936291i
\(22\) 5.93041 + 5.93041i 1.26437 + 1.26437i
\(23\) 3.77007 + 3.77007i 0.786114 + 0.786114i 0.980855 0.194741i \(-0.0623866\pi\)
−0.194741 + 0.980855i \(0.562387\pi\)
\(24\) −1.32290 4.48556i −0.270036 0.915612i
\(25\) −4.91612 + 0.911995i −0.983225 + 0.182399i
\(26\) 8.62745i 1.69198i
\(27\) −0.389255 5.18155i −0.0749121 0.997190i
\(28\) −0.301299 + 0.301299i −0.0569401 + 0.0569401i
\(29\) 4.44138 0.824744 0.412372 0.911016i \(-0.364700\pi\)
0.412372 + 0.911016i \(0.364700\pi\)
\(30\) −2.10584 5.29530i −0.384473 0.966785i
\(31\) 1.00000 0.179605
\(32\) 0.658296 0.658296i 0.116371 0.116371i
\(33\) 4.72110 8.67065i 0.821838 1.50937i
\(34\) 0.727986i 0.124849i
\(35\) 3.69242 4.44041i 0.624133 0.750566i
\(36\) 0.415740 0.268585i 0.0692900 0.0447642i
\(37\) −2.31485 2.31485i −0.380559 0.380559i 0.490744 0.871304i \(-0.336725\pi\)
−0.871304 + 0.490744i \(0.836725\pi\)
\(38\) 4.18460 + 4.18460i 0.678831 + 0.678831i
\(39\) −9.74103 + 2.87286i −1.55981 + 0.460026i
\(40\) −3.86018 + 4.64215i −0.610349 + 0.733988i
\(41\) 7.89322i 1.23271i −0.787467 0.616357i \(-0.788608\pi\)
0.787467 0.616357i \(-0.211392\pi\)
\(42\) 5.78066 + 3.14752i 0.891975 + 0.485673i
\(43\) −3.86457 + 3.86457i −0.589342 + 0.589342i −0.937453 0.348111i \(-0.886823\pi\)
0.348111 + 0.937453i \(0.386823\pi\)
\(44\) 0.940404 0.141771
\(45\) −5.27756 + 4.14094i −0.786732 + 0.617295i
\(46\) 7.84498 1.15668
\(47\) −7.41618 + 7.41618i −1.08176 + 1.08176i −0.0854163 + 0.996345i \(0.527222\pi\)
−0.996345 + 0.0854163i \(0.972778\pi\)
\(48\) −6.54523 3.56383i −0.944723 0.514394i
\(49\) 0.329760i 0.0471086i
\(50\) −4.16601 + 6.06374i −0.589163 + 0.857543i
\(51\) 0.821950 0.242413i 0.115096 0.0339446i
\(52\) −0.684040 0.684040i −0.0948593 0.0948593i
\(53\) 2.50032 + 2.50032i 0.343445 + 0.343445i 0.857661 0.514216i \(-0.171917\pi\)
−0.514216 + 0.857661i \(0.671917\pi\)
\(54\) −5.79603 4.98604i −0.788739 0.678515i
\(55\) −12.6920 + 1.16729i −1.71138 + 0.157397i
\(56\) 6.97329i 0.931845i
\(57\) 3.33129 6.11815i 0.441240 0.810369i
\(58\) 4.62094 4.62094i 0.606759 0.606759i
\(59\) −6.80022 −0.885313 −0.442656 0.896691i \(-0.645964\pi\)
−0.442656 + 0.896691i \(0.645964\pi\)
\(60\) −0.586811 0.252881i −0.0757570 0.0326468i
\(61\) 11.1169 1.42337 0.711686 0.702498i \(-0.247932\pi\)
0.711686 + 0.702498i \(0.247932\pi\)
\(62\) 1.04043 1.04043i 0.132135 0.132135i
\(63\) 1.62888 7.57489i 0.205219 0.954346i
\(64\) 7.23568i 0.904460i
\(65\) 10.0811 + 8.38293i 1.25040 + 1.03977i
\(66\) −4.10923 13.9332i −0.505811 1.71505i
\(67\) −5.48050 5.48050i −0.669550 0.669550i 0.288062 0.957612i \(-0.406989\pi\)
−0.957612 + 0.288062i \(0.906989\pi\)
\(68\) 0.0577195 + 0.0577195i 0.00699952 + 0.00699952i
\(69\) −2.61231 8.85756i −0.314485 1.06633i
\(70\) −0.778224 8.46163i −0.0930155 1.01136i
\(71\) 1.37150i 0.162767i −0.996683 0.0813833i \(-0.974066\pi\)
0.996683 0.0813833i \(-0.0259338\pi\)
\(72\) −1.70288 + 7.91904i −0.200687 + 0.933268i
\(73\) 4.49182 4.49182i 0.525728 0.525728i −0.393568 0.919296i \(-0.628759\pi\)
0.919296 + 0.393568i \(0.128759\pi\)
\(74\) −4.81688 −0.559951
\(75\) 8.23366 + 2.68456i 0.950741 + 0.309987i
\(76\) 0.663564 0.0761160
\(77\) 10.4095 10.4095i 1.18627 1.18627i
\(78\) −7.14583 + 13.1239i −0.809106 + 1.48598i
\(79\) 0.679232i 0.0764196i −0.999270 0.0382098i \(-0.987834\pi\)
0.999270 0.0382098i \(-0.0121655\pi\)
\(80\) 0.881155 + 9.58080i 0.0985161 + 1.07117i
\(81\) −3.69959 + 8.20445i −0.411065 + 0.911606i
\(82\) −8.21233 8.21233i −0.906900 0.906900i
\(83\) 6.41272 + 6.41272i 0.703887 + 0.703887i 0.965243 0.261355i \(-0.0841695\pi\)
−0.261355 + 0.965243i \(0.584169\pi\)
\(84\) 0.707884 0.208772i 0.0772365 0.0227789i
\(85\) −0.850644 0.707353i −0.0922653 0.0767233i
\(86\) 8.04162i 0.867150i
\(87\) −6.75612 3.67865i −0.724332 0.394393i
\(88\) −10.8824 + 10.8824i −1.16007 + 1.16007i
\(89\) −8.86891 −0.940102 −0.470051 0.882639i \(-0.655765\pi\)
−0.470051 + 0.882639i \(0.655765\pi\)
\(90\) −1.18257 + 9.79928i −0.124654 + 1.03293i
\(91\) −15.1435 −1.58747
\(92\) 0.622001 0.622001i 0.0648481 0.0648481i
\(93\) −1.52117 0.828268i −0.157738 0.0858874i
\(94\) 15.4320i 1.59169i
\(95\) −8.95565 + 0.823659i −0.918830 + 0.0845056i
\(96\) −1.54663 + 0.456138i −0.157852 + 0.0465544i
\(97\) 7.46117 + 7.46117i 0.757567 + 0.757567i 0.975879 0.218312i \(-0.0700551\pi\)
−0.218312 + 0.975879i \(0.570055\pi\)
\(98\) −0.343092 0.343092i −0.0346575 0.0346575i
\(99\) −14.3632 + 9.27924i −1.44356 + 0.932599i
\(100\) 0.150465 + 0.811082i 0.0150465 + 0.0811082i
\(101\) 2.26929i 0.225802i −0.993606 0.112901i \(-0.963986\pi\)
0.993606 0.112901i \(-0.0360143\pi\)
\(102\) 0.602967 1.10739i 0.0597027 0.109648i
\(103\) 8.37230 8.37230i 0.824947 0.824947i −0.161866 0.986813i \(-0.551751\pi\)
0.986813 + 0.161866i \(0.0517512\pi\)
\(104\) 15.8315 1.55241
\(105\) −9.29467 + 3.69632i −0.907067 + 0.360724i
\(106\) 5.20281 0.505342
\(107\) 10.6567 10.6567i 1.03022 1.03022i 0.0306958 0.999529i \(-0.490228\pi\)
0.999529 0.0306958i \(-0.00977231\pi\)
\(108\) −0.854873 + 0.0642208i −0.0822602 + 0.00617965i
\(109\) 3.33299i 0.319242i −0.987178 0.159621i \(-0.948973\pi\)
0.987178 0.159621i \(-0.0510273\pi\)
\(110\) −11.9906 + 14.4196i −1.14326 + 1.37485i
\(111\) 1.60398 + 5.43861i 0.152243 + 0.516210i
\(112\) −7.85781 7.85781i −0.742493 0.742493i
\(113\) −11.2546 11.2546i −1.05874 1.05874i −0.998163 0.0605812i \(-0.980705\pi\)
−0.0605812 0.998163i \(-0.519295\pi\)
\(114\) −2.89954 9.83147i −0.271566 0.920801i
\(115\) −7.62264 + 9.16677i −0.710814 + 0.854806i
\(116\) 0.732757i 0.0680348i
\(117\) 17.1973 + 3.69805i 1.58989 + 0.341885i
\(118\) −7.07514 + 7.07514i −0.651319 + 0.651319i
\(119\) 1.27781 0.117137
\(120\) 9.71696 3.86426i 0.887033 0.352757i
\(121\) −21.4897 −1.95361
\(122\) 11.5663 11.5663i 1.04717 1.04717i
\(123\) −6.53770 + 12.0070i −0.589484 + 1.08263i
\(124\) 0.164984i 0.0148160i
\(125\) −3.03748 10.7598i −0.271680 0.962388i
\(126\) −6.18640 9.57586i −0.551128 0.853086i
\(127\) −8.75060 8.75060i −0.776491 0.776491i 0.202742 0.979232i \(-0.435015\pi\)
−0.979232 + 0.202742i \(0.935015\pi\)
\(128\) 8.84480 + 8.84480i 0.781777 + 0.781777i
\(129\) 9.07959 2.67779i 0.799413 0.235766i
\(130\) 19.2105 1.76680i 1.68487 0.154959i
\(131\) 0.153224i 0.0133872i 0.999978 + 0.00669361i \(0.00213066\pi\)
−0.999978 + 0.00669361i \(0.997869\pi\)
\(132\) −1.43052 0.778906i −0.124511 0.0677951i
\(133\) 7.34509 7.34509i 0.636900 0.636900i
\(134\) −11.4041 −0.985168
\(135\) 11.4579 1.92787i 0.986138 0.165924i
\(136\) −1.33587 −0.114550
\(137\) −6.14227 + 6.14227i −0.524770 + 0.524770i −0.919008 0.394238i \(-0.871008\pi\)
0.394238 + 0.919008i \(0.371008\pi\)
\(138\) −11.9336 6.49774i −1.01585 0.553125i
