Properties

Label 465.2.k.a.218.3
Level $465$
Weight $2$
Character 465.218
Analytic conductor $3.713$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(32,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,0,0,-4,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 218.3
Character \(\chi\) \(=\) 465.218
Dual form 465.2.k.a.32.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.74033 - 1.74033i) q^{2} +(1.27567 - 1.17160i) q^{3} +4.05749i q^{4} +(0.384493 - 2.20276i) q^{5} +(-4.25907 - 0.181113i) q^{6} +(1.30230 - 1.30230i) q^{7} +(3.58070 - 3.58070i) q^{8} +(0.254684 - 2.98917i) q^{9} +(-4.50267 + 3.16439i) q^{10} -2.55932i q^{11} +(4.75377 + 5.17603i) q^{12} +(2.37097 + 2.37097i) q^{13} -4.53284 q^{14} +(-2.09028 - 3.26048i) q^{15} -4.34822 q^{16} +(3.38670 + 3.38670i) q^{17} +(-5.64537 + 4.75890i) q^{18} -4.69306i q^{19} +(8.93768 + 1.56007i) q^{20} +(0.135528 - 3.18708i) q^{21} +(-4.45405 + 4.45405i) q^{22} +(-0.268531 + 0.268531i) q^{23} +(0.372638 - 8.76297i) q^{24} +(-4.70433 - 1.69389i) q^{25} -8.25253i q^{26} +(-3.17723 - 4.11159i) q^{27} +(5.28405 + 5.28405i) q^{28} -5.68539 q^{29} +(-2.03653 + 9.31208i) q^{30} +1.00000 q^{31} +(0.405926 + 0.405926i) q^{32} +(-2.99851 - 3.26485i) q^{33} -11.7879i q^{34} +(-2.36793 - 3.36937i) q^{35} +(12.1285 + 1.03338i) q^{36} +(-2.80395 + 2.80395i) q^{37} +(-8.16747 + 8.16747i) q^{38} +(5.80242 + 0.246743i) q^{39} +(-6.51068 - 9.26419i) q^{40} +3.76694i q^{41} +(-5.78243 + 5.31070i) q^{42} +(7.57956 + 7.57956i) q^{43} +10.3844 q^{44} +(-6.48651 - 1.71032i) q^{45} +0.934666 q^{46} +(2.85488 + 2.85488i) q^{47} +(-5.54691 + 5.09439i) q^{48} +3.60805i q^{49} +(5.23915 + 11.1350i) q^{50} +(8.28820 + 0.352449i) q^{51} +(-9.62017 + 9.62017i) q^{52} +(3.33548 - 3.33548i) q^{53} +(-1.62610 + 12.6849i) q^{54} +(-5.63757 - 0.984039i) q^{55} -9.32626i q^{56} +(-5.49842 - 5.98682i) q^{57} +(9.89445 + 9.89445i) q^{58} -12.5260 q^{59} +(13.2293 - 8.48128i) q^{60} -7.79487 q^{61} +(-1.74033 - 1.74033i) q^{62} +(-3.56111 - 4.22446i) q^{63} +7.28355i q^{64} +(6.13430 - 4.31106i) q^{65} +(-0.463526 + 10.9003i) q^{66} +(-4.02116 + 4.02116i) q^{67} +(-13.7415 + 13.7415i) q^{68} +(-0.0279457 + 0.657171i) q^{69} +(-1.74285 + 9.98478i) q^{70} +1.18160i q^{71} +(-9.79137 - 11.6153i) q^{72} +(3.86864 + 3.86864i) q^{73} +9.75960 q^{74} +(-7.98576 + 3.35076i) q^{75} +19.0420 q^{76} +(-3.33299 - 3.33299i) q^{77} +(-9.66870 - 10.5275i) q^{78} -4.46527i q^{79} +(-1.67186 + 9.57809i) q^{80} +(-8.87027 - 