\(139\) 13.7149i 1.16329i −0.813444 0.581643i \(-0.802410\pi\)
0.813444 0.581643i \(-0.197590\pi\)
\(140\) −0.732596 0.609191i −0.0619157 0.0514860i
\(141\) 17.4239 5.13873i 1.46736 0.432759i
\(142\) −1.42694 1.42694i −0.119746 0.119746i
\(143\) 23.6327 + 23.6327i 1.97626 + 1.97626i
\(144\) 7.00464 + 10.8424i 0.583720 + 0.903534i
\(145\) 0.909546 + 9.88949i 0.0755336 + 0.821278i
\(146\) 9.34684i 0.773550i
\(147\) −0.273130 + 0.501623i −0.0225274 + 0.0413732i
\(148\) −0.381914 + 0.381914i −0.0313931 + 0.0313931i
\(149\) 7.21546 0.591114 0.295557 0.955325i \(-0.404495\pi\)
0.295557 + 0.955325i \(0.404495\pi\)
\(150\) 11.3596 5.77344i 0.927510 0.471399i
\(151\) 5.03037 0.409366 0.204683 0.978828i \(-0.434384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(152\) −7.67880 + 7.67880i −0.622833 + 0.622833i
\(153\) −1.45111 0.312042i −0.117316 0.0252271i
\(154\) 21.6606i 1.74546i
\(155\) 0.204789 + 2.22667i 0.0164490 + 0.178850i
\(156\) 0.473976 + 1.60711i 0.0379485 + 0.128672i
\(157\) −0.117792 0.117792i −0.00940082 0.00940082i 0.702391 0.711792i \(-0.252116\pi\)
−0.711792 + 0.702391i \(0.752116\pi\)
\(158\) −0.706693 0.706693i −0.0562215 0.0562215i
\(159\) −1.73249 5.87436i −0.137395 0.465867i
\(160\) 1.60062 + 1.33100i 0.126540 + 0.105225i
\(161\) 13.7700i 1.08523i
\(162\) 4.68699 + 12.3853i 0.368245 + 0.973082i
\(163\) 0.0734366 0.0734366i 0.00575200 0.00575200i −0.704225 0.709977i \(-0.748705\pi\)
0.709977 + 0.704225i \(0.248705\pi\)
\(164\) −1.30225 −0.101689
\(165\) 20.2735 + 8.73668i 1.57829 + 0.680150i
\(166\) 13.3440 1.03569
\(167\) 13.3273 13.3273i 1.03130 1.03130i 0.0318041 0.999494i \(-0.489875\pi\)
0.999494 0.0318041i \(-0.0101253\pi\)
\(168\) −5.77575 + 10.6076i −0.445609 + 0.818394i
\(169\) 21.3803i 1.64464i
\(170\) −1.62099 + 0.149083i −0.124324 + 0.0114342i
\(171\) −10.1349 + 6.54758i −0.775038 + 0.500706i
\(172\) 0.637592 + 0.637592i 0.0486160 + 0.0486160i
\(173\) −17.1936 17.1936i −1.30721 1.30721i −0.923422 0.383787i \(-0.874620\pi\)
−0.383787 0.923422i \(-0.625380\pi\)
\(174\) −10.8566 + 3.20188i −0.823039 + 0.242734i
\(175\) 10.6435 + 7.31246i 0.804572 + 0.552770i
\(176\) 24.5255i 1.84868i
\(177\) 10.3443 + 5.63240i 0.777527 + 0.423357i
\(178\) −9.22747 + 9.22747i −0.691628 + 0.691628i
\(179\) 5.15771 0.385505 0.192753 0.981247i \(-0.438259\pi\)
0.192753 + 0.981247i \(0.438259\pi\)
\(180\) 0.683189 + 0.870712i 0.0509219 + 0.0648991i
\(181\) 5.24583 0.389919 0.194960 0.980811i \(-0.437542\pi\)
0.194960 + 0.980811i \(0.437542\pi\)
\(182\) −15.7557 + 15.7557i −1.16789 + 1.16789i
\(183\) −16.9107 9.20775i −1.25008 0.680657i
\(184\) 14.3957i 1.06126i
\(185\) 4.68036 5.62847i 0.344107 0.413813i
\(186\) −2.44443 + 0.720921i −0.179234 + 0.0528605i
\(187\) −1.99413 1.99413i −0.145825 0.145825i
\(188\) 1.22355 + 1.22355i 0.0892367 + 0.0892367i
\(189\) −8.75184 + 10.1736i −0.636603 + 0.740019i
\(190\) −8.46076 + 10.1747i −0.613808 + 0.738148i
\(191\) 13.0264i 0.942556i 0.881985 + 0.471278i \(0.156207\pi\)
−0.881985 + 0.471278i \(0.843793\pi\)
\(192\) 5.99308 11.0067i 0.432513 0.794342i
\(193\) −2.48322 + 2.48322i −0.178746 + 0.178746i −0.790809 0.612063i \(-0.790340\pi\)
0.612063 + 0.790809i \(0.290340\pi\)
\(194\) 15.5256 1.11468
\(195\) −8.39177 21.1017i −0.600947 1.51113i
\(196\) −0.0544052 −0.00388608
\(197\) 9.14100 9.14100i 0.651269 0.651269i −0.302030 0.953299i \(-0.597664\pi\)
0.953299 + 0.302030i \(0.0976641\pi\)
\(198\) −5.28954 + 24.5983i −0.375911 + 1.74813i
\(199\) 3.96835i 0.281309i −0.990059 0.140655i \(-0.955079\pi\)
0.990059 0.140655i \(-0.0449207\pi\)
\(200\) −11.1271 7.64470i −0.786802 0.540562i
\(201\) 3.79748 + 12.8761i 0.267854 + 0.908212i
\(202\) −2.36103 2.36103i −0.166121 0.166121i
\(203\) −8.11099 8.11099i −0.569280 0.569280i
\(204\) −0.0399943 0.135609i −0.00280016 0.00949450i
\(205\) 17.5756 1.61644i 1.22753 0.112897i
\(206\) 17.4216i 1.21382i
\(207\) −3.36265 + 15.6376i −0.233721 + 1.08689i
\(208\) 17.8396 17.8396i 1.23696 1.23696i
\(209\) −22.9252 −1.58577
\(210\) −5.82468 + 13.5162i −0.401941 + 0.932706i
\(211\) 9.27403 0.638451 0.319225 0.947679i \(-0.396577\pi\)
0.319225 + 0.947679i \(0.396577\pi\)
\(212\) 0.412513 0.412513i 0.0283315 0.0283315i
\(213\) −1.13597 + 2.08628i −0.0778351 + 0.142950i
\(214\) 22.1751i 1.51586i
\(215\) −9.39655 7.81371i −0.640839 0.532890i
\(216\) 9.14947 10.6358i 0.622543 0.723675i
\(217\) −1.82623 1.82623i −0.123973 0.123973i
\(218\) −3.46774 3.46774i −0.234865 0.234865i
\(219\) −10.5533 + 3.11242i −0.713124 + 0.210318i
\(220\) 0.192584 + 2.09397i 0.0129840 + 0.141175i
\(221\) 2.90102i 0.195144i
\(222\) 7.32731 + 3.98966i 0.491777 + 0.267769i
\(223\) 13.0559 13.0559i 0.874287 0.874287i −0.118650 0.992936i \(-0.537857\pi\)
0.992936 + 0.118650i \(0.0378565\pi\)
\(224\) −2.40440 −0.160651
\(225\) −10.3013 10.9034i −0.686753 0.726891i
\(226\) −23.4192 −1.55782
\(227\) 8.43652 8.43652i 0.559952 0.559952i −0.369342 0.929294i \(-0.620417\pi\)
0.929294 + 0.369342i \(0.120417\pi\)
\(228\) −1.00940 0.549609i −0.0668490 0.0363987i
\(229\) 10.2675i 0.678496i 0.940697 + 0.339248i \(0.110173\pi\)
−0.940697 + 0.339248i \(0.889827\pi\)
\(230\) 1.60656 + 17.4682i 0.105934 + 1.15182i
\(231\) −24.4564 + 7.21279i −1.60912 + 0.474567i
\(232\) 8.47950 + 8.47950i 0.556707 + 0.556707i
\(233\) 4.12263 + 4.12263i 0.270082 + 0.270082i 0.829133 0.559051i \(-0.188834\pi\)
−0.559051 + 0.829133i \(0.688834\pi\)
\(234\) 21.7401 14.0450i 1.42120 0.918151i
\(235\) −18.0322 14.9946i −1.17629 0.978143i
\(236\) 1.12193i 0.0730312i
\(237\) −0.562586 + 1.03323i −0.0365439 + 0.0671156i
\(238\) 1.32947 1.32947i 0.0861768 0.0861768i
\(239\) 8.29796 0.536750 0.268375 0.963314i \(-0.413513\pi\)
0.268375 + 0.963314i \(0.413513\pi\)
\(240\) 6.59508 15.3039i 0.425710 0.987863i
\(241\) 26.0155 1.67581 0.837903 0.545819i \(-0.183781\pi\)
0.837903 + 0.545819i \(0.183781\pi\)
\(242\) −22.3585 + 22.3585i −1.43726 + 1.43726i
\(243\) 12.4232 9.41616i 0.796949 0.604047i
\(244\) 1.83411i 0.117417i
\(245\) 0.734268 0.0675313i 0.0469107 0.00431441i
\(246\) 5.69038 + 19.2944i 0.362806 + 1.23017i
\(247\) 16.6756 + 16.6756i 1.06104 + 1.06104i
\(248\) 1.90920 + 1.90920i 0.121235 + 0.121235i
\(249\) −4.44342 15.0663i −0.281590 0.954789i
\(250\) −14.3551 8.03455i −0.907897 0.508149i
\(251\) 22.9451i 1.44828i −0.689651 0.724142i \(-0.742236\pi\)
0.689651 0.724142i \(-0.257764\pi\)
\(252\) −1.24973 0.268739i −0.0787259 0.0169290i
\(253\) −21.4893 + 21.4893i −1.35102 + 1.35102i
\(254\) −18.2088 −1.14252
\(255\) 0.708100 + 1.78057i 0.0443429 + 0.111504i
\(256\) 3.93341 0.245838
\(257\) −21.2929 + 21.2929i −1.32822 + 1.32822i −0.421292 + 0.906925i \(0.638423\pi\)
−0.906925 + 0.421292i \(0.861577\pi\)