1.52259i) q^{81} +(6.55571 - 6.55571i) q^{82} +(4.02931 - 4.02931i) q^{83} +(12.9315 + 0.549903i) q^{84} +(8.76226 - 6.15794i) q^{85} -26.3819i q^{86} +(-7.25270 + 6.66103i) q^{87} +(-9.16415 - 9.16415i) q^{88} +16.4656 q^{89} +(8.31213 + 14.2652i) q^{90} +6.17540 q^{91} +(-1.08956 - 1.08956i) q^{92} +(1.27567 - 1.17160i) q^{93} -9.93684i q^{94} +(-10.3377 - 1.80445i) q^{95} +(0.993414 + 0.0422441i) q^{96} +(13.6813 - 13.6813i) q^{97} +(6.27919 - 6.27919i) q^{98} +(-7.65023 - 0.651818i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{6} - 32 q^{10} + 4 q^{13} + 20 q^{15} - 60 q^{16} - 46 q^{18} - 4 q^{21} + 8 q^{22} - 8 q^{25} - 6 q^{27} + 112 q^{28} + 54 q^{30} + 60 q^{31} - 30 q^{33} - 4 q^{36} - 36 q^{37} - 36 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.74033 1.74033i −1.23060 1.23060i −0.963734 0.266864i \(-0.914013\pi\)
−0.266864 0.963734i \(-0.585987\pi\)
\(3\) 1.27567 1.17160i 0.736510 0.676426i
\(4\) 4.05749i 2.02874i
\(5\) 0.384493 2.20276i 0.171950 0.985106i
\(6\) −4.25907 0.181113i −1.73876 0.0739392i
\(7\) 1.30230 1.30230i 0.492222 0.492222i −0.416784 0.909006i \(-0.636843\pi\)
0.909006 + 0.416784i \(0.136843\pi\)
\(8\) 3.58070 3.58070i 1.26597 1.26597i
\(9\) 0.254684 2.98917i 0.0848948 0.996390i
\(10\) −4.50267 + 3.16439i −1.42387 + 1.00067i
\(11\) 2.55932i 0.771663i −0.922569 0.385832i \(-0.873915\pi\)
0.922569 0.385832i \(-0.126085\pi\)
\(12\) 4.75377 + 5.17603i 1.37230 + 1.49419i
\(13\) 2.37097 + 2.37097i 0.657588 + 0.657588i 0.954809 0.297221i \(-0.0960597\pi\)
−0.297221 + 0.954809i \(0.596060\pi\)
\(14\) −4.53284 −1.21145
\(15\) −2.09028 3.26048i −0.539708 0.841852i
\(16\) −4.34822 −1.08705
\(17\) 3.38670 + 3.38670i 0.821396 + 0.821396i 0.986308 0.164913i \(-0.0527342\pi\)
−0.164913 + 0.986308i \(0.552734\pi\)
\(18\) −5.64537 + 4.75890i −1.33063 + 1.12168i
\(19\) 4.69306i 1.07666i −0.842733 0.538331i \(-0.819055\pi\)
0.842733 0.538331i \(-0.180945\pi\)
\(20\) 8.93768 + 1.56007i 1.99853 + 0.348843i
\(21\) 0.135528 3.18708i 0.0295746 0.695478i
\(22\) −4.45405 + 4.45405i −0.949607 + 0.949607i
\(23\) −0.268531 + 0.268531i −0.0559927 + 0.0559927i −0.734549 0.678556i \(-0.762606\pi\)
0.678556 + 0.734549i \(0.262606\pi\)
\(24\) 0.372638 8.76297i 0.0760644 1.78873i
\(25\) −4.70433 1.69389i −0.940866 0.338779i
\(26\) 8.25253i 1.61845i
\(27\) −3.17723 4.11159i −0.611458 0.791277i
\(28\) 5.28405 + 5.28405i 0.998591 + 0.998591i
\(29\) −5.68539 −1.05575 −0.527875 0.849322i \(-0.677011\pi\)
−0.527875 + 0.849322i \(0.677011\pi\)
\(30\) −2.03653 + 9.31208i −0.371818 + 1.70015i
\(31\) 1.00000 0.179605
\(32\) 0.405926 + 0.405926i 0.0717582 + 0.0717582i
\(33\) −2.99851 3.26485i −0.521973 0.568338i
\(34\) 11.7879i 2.02162i
\(35\) −2.36793 3.36937i −0.400253 0.569528i
\(36\) 12.1285 + 1.03338i 2.02142 + 0.172230i
\(37\) −2.80395 + 2.80395i −0.460967 + 0.460967i −0.898972 0.438005i \(-0.855685\pi\)
0.438005 + 0.898972i \(0.355685\pi\)
\(38\) −8.16747 + 8.16747i −1.32494 + 1.32494i
\(39\) 5.80242 + 0.246743i 0.929131 + 0.0395105i
\(40\) −6.51068 9.26419i −1.02943 1.46480i
\(41\) 3.76694i 0.588297i 0.955760 + 0.294148i \(0.0950360\pi\)
−0.955760 + 0.294148i \(0.904964\pi\)
\(42\) −5.78243 + 5.31070i −0.892248 + 0.819459i
\(43\) 7.57956 + 7.57956i 1.15587 + 1.15587i 0.985355 + 0.170518i \(0.0545441\pi\)
0.170518 + 0.985355i \(0.445456\pi\)
\(44\) 10.3844 1.56551
\(45\) −6.48651 1.71032i −0.966952 0.254960i
\(46\) 0.934666 0.137809
\(47\) 2.85488 + 2.85488i 0.416427 + 0.416427i 0.883970 0.467544i \(-0.154861\pi\)
−0.467544 + 0.883970i \(0.654861\pi\)
\(48\) −5.54691 + 5.09439i −0.800627 + 0.735312i
\(49\) 3.60805i 0.515436i
\(50\) 5.23915 + 11.1350i 0.740928 + 1.57473i
\(51\) 8.28820 + 0.352449i 1.16058 + 0.0493527i
\(52\) −9.62017 + 9.62017i −1.33408 + 1.33408i
\(53\) 3.33548 3.33548i 0.458164 0.458164i −0.439888 0.898052i \(-0.644982\pi\)
0.898052 + 0.439888i \(0.144982\pi\)
\(54\) −1.62610 + 12.6849i −0.221284 + 1.72620i
\(55\) −5.63757 0.984039i −0.760170 0.132688i
\(56\) 9.32626i 1.24627i
\(57\) −5.49842 5.98682i −0.728283 0.792973i
\(58\) 9.89445 + 9.89445i 1.29920 + 1.29920i
\(59\) −12.5260 −1.63075 −0.815375 0.578933i \(-0.803469\pi\)
−0.815375 + 0.578933i \(0.803469\pi\)
\(60\) 13.2293 8.48128i 1.70790 1.09493i
\(61\) −7.79487 −0.998031 −0.499016 0.866593i \(-0.666305\pi\)
−0.499016 + 0.866593i \(0.666305\pi\)
\(62\) −1.74033 1.74033i −0.221022 0.221022i
\(63\) −3.56111 4.22446i −0.448658 0.532232i
\(64\) 7.28355i 0.910443i
\(65\) 6.13430 4.31106i 0.760866 0.534721i
\(66\) −0.463526 + 10.9003i −0.0570562 + 1.34173i
\(67\) −4.02116 + 4.02116i −0.491263 + 0.491263i −0.908704 0.417441i \(-0.862927\pi\)
0.417441 + 0.908704i \(0.362927\pi\)
\(68\) −13.7415 + 13.7415i −1.66640 + 1.66640i
\(69\) −0.0279457 + 0.657171i −0.00336426 + 0.0791141i
\(70\) −1.74285 + 9.98478i −0.208310 + 1.19341i
\(71\) 1.18160i 0.140230i 0.997539 + 0.0701152i \(0.0223367\pi\)
−0.997539 + 0.0701152i \(0.977663\pi\)
\(72\) −9.79137 11.6153i −1.15392 1.36887i