\(258\) 6.66062 12.2327i 0.414672 0.761575i
\(259\) 8.45491i 0.525363i
\(260\) 1.38305 1.66322i 0.0857730 0.103148i
\(261\) 7.23033 + 11.1917i 0.447546 + 0.692752i
\(262\) 0.159418 + 0.159418i 0.00984890 + 0.00984890i
\(263\) −4.55744 4.55744i −0.281024 0.281024i 0.552493 0.833517i \(-0.313676\pi\)
−0.833517 + 0.552493i \(0.813676\pi\)
\(264\) 25.5676 7.54049i 1.57358 0.464085i
\(265\) −5.05535 + 6.07943i −0.310548 + 0.373456i
\(266\) 15.2841i 0.937127i
\(267\) 13.4912 + 7.34583i 0.825645 + 0.449557i
\(268\) −0.904195 + 0.904195i −0.0552325 + 0.0552325i
\(269\) 8.84874 0.539517 0.269759 0.962928i \(-0.413056\pi\)
0.269759 + 0.962928i \(0.413056\pi\)
\(270\) 9.91531 13.9269i 0.603427 0.847566i
\(271\) −19.2008 −1.16637 −0.583184 0.812340i \(-0.698193\pi\)
−0.583184 + 0.812340i \(0.698193\pi\)
\(272\) −1.50531 + 1.50531i −0.0912730 + 0.0912730i
\(273\) 23.0359 + 12.5429i 1.39419 + 0.759128i
\(274\) 12.7812i 0.772140i
\(275\) −5.19834 28.0218i −0.313472 1.68978i
\(276\) −1.46136 + 0.430989i −0.0879633 + 0.0259425i
\(277\) −3.81947 3.81947i −0.229490 0.229490i 0.582990 0.812480i \(-0.301883\pi\)
−0.812480 + 0.582990i \(0.801883\pi\)
\(278\) −14.2694 14.2694i −0.855822 0.855822i
\(279\) 1.62795 + 2.51988i 0.0974625 + 0.150861i
\(280\) 15.5272 1.42805i 0.927929 0.0853425i
\(281\) 6.55765i 0.391196i −0.980684 0.195598i \(-0.937335\pi\)
0.980684 0.195598i \(-0.0626648\pi\)
\(282\) 12.7818 23.4748i 0.761148 1.39790i
\(283\) 3.40697 3.40697i 0.202523 0.202523i −0.598557 0.801080i \(-0.704259\pi\)
0.801080 + 0.598557i \(0.204259\pi\)
\(284\) −0.226275 −0.0134269
\(285\) 14.3053 + 6.16475i 0.847374 + 0.365168i
\(286\) 49.1762 2.90785
\(287\) −14.4148 + 14.4148i −0.850881 + 0.850881i
\(288\) 2.73050 + 0.587157i 0.160896 + 0.0345986i
\(289\) 16.7552i 0.985601i
\(290\) 11.2356 + 9.34300i 0.659779 + 0.548640i
\(291\) −5.16990 17.5296i −0.303065 1.02760i
\(292\) −0.741079 0.741079i −0.0433683 0.0433683i
\(293\) 2.62772 + 2.62772i 0.153513 + 0.153513i 0.779685 0.626172i \(-0.215379\pi\)
−0.626172 + 0.779685i \(0.715379\pi\)
\(294\) 0.237731 + 0.806075i 0.0138648 + 0.0470113i
\(295\) −1.39261 15.1418i −0.0810808 0.881592i
\(296\) 8.83905i 0.513759i
\(297\) 29.5347 2.21874i 1.71378 0.128744i
\(298\) 7.50718 7.50718i 0.434879 0.434879i
\(299\) 31.2622 1.80794
\(300\) 0.442910 1.35842i 0.0255714 0.0784285i
\(301\) 14.1152 0.813587
\(302\) 5.23375 5.23375i 0.301168 0.301168i
\(303\) −1.87958 + 3.45198i −0.107979 + 0.198311i
\(304\) 17.3056i 0.992545i
\(305\) 2.27661 + 24.7536i 0.130359 + 1.41739i
\(306\) −1.83444 + 1.18512i −0.104868 + 0.0677489i
\(307\) 1.25958 + 1.25958i 0.0718881 + 0.0718881i 0.742137 0.670249i \(-0.233813\pi\)
−0.670249 + 0.742137i \(0.733813\pi\)
\(308\) −1.71739 1.71739i −0.0978576 0.0978576i
\(309\) −19.6702 + 5.80122i −1.11900 + 0.330020i
\(310\) 2.52976 + 2.10362i 0.143681 + 0.119478i
\(311\) 4.39924i 0.249458i −0.992191 0.124729i \(-0.960194\pi\)
0.992191 0.124729i \(-0.0398061\pi\)
\(312\) −24.0825 13.1127i −1.36340 0.742362i
\(313\) −8.99252 + 8.99252i −0.508287 + 0.508287i −0.914000 0.405713i \(-0.867023\pi\)
0.405713 + 0.914000i \(0.367023\pi\)
\(314\) −0.245108 −0.0138323
\(315\) 17.2004 + 2.07572i 0.969130 + 0.116954i
\(316\) −0.112062 −0.00630401
\(317\) −19.8703 + 19.8703i −1.11603 + 1.11603i −0.123709 + 0.992319i \(0.539479\pi\)
−0.992319 + 0.123709i \(0.960521\pi\)
\(318\) −7.91438 4.30932i −0.443817 0.241655i
\(319\) 25.3157i 1.41741i
\(320\) −16.1115 + 1.48179i −0.900658 + 0.0828343i
\(321\) −25.0374 + 7.38412i −1.39745 + 0.412141i
\(322\) −14.3267 14.3267i −0.798398 0.798398i
\(323\) −1.40709 1.40709i −0.0782926 0.0782926i
\(324\) 1.35360 + 0.610373i 0.0752002 + 0.0339096i
\(325\) −16.6015 + 24.1640i −0.920887 + 1.34038i
\(326\) 0.152811i 0.00846342i
\(327\) −2.76061 + 5.07006i −0.152662 + 0.280375i
\(328\) 15.0698 15.0698i 0.832088 0.832088i
\(329\) 27.0873 1.49337
\(330\) 30.1830 12.0032i 1.66152 0.660757i
\(331\) −22.1597 −1.21801 −0.609005 0.793167i \(-0.708431\pi\)
−0.609005 + 0.793167i \(0.708431\pi\)
\(332\) 1.05800 1.05800i 0.0580651 0.0580651i
\(333\) 2.06470 9.60160i 0.113145 0.526165i
\(334\) 27.7322i 1.51744i
\(335\) 11.0809 13.3256i 0.605416 0.728056i
\(336\) 5.44473 + 18.4615i 0.297035 + 1.00716i
\(337\) 10.4927 + 10.4927i 0.571574 + 0.571574i 0.932568 0.360994i \(-0.117563\pi\)
−0.360994 + 0.932568i \(0.617563\pi\)
\(338\) −22.2447 22.2447i −1.20995 1.20995i
\(339\) 7.79840 + 26.4421i 0.423551 + 1.43614i
\(340\) −0.116702 + 0.140343i −0.00632905 + 0.00761115i
\(341\) 5.69997i 0.308671i
\(342\) −3.73238 + 17.3570i −0.201824 + 0.938557i
\(343\) −13.3858 + 13.3858i −0.722767 + 0.722767i
\(344\) −14.7565 −0.795618
\(345\) 19.1879 7.63068i 1.03304 0.410822i
\(346\) −35.7775 −1.92341
\(347\) −8.19072 + 8.19072i −0.439701 + 0.439701i −0.891911 0.452210i \(-0.850636\pi\)
0.452210 + 0.891911i \(0.350636\pi\)
\(348\) −0.606919 + 1.11465i −0.0325343 + 0.0597516i
\(349\) 20.7840i 1.11254i 0.831000 + 0.556272i \(0.187769\pi\)
−0.831000 + 0.556272i \(0.812231\pi\)
\(350\) 18.6819 3.46570i 0.998589 0.185249i
\(351\) −23.0971 19.8694i −1.23283 1.06055i
\(352\) 3.75227 + 3.75227i 0.199997 + 0.199997i
\(353\) 13.4202 + 13.4202i 0.714287 + 0.714287i 0.967429 0.253142i \(-0.0814639\pi\)
−0.253142 + 0.967429i \(0.581464\pi\)
\(354\) 16.6226 4.90242i 0.883483 0.260560i
\(355\) 3.05387 0.280867i 0.162083 0.0149069i
\(356\) 1.46323i 0.0775509i
\(357\) −1.94377 1.05837i −0.102875 0.0560148i
\(358\) 5.36623 5.36623i 0.283614 0.283614i
\(359\) −26.5470 −1.40110 −0.700549 0.713604i \(-0.747061\pi\)
−0.700549 + 0.713604i \(0.747061\pi\)
\(360\) −17.9818 2.17003i −0.947726 0.114371i
\(361\) 2.82359 0.148610
\(362\) 5.45791 5.45791i 0.286861 0.286861i
\(363\) 32.6895 + 17.7992i 1.71576 + 0.934215i
\(364\) 2.49843i 0.130953i
\(365\) 10.9217 + 9.08193i 0.571667 + 0.475370i
\(366\) −27.1744 + 8.01439i −1.42043 + 0.418919i
\(367\) 15.2873 + 15.2873i 0.797992 + 0.797992i 0.982779 0.184786i \(-0.0591593\pi\)
−0.184786 + 0.982779i \(0.559159\pi\)
\(368\) 16.2217 + 16.2217i 0.845613 + 0.845613i
\(369\) 19.8900 12.8497i 1.03543 0.668930i
\(370\) −0.986443 10.7256i −0.0512827 0.557597i
\(371\) 9.13233i 0.474127i
\(372\) −0.136651 + 0.250969i −0.00708502 + 0.0130122i
\(373\) 19.0095 19.0095i 0.984274 0.984274i −0.0156039 0.999878i \(-0.504967\pi\)
0.999878 + 0.0156039i \(0.00496707\pi\)
\(374\) −4.14950 −0.214566
\(375\) −4.29147 + 18.8834i −0.221611 + 0.975135i
\(376\) −28.3180 −1.46039
\(377\) 18.4144 18.4144i 0.948391 0.948391i
\(378\) 1.47922 + 19.6906i 0.0760827 + 1.01277i
\(379\) 6.18378i 0.317639i 0.987308 + 0.158820i \(0.0507688\pi\)
−0.987308 + 0.158820i \(0.949231\pi\)
\(380\) 0.135891 + 1.47754i 0.00697104 + 0.0757961i
\(381\) 6.06336 + 20.5590i 0.310635 + 1.05327i
\(382\) 13.5530 + 13.5530i 0.693433 + 0.693433i
\(383\) −5.89078 5.89078i −0.301005 0.301005i 0.540402 0.841407i \(-0.318272\pi\)
−0.841407 + 0.540402i \(0.818272\pi\)
\(384\) −6.12862 20.7803i −0.312750 1.06044i
\(385\) 25.3102 + 21.0467i 1.28993 + 1.07264i
\(386\) 5.16724i 0.263005i
\(387\) −16.0296 3.44694i −0.814829 0.175218i
\(388\) 1.23097 1.23097i 0.0624932 0.0624932i
\(389\) −21.8636 −1.10853 −0.554265 0.832340i \(-0.687001\pi\)
−0.554265 + 0.832340i \(0.687001\pi\)
\(390\) −30.6859 13.2238i −1.55384 0.669613i
\(391\) −2.63791 −0.133405
\(392\) 0.629580 0.629580i 0.0317986 0.0317986i
\(393\) 0.126910 0.233080i 0.00640177 0.0117573i
\(394\) 19.0211i 0.958270i
\(395\) 1.51243 0.139099i 0.0760985 0.00699884i
\(396\) 1.53093 + 2.36970i 0.0769319 + 0.119082i
\(397\) −25.0456 25.0456i −1.25700 1.25700i −0.952518 0.304483i \(-0.901516\pi\)
−0.304483 0.952518i \(-0.598484\pi\)
\(398\) −4.12879 4.12879i −0.206957 0.206957i
\(399\) −17.2569 + 5.08946i −0.863923 + 0.254792i
\(400\) −21.1528 + 3.92408i −1.05764 + 0.196204i
\(401\) 12.5489i 0.626665i 0.949644 + 0.313332i \(0.101445\pi\)
−0.949644 + 0.313332i \(0.898555\pi\)
\(402\) 17.3477 + 9.44568i 0.865224 + 0.471108i
\(403\) 4.14610 4.14610i 0.206532 0.206532i
\(404\) −0.374396 −0.0186269
\(405\) −19.0262 6.55758i −0.945422 0.325849i
\(406\) −16.8778 −0.837632
\(407\) 13.1946 13.1946i 0.654032 0.654032i
\(408\) 2.03209 + 1.10645i 0.100603 + 0.0547777i
\(409\) 32.3354i 1.59888i −0.600744 0.799441i \(-0.705129\pi\)
0.600744 0.799441i \(-0.294871\pi\)
\(410\) 16.6044 19.9680i 0.820031 0.986147i
\(411\) 14.4309 4.25603i 0.711825 0.209934i
\(412\) −1.38129 1.38129i −0.0680515 0.0680515i
\(413\) 12.4188 + 12.4188i 0.611088 + 0.611088i
\(414\) 12.7712 + 19.7684i 0.627670 + 0.971564i
\(415\) −12.9658 + 15.5923i −0.636464 + 0.765394i
\(416\) 5.45872i 0.267636i
\(417\) −11.3596 + 20.8628i −0.556284 + 1.02166i
\(418\) −23.8521 + 23.8521i −1.16664 + 1.16664i
\(419\) 18.4637 0.902010 0.451005 0.892521i \(-0.351066\pi\)
0.451005 + 0.892521i \(0.351066\pi\)
\(420\) 0.609834 + 1.53347i 0.0297568 + 0.0748257i
\(421\) 23.2173 1.13154 0.565770 0.824563i \(-0.308579\pi\)
0.565770 + 0.824563i \(0.308579\pi\)
\(422\) 9.64897 9.64897i 0.469705 0.469705i
\(423\) −30.7610 6.61475i −1.49565 0.321620i
\(424\) 9.54724i 0.463655i
\(425\) 1.40084 2.03896i 0.0679508 0.0989042i
\(426\) 0.988739 + 3.35252i 0.0479046 + 0.162430i
\(427\) −20.3020 20.3020i −0.982482 0.982482i
\(428\) −1.75819 1.75819i −0.0849853 0.0849853i
\(429\) −16.3752 55.5236i −0.790604 2.68070i
\(430\) −17.9060 + 1.64683i −0.863506 + 0.0794174i
\(431\) 11.5554i 0.556602i 0.960494 + 0.278301i \(0.0897713\pi\)
−0.960494 + 0.278301i \(0.910229\pi\)
\(432\) −1.67487 22.2949i −0.0805820 1.07266i
\(433\) −16.7397 + 16.7397i −0.804458 + 0.804458i −0.983789 0.179331i \(-0.942607\pi\)
0.179331 + 0.983789i \(0.442607\pi\)
\(434\) −3.80013 −0.182412
\(435\) 6.80757 15.7970i 0.326398 0.757408i
\(436\) −0.549890 −0.0263349
\(437\) −15.1632 + 15.1632i −0.725354 + 0.725354i
\(438\) −7.74169 + 14.2182i −0.369912 + 0.679371i
\(439\) 28.2802i 1.34974i 0.737936 + 0.674870i \(0.235800\pi\)
−0.737936 + 0.674870i \(0.764200\pi\)
\(440\) −26.4601 22.0029i −1.26144 1.04895i
\(441\) 0.830957 0.536832i 0.0395694 0.0255634i
\(442\) 3.01830 + 3.01830i 0.143566 + 0.143566i
\(443\) −19.1703 19.1703i −0.910809 0.910809i 0.0855269 0.996336i \(-0.472743\pi\)
−0.996336 + 0.0855269i \(0.972743\pi\)
\(444\) 0.897284 0.264631i 0.0425832 0.0125588i
\(445\) −1.81625 19.7481i −0.0860987 0.936151i
\(446\) 27.1674i 1.28642i
\(447\) −10.9760 5.97633i −0.519146 0.282671i
\(448\) 13.2140 13.2140i 0.624304 0.624304i
\(449\) 1.34571 0.0635078 0.0317539 0.999496i \(-0.489891\pi\)
0.0317539 + 0.999496i \(0.489891\pi\)
\(450\) −22.0619 0.626405i −1.04001 0.0295290i
\(451\) 44.9911 2.11855
\(452\) −1.85683 + 1.85683i −0.0873379 + 0.0873379i
\(453\) −7.65208 4.16650i −0.359526 0.195759i
\(454\) 17.5552i 0.823907i
\(455\) −3.10122 33.7195i −0.145387 1.58080i
\(456\) 18.0409 5.32070i 0.844842 0.249164i
\(457\) 3.32534 + 3.32534i 0.155553 + 0.155553i 0.780593 0.625040i \(-0.214917\pi\)
−0.625040 + 0.780593i \(0.714917\pi\)
\(458\) 10.6826 + 10.6826i 0.499166 + 0.499166i
\(459\) 1.94894 + 1.67658i 0.0909688 + 0.0782561i
\(460\) 1.51237 + 1.25761i 0.0705146 + 0.0586365i
\(461\) 23.9555i 1.11572i 0.829936 + 0.557858i \(0.188377\pi\)
−0.829936 + 0.557858i \(0.811623\pi\)
\(462\) −17.9408 + 32.9496i −0.834681 + 1.53295i
\(463\) −2.39286 + 2.39286i −0.111206 + 0.111206i −0.760520 0.649314i \(-0.775056\pi\)
0.649314 + 0.760520i \(0.275056\pi\)
\(464\) 19.1101 0.887166
\(465\) 1.53276 3.55678i 0.0710800 0.164941i
\(466\) 8.57860 0.397396
\(467\) 4.57676 4.57676i 0.211787 0.211787i −0.593239 0.805026i \(-0.702151\pi\)
0.805026 + 0.593239i \(0.202151\pi\)
\(468\) 0.610119 2.83728i 0.0282028 0.131153i
\(469\) 20.0173i 0.924314i
\(470\) −34.3620 + 3.16031i −1.58500 + 0.145774i
\(471\) 0.0816188 + 0.276745i 0.00376080 + 0.0127517i
\(472\) −12.9830 12.9830i −0.597591 0.597591i
\(473\) −22.0279 22.0279i −1.01285 1.01285i
\(474\) 0.489673 + 1.66033i 0.0224914 + 0.0762617i
\(475\) −3.66803 19.7726i −0.168301 0.907229i
\(476\) 0.210818i 0.00966284i
\(477\) −2.23012 + 10.3709i −0.102110 + 0.474851i
\(478\) 8.63344 8.63344i 0.394884 0.394884i
\(479\) −23.5366 −1.07541 −0.537707 0.843132i \(-0.680709\pi\)
−0.537707 + 0.843132i \(0.680709\pi\)
\(480\) −1.33240 3.35042i −0.0608155 0.152925i
\(481\) −19.1952 −0.875227
\(482\) 27.0673 27.0673i 1.23288 1.23288i
\(483\) −11.4053 + 20.9466i −0.518958 + 0.953105i
\(484\) 3.54545i 0.161157i
\(485\) −15.0856 + 18.1415i −0.685002 + 0.823764i
\(486\) 3.12861 22.7223i 0.141917 1.03070i
\(487\) 28.9214 + 28.9214i 1.31056 + 1.31056i 0.921005 + 0.389551i \(0.127370\pi\)
0.389551 + 0.921005i \(0.372630\pi\)
\(488\) 21.2244 + 21.2244i 0.960783 + 0.960783i
\(489\) −0.172535 + 0.0508847i −0.00780230 + 0.00230109i
\(490\) 0.693692 0.834215i 0.0313378 0.0376860i
\(491\) 24.9974i 1.12812i 0.825734 + 0.564059i \(0.190761\pi\)
−0.825734 + 0.564059i \(0.809239\pi\)
\(492\) 1.98096 + 1.07862i 0.0893084 + 0.0486277i
\(493\) −1.55381 + 1.55381i −0.0699802 + 0.0699802i
\(494\) 34.6995 1.56120
\(495\) −23.6032 30.0819i −1.06089 1.35208i
\(496\) 4.30275 0.193199
\(497\) −2.50467 + 2.50467i −0.112350 + 0.112350i
\(498\) −20.2985 11.0524i −0.909597 0.495268i
\(499\) 16.5062i 0.738918i −0.929247 0.369459i \(-0.879543\pi\)
0.929247 0.369459i \(-0.120457\pi\)
\(500\) −1.77520 + 0.501135i −0.0793893 + 0.0224115i
\(501\) −31.3117 + 9.23459i −1.39891 + 0.412571i
\(502\) −23.8728 23.8728i −1.06549 1.06549i