\(73\) 3.86864 + 3.86864i 0.452790 + 0.452790i 0.896279 0.443490i \(-0.146260\pi\)
−0.443490 + 0.896279i \(0.646260\pi\)
\(74\) 9.75960 1.13453
\(75\) −7.98576 + 3.35076i −0.922116 + 0.386913i
\(76\) 19.0420 2.18427
\(77\) −3.33299 3.33299i −0.379829 0.379829i
\(78\) −9.66870 10.5275i −1.09476 1.19201i
\(79\) 4.46527i 0.502383i −0.967937 0.251191i \(-0.919178\pi\)
0.967937 0.251191i \(-0.0808223\pi\)
\(80\) −1.67186 + 9.57809i −0.186919 + 1.07086i
\(81\) −8.87027 1.52259i −0.985586 0.169177i
\(82\) 6.55571 6.55571i 0.723957 0.723957i
\(83\) 4.02931 4.02931i 0.442274 0.442274i −0.450502 0.892776i \(-0.648755\pi\)
0.892776 + 0.450502i \(0.148755\pi\)
\(84\) 12.9315 + 0.549903i 1.41095 + 0.0599993i
\(85\) 8.76226 6.15794i 0.950401 0.667922i
\(86\) 26.3819i 2.84483i
\(87\) −7.25270 + 6.66103i −0.777571 + 0.714137i
\(88\) −9.16415 9.16415i −0.976901 0.976901i
\(89\) 16.4656 1.74535 0.872675 0.488301i \(-0.162383\pi\)
0.872675 + 0.488301i \(0.162383\pi\)
\(90\) 8.31213 + 14.2652i 0.876175 + 1.50368i
\(91\) 6.17540 0.647358
\(92\) −1.08956 1.08956i −0.113595 0.113595i
\(93\) 1.27567 1.17160i 0.132281 0.121490i
\(94\) 9.93684i 1.02491i
\(95\) −10.3377 1.80445i −1.06063 0.185133i
\(96\) 0.993414 + 0.0422441i 0.101390 + 0.00431152i
\(97\) 13.6813 13.6813i 1.38912 1.38912i 0.561959 0.827165i \(-0.310048\pi\)
0.827165 0.561959i \(-0.189952\pi\)
\(98\) 6.27919 6.27919i 0.634294 0.634294i
\(99\) −7.65023 0.651818i −0.768877 0.0655102i
\(100\) 6.87295 19.0878i 0.687295 1.90878i
\(101\) 18.5916i 1.84993i 0.380047 + 0.924967i \(0.375908\pi\)
−0.380047 + 0.924967i \(0.624092\pi\)
\(102\) −13.8108 15.0376i −1.36747 1.48894i
\(103\) 2.22600 + 2.22600i 0.219334 + 0.219334i 0.808218 0.588884i \(-0.200432\pi\)
−0.588884 + 0.808218i \(0.700432\pi\)
\(104\) 16.9795 1.66497
\(105\) −6.96827 1.52395i −0.680034 0.148722i
\(106\) −11.6097 −1.12763
\(107\) −1.86365 1.86365i −0.180166 0.180166i 0.611262 0.791428i \(-0.290662\pi\)
−0.791428 + 0.611262i \(0.790662\pi\)
\(108\) 16.6827 12.8916i 1.60530 1.24049i
\(109\) 18.6614i 1.78744i −0.448629 0.893718i \(-0.648088\pi\)
0.448629 0.893718i \(-0.351912\pi\)
\(110\) 8.09867 + 11.5238i 0.772178 + 1.09875i
\(111\) −0.291803 + 6.86205i −0.0276967 + 0.651317i
\(112\) −5.66267 + 5.66267i −0.535072 + 0.535072i
\(113\) −6.99502 + 6.99502i −0.658036 + 0.658036i −0.954915 0.296879i \(-0.904054\pi\)
0.296879 + 0.954915i \(0.404054\pi\)
\(114\) −0.849977 + 19.9881i −0.0796076 + 1.87206i
\(115\) 0.488263 + 0.694759i 0.0455307 + 0.0647866i
\(116\) 23.0684i 2.14185i