\(503\) −11.6138 11.6138i −0.517835 0.517835i 0.399081 0.916916i \(-0.369329\pi\)
−0.916916 + 0.399081i \(0.869329\pi\)
\(504\) 17.5719 11.3521i 0.782713 0.505665i
\(505\) 5.05295 0.464724i 0.224853 0.0206800i
\(506\) 44.7161i 1.98788i
\(507\) −17.7086 + 32.5232i −0.786467 + 1.44441i
\(508\) −1.44371 + 1.44371i −0.0640543 + 0.0640543i
\(509\) −33.0579 −1.46527 −0.732634 0.680623i \(-0.761709\pi\)
−0.732634 + 0.680623i \(0.761709\pi\)
\(510\) 2.58928 + 1.11583i 0.114655 + 0.0494097i
\(511\) −16.4062 −0.725768
\(512\) −13.5972 + 13.5972i −0.600915 + 0.600915i
\(513\) 20.8402 1.56558i 0.920115 0.0691220i
\(514\) 44.3076i 1.95432i
\(515\) 20.3569 + 16.9278i 0.897032 + 0.745928i
\(516\) −0.441792 1.49799i −0.0194488 0.0659452i
\(517\) −42.2720 42.2720i −1.85912 1.85912i
\(518\) 8.79673 + 8.79673i 0.386506 + 0.386506i
\(519\) 11.9136 + 40.3955i 0.522949 + 1.77316i
\(520\) 3.24212 + 35.2515i 0.142176 + 1.54588i
\(521\) 5.67303i 0.248540i 0.992248 + 0.124270i \(0.0396589\pi\)
−0.992248 + 0.124270i \(0.960341\pi\)
\(522\) 19.1669 + 4.12158i 0.838911 + 0.180396i
\(523\) 12.1577 12.1577i 0.531621 0.531621i −0.389434 0.921055i \(-0.627329\pi\)
0.921055 + 0.389434i \(0.127329\pi\)
\(524\) 0.0252795 0.00110434
\(525\) −10.1339 19.9392i −0.442281 0.870218i
\(526\) −9.48339 −0.413495
\(527\) −0.349849 + 0.349849i −0.0152397 + 0.0152397i
\(528\) 20.3137 37.3076i 0.884041 1.62361i
\(529\) 5.42686i 0.235950i
\(530\) 1.06548 + 11.5849i 0.0462814 + 0.503218i
\(531\) −11.0704 17.1357i −0.480414 0.743627i
\(532\) −1.21182 1.21182i −0.0525391 0.0525391i
\(533\) −32.7261 32.7261i −1.41752 1.41752i
\(534\) 21.6794 6.39378i 0.938159 0.276686i
\(535\) 25.9114 + 21.5466i 1.12025 + 0.931542i
\(536\) 20.9268i 0.903899i
\(537\) −7.84578 4.27196i −0.338570 0.184349i
\(538\) 9.20648 9.20648i 0.396920 0.396920i
\(539\) 1.87962 0.0809612
\(540\) −0.318067 1.89037i −0.0136874 0.0813485i
\(541\) 10.9567 0.471064 0.235532 0.971867i \(-0.424317\pi\)
0.235532 + 0.971867i \(0.424317\pi\)
\(542\) −19.9771 + 19.9771i −0.858090 + 0.858090i
\(543\) −7.97982 4.34495i −0.342447 0.186460i
\(544\) 0.460609i 0.0197484i
\(545\) 7.42147 0.682559i 0.317901 0.0292376i
\(546\) 37.0171 10.9172i 1.58419 0.467215i
\(547\) −30.1252 30.1252i −1.28806 1.28806i −0.935963 0.352099i \(-0.885468\pi\)
−0.352099 0.935963i \(-0.614532\pi\)
\(548\) 1.01338 + 1.01338i 0.0432893 + 0.0432893i
\(549\) 18.0977 + 28.0132i 0.772390 + 1.19557i
\(550\) −34.5631 23.7461i −1.47378 1.01254i
\(551\) 17.8632i 0.760998i
\(552\) 11.9235 21.8983i 0.507496 0.932054i
\(553\) −1.24044 + 1.24044i −0.0527487 + 0.0527487i
\(554\) −7.94778 −0.337669
\(555\) −11.7815 + 4.68530i −0.500098 + 0.198880i
\(556\) −2.26274 −0.0959617
\(557\) 0.552934 0.552934i 0.0234286 0.0234286i −0.695295 0.718724i \(-0.744726\pi\)
0.718724 + 0.695295i \(0.244726\pi\)
\(558\) 4.31552 + 0.927994i 0.182690 + 0.0392851i
\(559\) 32.0458i 1.35539i
\(560\) 15.8876 19.1060i 0.671372 0.807374i
\(561\) 1.38175 + 4.68509i 0.0583374 + 0.197805i
\(562\) −6.82276 6.82276i −0.287801 0.287801i
\(563\) −13.6902 13.6902i −0.576972 0.576972i 0.357096 0.934068i \(-0.383767\pi\)
−0.934068 + 0.357096i \(0.883767\pi\)
\(564\) −0.847808 2.87466i −0.0356991 0.121045i
\(565\) 22.7555 27.3651i 0.957330 1.15126i
\(566\) 7.08941i 0.297990i
\(567\) 21.7395 8.22693i 0.912974 0.345498i
\(568\) 2.61846 2.61846i 0.109868 0.109868i
\(569\) 21.0505 0.882485 0.441242 0.897388i \(-0.354538\pi\)
0.441242 + 0.897388i \(0.354538\pi\)
\(570\) 21.2976 8.46969i 0.892060 0.354756i
\(571\) −9.07240 −0.379668 −0.189834 0.981816i \(-0.560795\pi\)
−0.189834 + 0.981816i \(0.560795\pi\)
\(572\) 3.89901 3.89901i 0.163026 0.163026i
\(573\) 10.7893 19.8154i 0.450731 0.827800i
\(574\) 29.9952i 1.25198i
\(575\) −21.9724 15.0958i −0.916313 0.629540i
\(576\) −18.2330 + 11.7793i −0.759710 + 0.490804i
\(577\) 24.4714 + 24.4714i 1.01876 + 1.01876i 0.999821 + 0.0189390i \(0.00602883\pi\)
0.0189390 + 0.999821i \(0.493971\pi\)
\(578\) 17.4326 + 17.4326i 0.725101 + 0.725101i
\(579\) 5.83419 1.72064i 0.242461 0.0715075i
\(580\) 1.63161 0.150060i 0.0677488 0.00623092i
\(581\) 23.4222i 0.971717i
\(582\) −23.6172 12.8594i −0.978964 0.533038i
\(583\) −14.2518 + 14.2518i −0.590247 + 0.590247i
\(584\) 17.1516 0.709738
\(585\) −4.71252 + 39.0500i −0.194839 + 1.61452i
\(586\) 5.46791 0.225877
\(587\) −23.4513 + 23.4513i −0.967939 + 0.967939i −0.999502 0.0315627i \(-0.989952\pi\)
0.0315627 + 0.999502i \(0.489952\pi\)
\(588\) 0.0827598 + 0.0450621i 0.00341296 + 0.00185833i
\(589\) 4.02199i 0.165723i
\(590\) −17.2029 14.3051i −0.708233 0.588932i
\(591\) −21.4762 + 6.33386i −0.883415 + 0.260540i
\(592\) −9.96023 9.96023i −0.409363 0.409363i
\(593\) −12.5239 12.5239i −0.514295 0.514295i 0.401544 0.915840i \(-0.368474\pi\)
−0.915840 + 0.401544i \(0.868474\pi\)
\(594\) 28.4203 33.0372i 1.16610 1.35553i
\(595\) 0.261681 + 2.84526i 0.0107279 + 0.116644i
\(596\) 1.19044i 0.0487622i
\(597\) −3.28686 + 6.03656i −0.134522 + 0.247060i
\(598\) 32.5261 32.5261i 1.33009 1.33009i
\(599\) 13.4427 0.549254 0.274627 0.961551i \(-0.411446\pi\)
0.274627 + 0.961551i \(0.411446\pi\)
\(600\) 10.5944 + 20.8451i 0.432513 + 0.850998i
\(601\) 5.32649 0.217272 0.108636 0.994082i \(-0.465352\pi\)
0.108636 + 0.994082i \(0.465352\pi\)
\(602\) 14.6859 14.6859i 0.598551 0.598551i
\(603\) 4.88825 22.7322i 0.199065 0.925725i
\(604\) 0.829931i 0.0337694i
\(605\) −4.40084 47.8504i −0.178920 1.94540i
\(606\) 1.63597 + 5.54710i 0.0664569 + 0.225336i
\(607\) −28.5624 28.5624i −1.15931 1.15931i −0.984624 0.174687i \(-0.944109\pi\)
−0.174687 0.984624i \(-0.555891\pi\)
\(608\) 2.64766 + 2.64766i 0.107377 + 0.107377i
\(609\) 5.62016 + 19.0563i 0.227740 + 0.772200i
\(610\) 28.1230 + 23.3857i 1.13867 + 0.946861i
\(611\) 61.4965i 2.48788i
\(612\) −0.0514820 + 0.239410i −0.00208104 + 0.00967759i
\(613\) −7.86404 + 7.86404i −0.317625 + 0.317625i −0.847854 0.530229i \(-0.822106\pi\)
0.530229 + 0.847854i \(0.322106\pi\)
\(614\) 2.62101 0.105775
\(615\) −28.0744 12.0984i −1.13207 0.487855i
\(616\) 39.7476 1.60147
\(617\) 19.4262 19.4262i 0.782069 0.782069i −0.198111 0.980180i \(-0.563481\pi\)
0.980180 + 0.198111i \(0.0634806\pi\)
\(618\) −14.4297 + 26.5012i −0.580448 + 1.06604i
\(619\) 37.5107i 1.50768i −0.657058 0.753840i \(-0.728199\pi\)
0.657058 0.753840i \(-0.271801\pi\)
\(620\) 0.367365 0.0337869i 0.0147537 0.00135691i
\(621\) 18.0673 21.0023i 0.725016 0.842795i
\(622\) −4.57709 4.57709i −0.183525 0.183525i
\(623\) 16.1967 + 16.1967i 0.648906 + 0.648906i
\(624\) −41.9132 + 12.3612i −1.67787 + 0.494844i
\(625\) 23.3365 8.96696i 0.933461 0.358678i
\(626\) 18.7121i 0.747888i
\(627\) 34.8733 + 18.9882i 1.39270 + 0.758317i
\(628\) −0.0194338 + 0.0194338i −0.000775492 + 0.000775492i
\(629\) 1.61970 0.0645816
\(630\) 20.0554 15.7361i 0.799026 0.626941i
\(631\) 19.5170 0.776959 0.388480 0.921457i \(-0.373000\pi\)
0.388480 + 0.921457i \(0.373000\pi\)
\(632\) 1.29679 1.29679i 0.0515837 0.0515837i
\(633\) −14.1074 7.68138i −0.560720 0.305307i
\(634\) 41.3473i 1.64211i
\(635\) 17.6927 21.2767i 0.702113 0.844342i
\(636\) −0.969175 + 0.285833i −0.0384303 + 0.0113340i
\(637\) −1.36722 1.36722i −0.0541712 0.0541712i
\(638\) 26.3392 + 26.3392i 1.04278 + 1.04278i
\(639\) 3.45600 2.23272i 0.136717 0.0883250i
\(640\) −17.8831 + 21.5058i −0.706893 + 0.850090i
\(641\) 31.4906i 1.24380i 0.783096 + 0.621901i \(0.213639\pi\)
−0.783096 + 0.621901i \(0.786361\pi\)
\(642\) −18.3669 + 33.7322i −0.724885 + 1.33131i
\(643\) 13.3230 13.3230i 0.525409 0.525409i −0.393791 0.919200i \(-0.628837\pi\)
0.919200 + 0.393791i \(0.128837\pi\)
\(644\) −2.27184 −0.0895229
\(645\) 7.82195 + 19.6689i 0.307989 + 0.774461i
\(646\) −2.92795 −0.115199
\(647\) 22.3622 22.3622i 0.879148 0.879148i −0.114298 0.993446i \(-0.536462\pi\)
0.993446 + 0.114298i \(0.0364619\pi\)
\(648\) −22.7272 + 8.60071i −0.892810 + 0.337868i
\(649\) 38.7610i 1.52150i
\(650\) 7.86818 + 42.4136i 0.308616 + 1.66360i
\(651\) 1.26541 + 4.29062i 0.0495953 + 0.168163i
\(652\) −0.0121159 0.0121159i −0.000474494 0.000474494i
\(653\) −0.0987075 0.0987075i −0.00386272 0.00386272i 0.705173 0.709036i \(-0.250869\pi\)
−0.709036 + 0.705173i \(0.750869\pi\)
\(654\) 2.40282 + 8.14725i 0.0939577 + 0.318583i
\(655\) −0.341179 + 0.0313785i −0.0133310 + 0.00122606i
\(656\) 33.9625i 1.32601i
\(657\) 18.6313 + 4.00641i 0.726876 + 0.156305i
\(658\) 28.1824 28.1824i 1.09867 1.09867i
\(659\) 31.5045 1.22724 0.613620 0.789601i \(-0.289713\pi\)
0.613620 + 0.789601i \(0.289713\pi\)
\(660\) 1.44141 3.34480i 0.0561069 0.130196i
\(661\) 42.9995 1.67249 0.836243 0.548359i \(-0.184747\pi\)
0.836243 + 0.548359i \(0.184747\pi\)
\(662\) −23.0556 + 23.0556i −0.896082 + 0.896082i
\(663\) 2.40282 4.41296i 0.0933178 0.171385i
\(664\) 24.4864i 0.950255i
\(665\) 17.8593 + 14.8509i 0.692553 + 0.575893i
\(666\) −7.84162 12.1380i −0.303856 0.470336i
\(667\) 16.7443 + 16.7443i 0.648343 + 0.648343i
\(668\) −2.19879 2.19879i −0.0850738 0.0850738i
\(669\) −30.6740 + 9.04651i −1.18593 + 0.349758i
\(670\) −2.33544 25.3933i −0.0902260 0.981028i
\(671\) 63.3659i 2.44621i
\(672\) 3.65752 + 1.99149i 0.141092 + 0.0768233i
\(673\) 14.0766 14.0766i 0.542613 0.542613i −0.381681 0.924294i \(-0.624655\pi\)
0.924294 + 0.381681i \(0.124655\pi\)
\(674\) 21.8338 0.841008
\(675\) 6.63917 + 25.1181i 0.255542 + 0.966798i
\(676\) −3.52741 −0.135670
\(677\) 6.97865 6.97865i 0.268211 0.268211i −0.560168 0.828379i \(-0.689263\pi\)
0.828379 + 0.560168i \(0.189263\pi\)
\(678\) 35.6248 + 19.3974i 1.36816 + 0.744952i
\(679\) 27.2516i 1.04582i
\(680\) −0.273571 2.97453i −0.0104910 0.114068i
\(681\) −19.8211 + 5.84573i −0.759547 + 0.224009i
\(682\) 5.93041 + 5.93041i 0.227087 + 0.227087i
\(683\) 5.03584 + 5.03584i 0.192691 + 0.192691i 0.796858 0.604167i \(-0.206494\pi\)
−0.604167 + 0.796858i \(0.706494\pi\)
\(684\) 1.08025 + 1.67210i 0.0413042 + 0.0639344i
\(685\) −14.9347 12.4190i −0.570625 0.474504i
\(686\) 27.8540i 1.06347i
\(687\) 8.50425 15.6187i 0.324457 0.595890i
\(688\) −16.6283 + 16.6283i −0.633947 + 0.633947i
\(689\) 20.7332 0.789871
\(690\) 12.0245 27.9028i 0.457764 1.06224i
\(691\) −10.0644 −0.382870 −0.191435 0.981505i \(-0.561314\pi\)
−0.191435 + 0.981505i \(0.561314\pi\)
\(692\) −2.83668 + 2.83668i −0.107834 + 0.107834i
\(693\) 43.1766 + 9.28456i 1.64014 + 0.352691i
\(694\) 17.0437i 0.646971i
\(695\) 30.5386 2.80867i 1.15840 0.106539i
\(696\) −5.87551 19.9221i −0.222711 0.755145i
\(697\) 2.76144 + 2.76144i 0.104597 + 0.104597i
\(698\) 21.6243 + 21.6243i 0.818493 + 0.818493i
\(699\) −2.85660 9.68588i −0.108046 0.366354i
\(700\) 1.20644 1.75601i 0.0455991 0.0663708i
\(701\) 23.2458i 0.877983i −0.898491 0.438991i \(-0.855336\pi\)
0.898491 0.438991i \(-0.144664\pi\)
\(702\) −44.7036 + 3.35827i −1.68723 + 0.126750i
\(703\) 9.31032 9.31032i 0.351145 0.351145i
\(704\) −41.2431 −1.55441
\(705\) 15.0105 + 37.7449i 0.565327 + 1.42156i
\(706\) 27.9256 1.05099
\(707\) −4.14424 + 4.14424i −0.155860 + 0.155860i
\(708\) 0.929256 1.70665i 0.0349236 0.0641397i
\(709\) 32.7196i 1.22881i −0.788991 0.614405i \(-0.789396\pi\)
0.788991 0.614405i \(-0.210604\pi\)
\(710\) 2.88511 3.46956i 0.108276 0.130210i
\(711\) 1.71158 1.10575i 0.0641894 0.0414690i
\(712\) −16.9325 16.9325i −0.634574 0.634574i
\(713\) 3.77007 + 3.77007i 0.141190 + 0.141190i
\(714\) −3.12352 + 0.921200i −0.116895 + 0.0344750i
\(715\) −47.7824 + 57.4618i −1.78696 + 2.14895i
\(716\) 0.850939i 0.0318011i
\(717\) −12.6226 6.87293i −0.471401 0.256674i
\(718\) −27.6203 + 27.6203i −1.03078 + 1.03078i
\(719\) 33.7766 1.25965 0.629826 0.776736i \(-0.283126\pi\)
0.629826 + 0.776736i \(0.283126\pi\)
\(720\) −22.7080 + 17.8174i −0.846277 + 0.664016i
\(721\) −30.5795 −1.13884
\(722\) 2.93774 2.93774i 0.109331 0.109331i
\(723\) −39.5741 21.5478i −1.47178 0.801372i
\(724\) 0.865478i 0.0321652i
\(725\) −21.8344 + 4.05052i −0.810909 + 0.150432i
\(726\) 52.5299 15.4923i 1.94957 0.574975i
\(727\) −5.96182 5.96182i −0.221112 0.221112i 0.587855 0.808967i \(-0.299973\pi\)
−0.808967 + 0.587855i \(0.799973\pi\)
\(728\) −28.9120 28.9120i −1.07155 1.07155i
\(729\) −26.6970 + 4.03389i −0.988776 + 0.149403i
\(730\) 20.8123 1.91413i 0.770299 0.0708451i
\(731\) 2.70403i 0.100012i
\(732\) −1.51913 + 2.79000i −0.0561487 + 0.103121i
\(733\) −13.0530 + 13.0530i −0.482122 + 0.482122i −0.905809 0.423687i \(-0.860736\pi\)
0.423687 + 0.905809i \(0.360736\pi\)
\(734\) 31.8108 1.17416
\(735\) −1.17288 0.505443i −0.0432625 0.0186436i
\(736\) 4.96365 0.182962
\(737\) 31.2387 31.2387i 1.15069 1.15069i
\(738\) 7.32486 34.0633i 0.269632 1.25389i
\(739\) 21.1712i 0.778793i −0.921070 0.389397i \(-0.872684\pi\)
0.921070 0.389397i \(-0.127316\pi\)
\(740\) −0.928607 0.772184i −0.0341363 0.0283861i
\(741\) −11.5546 39.1783i −0.424470 1.43925i
\(742\) −9.50153 9.50153i −0.348812 0.348812i
\(743\) 2.65585 + 2.65585i 0.0974336 + 0.0974336i 0.754143 0.656710i \(-0.228052\pi\)
−0.656710 + 0.754143i \(0.728052\pi\)
\(744\) −1.32290 4.48556i −0.0484999 0.164449i
\(745\) 1.47765 + 16.0665i 0.0541368 + 0.588630i
\(746\) 39.5561i 1.44825i
\(747\) −5.71972 + 26.5988i −0.209274 + 0.973200i
\(748\) −0.328999 + 0.328999i −0.0120294 + 0.0120294i
\(749\) −38.9233 −1.42223
\(750\) 15.1819 + 24.1118i 0.554364 + 0.880439i
\(751\) 11.8492 0.432385 0.216193 0.976351i \(-0.430636\pi\)
0.216193 + 0.976351i \(0.430636\pi\)
\(752\) −31.9100 + 31.9100i −1.16364 + 1.16364i
\(753\) −19.0047 + 34.9035i −0.692570 + 1.27196i
\(754\) 38.3178i 1.39545i