\(117\) 7.69108 6.48338i 0.711040 0.599388i
\(118\) 21.7994 + 21.7994i 2.00680 + 2.00680i
\(119\) 8.82097 0.808617
\(120\) −19.1595 4.19013i −1.74901 0.382505i
\(121\) 4.44990 0.404536
\(122\) 13.5656 + 13.5656i 1.22818 + 1.22818i
\(123\) 4.41336 + 4.80538i 0.397940 + 0.433287i
\(124\) 4.05749i 0.364373i
\(125\) −5.54003 + 9.71124i −0.495515 + 0.868599i
\(126\) −1.15445 + 13.5494i −0.102846 + 1.20708i
\(127\) 12.1010 12.1010i 1.07379 1.07379i 0.0767411 0.997051i \(-0.475548\pi\)
0.997051 0.0767411i \(-0.0244515\pi\)
\(128\) 13.4876 13.4876i 1.19215 1.19215i
\(129\) 18.5493 + 0.788794i 1.63317 + 0.0694494i
\(130\) −18.1784 3.17304i −1.59435 0.278294i
\(131\) 4.42153i 0.386311i 0.981168 + 0.193155i \(0.0618721\pi\)
−0.981168 + 0.193155i \(0.938128\pi\)
\(132\) 13.2471 12.1664i 1.15301 1.05895i
\(133\) −6.11176 6.11176i −0.529957 0.529957i
\(134\) 13.9963 1.20909
\(135\) −10.2785 + 5.41781i −0.884631 + 0.466291i
\(136\) 24.2535 2.07972
\(137\) −14.4439 14.4439i −1.23403 1.23403i −0.962403 0.271625i \(-0.912439\pi\)
−0.271625 0.962403i \(-0.587561\pi\)
\(138\) 1.19233 1.09506i 0.101498 0.0932176i
\(139\) 20.0382i 1.69961i −0.527094 0.849807i \(-0.676718\pi\)
0.527094 0.849807i \(-0.323282\pi\)
\(140\) 13.6712 9.60783i 1.15543 0.812009i
\(141\) 6.98668 + 0.297103i 0.588384 + 0.0250206i
\(142\) 2.05638 2.05638i 0.172567 0.172567i
\(143\) 6.06806 6.06806i 0.507437 0.507437i
\(144\) −1.10742 + 12.9976i −0.0922853 + 1.08313i
\(145\) −2.18599 + 12.5236i −0.181537 + 1.04003i
\(146\) 13.4654i 1.11440i
\(147\) 4.22721 + 4.60269i 0.348654 + 0.379624i
\(148\) −11.3770 11.3770i −0.935184 0.935184i
\(149\) 9.91574 0.812329 0.406165 0.913800i \(-0.366866\pi\)
0.406165 + 0.913800i \(0.366866\pi\)
\(150\) 19.7293 + 8.06642i 1.61089 + 0.658620i
\(151\) 10.0111 0.814695 0.407347 0.913273i \(-0.366454\pi\)
0.407347 + 0.913273i \(0.366454\pi\)
\(152\) −16.8045 16.8045i −1.36302 1.36302i
\(153\) 10.9860 9.26088i 0.888163 0.748698i
\(154\) 11.6010i 0.934834i
\(155\) 0.384493 2.20276i 0.0308832 0.176930i
\(156\) −1.00116 + 23.5432i −0.0801567 + 1.88497i
\(157\) −15.3890 + 15.3890i −1.22818 + 1.22818i −0.263527 + 0.964652i \(0.584886\pi\)
−0.964652 + 0.263527i \(0.915114\pi\)
\(158\) −7.77104 + 7.77104i −0.618231 + 0.618231i
\(159\) 0.347119 8.16286i 0.0275283 0.647357i
\(160\) 1.05023 0.738083i 0.0830283 0.0583506i
\(161\) 0.699415i 0.0551216i
\(162\) 12.7874 + 18.0870i 1.00467 + 1.42105i
\(163\) 15.0954 + 15.0954i 1.18237 + 1.18237i 0.979130 + 0.203235i \(0.0651457\pi\)