\(755\) 1.03016 + 11.2010i 0.0374915 + 0.407646i
\(756\) 1.67848 + 1.44391i 0.0610456 + 0.0525146i
\(757\) 10.5885 + 10.5885i 0.384845 + 0.384845i 0.872844 0.487999i \(-0.162273\pi\)
−0.487999 + 0.872844i \(0.662273\pi\)
\(758\) 6.43378 + 6.43378i 0.233685 + 0.233685i
\(759\) 50.4878 14.8901i 1.83259 0.540476i
\(760\) −18.6707 15.5256i −0.677257 0.563174i
\(761\) 6.62645i 0.240209i 0.992761 + 0.120104i \(0.0383229\pi\)
−0.992761 + 0.120104i \(0.961677\pi\)
\(762\) 27.6987 + 15.0817i 1.00342 + 0.546353i
\(763\) −6.08681 + 6.08681i −0.220357 + 0.220357i
\(764\) 2.14914 0.0777533
\(765\) 0.397644 3.29505i 0.0143768 0.119133i
\(766\) −12.2579 −0.442895
\(767\) −28.1944 + 28.1944i −1.01804 + 1.01804i
\(768\) −5.98341 3.25792i −0.215908 0.117560i
\(769\) 31.7137i 1.14362i 0.820385 + 0.571812i \(0.193759\pi\)
−0.820385 + 0.571812i \(0.806241\pi\)
\(770\) 48.2310 4.43585i 1.73813 0.159857i
\(771\) 50.0265 14.7540i 1.80166 0.531353i
\(772\) 0.409692 + 0.409692i 0.0147451 + 0.0147451i
\(773\) −11.7114 11.7114i −0.421231 0.421231i 0.464396 0.885627i \(-0.346271\pi\)
−0.885627 + 0.464396i \(0.846271\pi\)
\(774\) −20.2639 + 13.0913i −0.728372 + 0.470558i
\(775\) −4.91612 + 0.911995i −0.176592 + 0.0327598i
\(776\) 28.4898i 1.02272i
\(777\) 7.00293 12.8614i 0.251229 0.461400i
\(778\) −22.7475 + 22.7475i −0.815539 + 0.815539i
\(779\) 31.7465 1.13743
\(780\) −3.48145 + 1.38451i −0.124656 + 0.0495733i
\(781\) 7.81748 0.279732
\(782\) −2.74456 + 2.74456i −0.0981452 + 0.0981452i
\(783\) −1.72883 23.0133i −0.0617833 0.822426i
\(784\) 1.41888i 0.0506741i
\(785\) 0.238161 0.286406i 0.00850034 0.0102223i
\(786\) −0.110462 0.374544i −0.00394005 0.0133595i
\(787\) −28.0355 28.0355i −0.999357 0.999357i 0.000642610 1.00000i \(-0.499795\pi\)
−1.00000 0.000642610i \(0.999795\pi\)
\(788\) −1.50812 1.50812i −0.0537245 0.0537245i
\(789\) 3.15788 + 10.7074i 0.112424 + 0.381195i
\(790\) 1.42885 1.71830i 0.0508362 0.0611342i
\(791\) 41.1070i 1.46160i
\(792\) −45.1383 9.70639i −1.60392 0.344901i
\(793\) 46.0917 46.0917i 1.63677 1.63677i
\(794\) −52.1162 −1.84954
\(795\) 12.7255 5.06069i 0.451326 0.179484i
\(796\) −0.654715 −0.0232057
\(797\) 3.44795 3.44795i 0.122133 0.122133i −0.643399 0.765531i \(-0.722476\pi\)
0.765531 + 0.643399i \(0.222476\pi\)
\(798\) −12.6593 + 23.2498i −0.448135 + 0.823032i
\(799\) 5.18909i 0.183577i
\(800\) −2.63590 + 3.83663i −0.0931932 + 0.135645i
\(801\) −14.4381 22.3486i −0.510145 0.789648i
\(802\) 13.0563 + 13.0563i 0.461033 + 0.461033i
\(803\) 25.6032 + 25.6032i 0.903519 + 0.903519i
\(804\) 2.12435 0.626523i 0.0749202 0.0220958i
\(805\) 30.6613 2.81995i 1.08067 0.0993902i
\(806\) 8.62745i 0.303889i
\(807\) −13.4605 7.32912i −0.473831 0.257997i
\(808\) 4.33253 4.33253i 0.152418 0.152418i
\(809\) 11.8818 0.417742 0.208871 0.977943i \(-0.433021\pi\)
0.208871 + 0.977943i \(0.433021\pi\)
\(810\) −26.6182 + 12.9728i −0.935267 + 0.455816i
\(811\) 12.6223 0.443229 0.221614 0.975134i \(-0.428867\pi\)
0.221614 + 0.975134i \(0.428867\pi\)
\(812\) −1.33818 + 1.33818i −0.0469610 + 0.0469610i
\(813\) 29.2078 + 15.9034i 1.02436 + 0.557758i
\(814\) 27.4561i 0.962335i
\(815\) 0.178558 + 0.148480i 0.00625462 + 0.00520103i
\(816\) 3.53665 1.04304i 0.123807 0.0365138i
\(817\) −15.5433 15.5433i −0.543790 0.543790i
\(818\) −33.6427 33.6427i −1.17629 1.17629i
\(819\) −24.6528 38.1597i −0.861437 1.33341i
\(820\) −0.266687 2.89969i −0.00931312 0.101262i
\(821\) 41.4475i 1.44653i 0.690571 + 0.723264i \(0.257359\pi\)
−0.690571 + 0.723264i \(0.742641\pi\)
\(822\) 10.5863 19.4424i 0.369238 0.678133i
\(823\) −20.1208 + 20.1208i −0.701368 + 0.701368i −0.964704 0.263336i \(-0.915177\pi\)
0.263336 + 0.964704i \(0.415177\pi\)
\(824\) 31.9688 1.11369
\(825\) −15.3019 + 46.9316i −0.532745 + 1.63395i
\(826\) 25.8417 0.899147
\(827\) 15.3731 15.3731i 0.534576 0.534576i −0.387355 0.921931i \(-0.626611\pi\)
0.921931 + 0.387355i \(0.126611\pi\)
\(828\) 2.57995 + 0.554784i 0.0896595 + 0.0192801i
\(829\) 44.8017i 1.55603i −0.628247 0.778014i \(-0.716227\pi\)
0.628247 0.778014i \(-0.283773\pi\)
\(830\) 2.73269 + 29.7126i 0.0948532 + 1.03134i
\(831\) 2.64654 + 8.97363i 0.0918075 + 0.311292i
\(832\) 29.9998 + 29.9998i 1.04006 + 1.04006i
\(833\) 0.115366 + 0.115366i 0.00399721 + 0.00399721i
\(834\) 9.88738 + 33.5252i 0.342372 + 1.16088i
\(835\) 32.4048 + 26.9462i 1.12141 + 0.932513i
\(836\) 3.78230i 0.130813i
\(837\) −0.389255 5.18155i −0.0134546 0.179101i
\(838\) 19.2102 19.2102i 0.663604 0.663604i
\(839\) −51.2933 −1.77084 −0.885420 0.464791i \(-0.846129\pi\)
−0.885420 + 0.464791i \(0.846129\pi\)
\(840\) −24.8024 10.6884i −0.855765 0.368784i
\(841\) −9.27413 −0.319797
\(842\) 24.1559 24.1559i 0.832467 0.832467i
\(843\) −5.43149 + 9.97532i −0.187070 + 0.343568i
\(844\) 1.53007i 0.0526671i
\(845\) 47.6069 4.37845i 1.63773 0.150623i
\(846\) −38.8868 + 25.1225i −1.33696 + 0.863729i
\(847\) 39.2451 + 39.2451i 1.34848 + 1.34848i
\(848\) 10.7583 + 10.7583i 0.369440 + 0.369440i
\(849\) −8.00447 + 2.36071i −0.274713 + 0.0810194i
\(850\) −0.663919 3.57887i −0.0227722 0.122754i
\(851\) 17.4543i 0.598326i
\(852\) 0.344204 + 0.187416i 0.0117922 + 0.00642077i
\(853\) −24.0420 + 24.0420i −0.823184 + 0.823184i −0.986563 0.163379i \(-0.947761\pi\)
0.163379 + 0.986563i \(0.447761\pi\)
\(854\) −42.2456 −1.44561
\(855\) −16.6548 21.2263i −0.569583 0.725924i
\(856\) 40.6917 1.39081
\(857\) −16.2662 + 16.2662i −0.555643 + 0.555643i −0.928064 0.372421i \(-0.878528\pi\)
0.372421 + 0.928064i \(0.378528\pi\)
\(858\) −74.8056 40.7310i −2.55382 1.39053i
\(859\) 21.1629i 0.722070i −0.932552 0.361035i \(-0.882423\pi\)
0.932552 0.361035i \(-0.117577\pi\)
\(860\) −1.28914 + 1.55028i −0.0439592 + 0.0528641i
\(861\) 33.8668 9.98815i 1.15418 0.340395i
\(862\) 12.0225 + 12.0225i 0.409489 + 0.409489i
\(863\) −16.1278 16.1278i −0.548998 0.548998i 0.377153 0.926151i \(-0.376903\pi\)
−0.926151 + 0.377153i \(0.876903\pi\)
\(864\) −3.66724 3.15475i −0.124762 0.107327i
\(865\) 34.7635 41.8056i 1.18199 1.42143i
\(866\) 34.8329i 1.18367i
\(867\) 13.8778 25.4876i 0.471315 0.865604i
\(868\) −0.301299 + 0.301299i −0.0102267 + 0.0102267i
\(869\) 3.87160 0.131335
\(870\) −9.35286 23.5184i −0.317092 0.797350i
\(871\) −45.4454 −1.53986
\(872\) 6.36335 6.36335i 0.215490 0.215490i
\(873\) −6.65487 + 30.9476i −0.225233 + 1.04742i
\(874\) 31.5524i 1.06728i
\(875\) −14.1028 + 25.1971i −0.476761 + 0.851816i
\(876\) 0.513499 + 1.74112i 0.0173495 + 0.0588270i
\(877\) −2.86308 2.86308i −0.0966792 0.0966792i 0.657113 0.753792i \(-0.271777\pi\)
−0.753792 + 0.657113i \(0.771777\pi\)
\(878\) 29.4235 + 29.4235i 0.992996 + 0.992996i
\(879\) −1.82077 6.17368i −0.0614129 0.208233i
\(880\) −54.6103 + 5.02256i −1.84091 + 0.169310i
\(881\) 36.9673i 1.24546i −0.782436 0.622730i \(-0.786023\pi\)
0.782436 0.622730i \(-0.213977\pi\)
\(882\) 0.306016 1.42309i 0.0103041 0.0479178i
\(883\) 9.83858 9.83858i 0.331094 0.331094i −0.521908 0.853002i \(-0.674779\pi\)
0.853002 + 0.521908i \(0.174779\pi\)
\(884\) 0.478622 0.0160978
\(885\) −10.4231 + 24.1868i −0.350369 + 0.813032i
\(886\) −39.8907 −1.34015
\(887\) −10.0492 + 10.0492i −0.337420 + 0.337420i −0.855395 0.517976i \(-0.826686\pi\)
0.517976 + 0.855395i \(0.326686\pi\)
\(888\) −7.32110 + 13.4457i −0.245680 + 0.451209i
\(889\) 31.9613i 1.07195i
\(890\) −22.4362 18.6568i −0.752063 0.625379i
\(891\) −46.7651 21.0875i −1.56669 0.706459i
\(892\) −2.15401 2.15401i −0.0721216 0.0721216i
\(893\) −29.8278 29.8278i −0.998150 0.998150i
\(894\) −17.6377 + 5.20178i −0.589892 + 0.173973i
\(895\) 1.05624 + 11.4845i 0.0353063 + 0.383885i
\(896\) 32.3053i 1.07924i
\(897\) −47.5552 25.8935i −1.58782 0.864557i
\(898\) 1.40011 1.40011i 0.0467223 0.0467223i
\(899\) 4.44138 0.148128
\(900\) −1.79888 + 1.69955i −0.0599627 + 0.0566516i
\(901\) −1.74947 −0.0582833
\(902\) 46.8100 46.8100i 1.55860 1.55860i
\(903\) −21.4717 11.6912i −0.714533 0.389058i
\(904\) 42.9747i 1.42932i
\(905\) 1.07429 + 11.6807i 0.0357105 + 0.388281i
\(906\) −12.2964 + 3.62650i −0.408520 + 0.120482i
\(907\) 31.4767 + 31.4767i 1.04517 + 1.04517i 0.998931 + 0.0462346i \(0.0147222\pi\)
0.0462346 + 0.998931i \(0.485278\pi\)
\(908\) −1.39189 1.39189i −0.0461915 0.0461915i
\(909\) 5.71833 3.69427i 0.189665 0.122531i
\(910\) −38.3094 31.8562i −1.26994 1.05602i
\(911\) 2.08358i 0.0690320i 0.999404 + 0.0345160i \(0.0109890\pi\)
−0.999404 + 0.0345160i \(0.989011\pi\)
\(912\) 14.3337 26.3249i 0.474636 0.871703i
\(913\) −36.5523 + 36.5523i −1.20970 + 1.20970i
\(914\) 6.91955 0.228878
\(915\) 17.0395 39.5403i 0.563309 1.30716i
\(916\) 1.69397 0.0559705
\(917\) 0.279822 0.279822i 0.00924053 0.00924053i
\(918\) 3.77210 0.283372i 0.124498 0.00935267i
\(919\) 15.9391i 0.525782i −0.964826 0.262891i \(-0.915324\pi\)
0.964826 0.262891i \(-0.0846760\pi\)
\(920\) −32.0544 + 2.94807i −1.05680 + 0.0971950i
\(921\) −0.872773 2.95932i −0.0287589 0.0975128i
\(922\) 24.9239 + 24.9239i 0.820826 + 0.820826i
\(923\) −5.68636 5.68636i −0.187169 0.187169i
\(924\) 1.18999 + 4.03492i 0.0391480 + 0.132739i
\(925\) 13.4912 + 9.26897i 0.443589 + 0.304762i
\(926\) 4.97920i 0.163627i
\(927\) 34.7268 + 7.46754i 1.14058 + 0.245266i
\(928\) 2.92374 2.92374i 0.0959766 0.0959766i
\(929\) −27.9730 −0.917764 −0.458882 0.888497i \(-0.651750\pi\)
−0.458882 + 0.888497i \(0.651750\pi\)
\(930\) −2.10584 5.29530i −0.0690533 0.173640i
\(931\) 1.32629 0.0434675
\(932\) 0.680168 0.680168i 0.0222796 0.0222796i
\(933\) −3.64374 + 6.69201i −0.119291 + 0.219086i
\(934\) 9.52359i 0.311622i
\(935\) 4.03189 4.84865i 0.131857 0.158568i
\(936\) 25.7728 + 39.8935i 0.842411 + 1.30396i
\(937\) 13.5270 + 13.5270i 0.441909 + 0.441909i 0.892653 0.450744i \(-0.148841\pi\)
−0.450744 + 0.892653i \(0.648841\pi\)
\(938\) 20.8266 + 20.8266i 0.680013 + 0.680013i
\(939\) 21.1274 6.23098i 0.689467 0.203340i
\(940\) −2.47388 + 2.97502i −0.0806890 + 0.0970343i
\(941\) 28.3915i 0.925537i −0.886479 0.462769i \(-0.846856\pi\)
0.886479 0.462769i \(-0.153144\pi\)
\(942\) 0.372852 + 0.203015i 0.0121482 + 0.00661459i
\(943\) 29.7580 29.7580i 0.969053 0.969053i
\(944\) −29.2596 −0.952319
\(945\) −24.4455 17.4040i −0.795212 0.566153i
\(946\) −45.8370 −1.49029
\(947\) 26.7170 26.7170i 0.868187 0.868187i −0.124084 0.992272i \(-0.539599\pi\)
0.992272 + 0.124084i \(0.0395993\pi\)
\(948\) 0.170467 + 0.0928177i 0.00553650 + 0.00301458i
\(949\) 37.2471i 1.20909i
\(950\) −24.3883 16.7557i −0.791261 0.543625i
\(951\) 46.6841 13.7683i 1.51384 0.446467i
\(952\) 2.43960 + 2.43960i 0.0790679 + 0.0790679i
\(953\) −6.49815 6.49815i −0.210496 0.210496i 0.593982 0.804478i \(-0.297555\pi\)
−0.804478 + 0.593982i \(0.797555\pi\)
\(954\) 8.46989 + 13.1105i 0.274223 + 0.424467i
\(955\) −29.0055 + 2.66766i −0.938595 + 0.0863234i
\(956\) 1.36903i 0.0442776i
\(957\) 20.9682 38.5097i 0.677806 1.24484i
\(958\) −24.4881 + 24.4881i −0.791176 + 0.791176i
\(959\) 22.4344 0.724445
\(960\) 25.7357 + 11.0906i 0.830615 + 0.357946i
\(961\) 1.00000 0.0322581
\(962\) −19.9713 + 19.9713i −0.643900 + 0.643900i
\(963\) 44.2022 + 9.50510i 1.42440 + 0.306298i
\(964\) 4.29214i 0.138241i
\(965\) −6.03786 5.02079i −0.194366 0.161625i
\(966\) 9.92710 + 33.6599i 0.319399 + 1.08299i
\(967\) 9.39335 + 9.39335i 0.302070 + 0.302070i 0.841823 0.539753i \(-0.181483\pi\)
−0.539753 + 0.841823i \(0.681483\pi\)
\(968\) −41.0281 41.0281i −1.31869 1.31869i
\(969\) 0.974983 + 3.30588i 0.0313210 + 0.106200i
\(970\) 3.17948 + 34.5705i 0.102087 + 1.10999i
\(971\) 32.6750i 1.04859i −0.851537 0.524295i \(-0.824329\pi\)
0.851537 0.524295i \(-0.175671\pi\)
\(972\) −1.55352 2.04963i −0.0498290 0.0657419i
\(973\) −25.0466 + 25.0466i −0.802958 + 0.802958i
\(974\) 60.1814 1.92834
\(975\) 45.2680 23.0071i 1.44974 0.736817i
\(976\) 47.8331 1.53110
\(977\) 21.1843 21.1843i 0.677747 0.677747i −0.281743 0.959490i \(-0.590913\pi\)
0.959490 + 0.281743i \(0.0909125\pi\)
\(978\) −0.126568 + 0.232452i −0.00404721 + 0.00743301i
\(979\) 50.5525i 1.61567i
\(980\) −0.0111416 0.121142i −0.000355905 0.00386975i
\(981\) 8.39873 5.42592i 0.268151 0.173236i
\(982\) 26.0081 + 26.0081i 0.829951 + 0.829951i
\(983\) −15.9122 15.9122i −0.507521 0.507521i 0.406244 0.913765i \(-0.366838\pi\)
−0.913765 + 0.406244i \(0.866838\pi\)
\(984\) −35.4055 + 10.4419i −1.12869 + 0.332877i
\(985\) 22.2260 + 18.4820i 0.708178 + 0.588886i
\(986\) 3.23326i 0.102968i
\(987\) −41.2046 22.4356i −1.31156 0.714132i
\(988\) 2.75120 2.75120i 0.0875275 0.0875275i
\(989\) −29.1394 −0.926579
\(990\) −55.8556 6.74060i −1.77521 0.214230i
\(991\) −36.1800 −1.14930 −0.574649 0.818400i \(-0.694861\pi\)
−0.574649 + 0.818400i \(0.694861\pi\)
\(992\) 0.658296 0.658296i 0.0209009 0.0209009i
\(993\) 33.7088 + 18.3542i 1.06972 + 0.582453i
\(994\) 5.21186i 0.165310i
\(995\) 8.83621 0.812674i 0.280127 0.0257635i
\(996\) −2.48570 + 0.733093i −0.0787624 + 0.0232289i
\(997\) 15.5342 + 15.5342i 0.491972 + 0.491972i 0.908927 0.416955i \(-0.136903\pi\)
−0.416955 + 0.908927i \(0.636903\pi\)
\(998\) −17.1735 17.1735i −0.543618 0.543618i
\(999\) −11.0935 + 12.8956i −0.350982 + 0.407999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.k.a.32.22 yes 60
3.2 odd 2 inner 465.2.k.a.32.9 60
5.3 odd 4 inner 465.2.k.a.218.9 yes 60
15.8 even 4 inner 465.2.k.a.218.22 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.k.a.32.9 60 3.2 odd 2 inner
465.2.k.a.32.22 yes 60 1.1 even 1 trivial
465.2.k.a.218.9 yes 60 5.3 odd 4 inner
465.2.k.a.218.22 yes 60 15.8 even 4 inner