0.203235 + 0.979130i \(0.434854\pi\)
\(164\) −15.2843 −1.19350
\(165\) −8.34460 + 5.34969i −0.649626 + 0.416473i
\(166\) −14.0246 −1.08852
\(167\) 4.70977 + 4.70977i 0.364453 + 0.364453i 0.865449 0.500996i \(-0.167033\pi\)
−0.500996 + 0.865449i \(0.667033\pi\)
\(168\) −10.9267 11.8973i −0.843013 0.917894i
\(169\) 1.75702i 0.135155i
\(170\) −25.9660 4.53238i −1.99151 0.347618i
\(171\) −14.0284 1.19525i −1.07278 0.0914031i
\(172\) −30.7540 + 30.7540i −2.34497 + 2.34497i
\(173\) 2.26329 2.26329i 0.172074 0.172074i −0.615816 0.787890i \(-0.711173\pi\)
0.787890 + 0.615816i \(0.211173\pi\)
\(174\) 24.2145 + 1.02970i 1.83569 + 0.0780614i
\(175\) −8.33238 + 3.92048i −0.629869 + 0.296360i
\(176\) 11.1285i 0.838840i
\(177\) −15.9791 + 14.6756i −1.20106 + 1.10308i
\(178\) −28.6556 28.6556i −2.14782 2.14782i
\(179\) 1.55392 0.116145 0.0580725 0.998312i \(-0.481505\pi\)
0.0580725 + 0.998312i \(0.481505\pi\)
\(180\) 6.93961 26.3189i 0.517248 1.96170i
\(181\) −12.4886 −0.928271 −0.464135 0.885764i \(-0.653635\pi\)
−0.464135 + 0.885764i \(0.653635\pi\)
\(182\) −10.7472 10.7472i −0.796638 0.796638i
\(183\) −9.94371 + 9.13251i −0.735060 + 0.675095i
\(184\) 1.92306i 0.141770i
\(185\) 5.09835 + 7.25455i 0.374838 + 0.533365i
\(186\) −4.25907 0.181113i −0.312290 0.0132799i
\(187\) 8.66764 8.66764i 0.633841 0.633841i
\(188\) −11.5836 + 11.5836i −0.844822 + 0.844822i
\(189\) −9.49221 1.21682i −0.690456 0.0885103i
\(190\) 14.8507 + 21.1313i 1.07738 + 1.53303i
\(191\) 6.16936i 0.446399i 0.974773 + 0.223200i \(0.0716502\pi\)
−0.974773 + 0.223200i \(0.928350\pi\)
\(192\) 8.53344 + 9.29143i 0.615848 + 0.670551i
\(193\) −13.8267 13.8267i −0.995270 0.995270i 0.00471859 0.999989i \(-0.498498\pi\)
−0.999989 + 0.00471859i \(0.998498\pi\)
\(194\) −47.6199 −3.41891
\(195\) 2.77450 12.6865i 0.198686 0.908498i
\(196\) −14.6396 −1.04569
\(197\) 10.2230 + 10.2230i 0.728359 + 0.728359i 0.970293 0.241934i \(-0.0777817\pi\)
−0.241934 + 0.970293i \(0.577782\pi\)
\(198\) 12.1795 + 14.4483i 0.865562 + 1.02680i
\(199\) 3.18566i 0.225825i 0.993605 + 0.112913i \(0.0360180\pi\)
−0.993605 + 0.112913i \(0.963982\pi\)
\(200\) −22.9101 + 10.7795i −1.61999 + 0.762224i
\(201\) −0.418476 + 9.84089i −0.0295170 + 0.694123i
\(202\) 32.3555 32.3555i 2.27653 2.27653i
\(203\) −7.40406 + 7.40406i −0.519663 + 0.519663i
\(204\) −1.43006 + 33.6292i −0.100124 + 2.35452i
\(205\) 8.29767 + 1.44836i 0.579535 + 0.101158i
\(206\) 7.74794i 0.539825i
\(207\) 0.734295 + 0.871077i 0.0510370 + 0.0605440i
\(208\) −10.3095 10.3095i −0.714834 0.714834i
\(209\) −12.0110 −0.830821
\(210\) 9.47492 + 14.7792i 0.653831 + 1.01986i
\(211\) 9.18742 0.632488 0.316244 0.948678i \(-0.397578\pi\)
0.316244 + 0.948678i \(0.397578\pi\)
\(212\) 13.5337 + 13.5337i 0.929497 + 0.929497i
\(213\) 1.38437 + 1.50734i 0.0948555 + 0.103281i
\(214\) 6.48673i 0.443424i
\(215\) 19.6103 13.7817i 1.33741 0.939904i
\(216\) −26.0991 3.34567i −1.77582 0.227644i
\(217\) 1.30230 1.30230i 0.0884056 0.0884056i
\(218\) −32.4769 + 32.4769i −2.19962 + 2.19962i
\(219\) 9.46763 + 0.402603i 0.639763 + 0.0272054i
\(220\) 3.99272 22.8744i 0.269189 1.54219i
\(221\) 16.0595i 1.08028i
\(222\) 12.4501 11.4344i 0.835593 0.767426i
\(223\) 18.3841 + 18.3841i 1.23109 + 1.23109i 0.963545 + 0.267545i \(0.0862125\pi\)
0.267545 + 0.963545i \(0.413788\pi\)
\(224\) 1.05727 0.0706419
\(225\) −6.26145 + 13.6306i −0.417430 + 0.908709i
\(226\) 24.3473 1.61956
\(227\) 4.46148 + 4.46148i 0.296119 + 0.296119i 0.839492 0.543373i \(-0.182853\pi\)
−0.543373 + 0.839492i \(0.682853\pi\)
\(228\) 24.2914 22.3097i 1.60874 1.47750i
\(229\) 7.03878i 0.465136i 0.972580 + 0.232568i \(0.0747128\pi\)
−0.972580 + 0.232568i \(0.925287\pi\)
\(230\) 0.359372 2.05885i 0.0236963 0.135756i
\(231\) −8.15675 0.346859i −0.536675 0.0228216i
\(232\) −20.3577 + 20.3577i −1.33655 + 1.33655i
\(233\) 6.31425 6.31425i 0.413660 0.413660i −0.469351 0.883012i \(-0.655512\pi\)
0.883012 + 0.469351i \(0.155512\pi\)
\(234\) −24.6682 2.10179i −1.61261 0.137398i
\(235\) 7.38630 5.19094i 0.481829 0.338619i
\(236\) 50.8242i 3.30837i
\(237\) −5.23154 5.69623i −0.339825 0.370010i
\(238\) −15.3514 15.3514i −0.995083 0.995083i
\(239\) −6.05585 −0.391720 −0.195860 0.980632i \(-0.562750\pi\)
−0.195860 + 0.980632i \(0.562750\pi\)
\(240\) 9.08900 + 14.1773i 0.586692 + 0.915139i
\(241\) −19.4218 −1.25107 −0.625533 0.780198i \(-0.715118\pi\)
−0.625533 + 0.780198i \(0.715118\pi\)
\(242\) −7.74428 7.74428i −0.497821 0.497821i
\(243\) −13.0994 + 8.45012i −0.840330 + 0.542076i
\(244\) 31.6276i 2.02475i
\(245\) 7.94768 + 1.38727i 0.507759 + 0.0886294i
\(246\) 0.682243 16.0436i 0.0434982 1.02291i
\(247\) 11.1271 11.1271i 0.708001 0.708001i
\(248\) 3.58070 3.58070i 0.227375 0.227375i
\(249\) 0.419324 9.86084i 0.0265736 0.624905i
\(250\) 26.5422 7.25928i 1.67868 0.459117i
\(251\) 0.334433i 0.0211092i −0.999944 0.0105546i \(-0.996640\pi\)
0.999944 0.0105546i \(-0.00335970\pi\)
\(252\) 17.1407 14.4491i 1.07976 0.910211i
\(253\) 0.687257 + 0.687257i 0.0432075 + 0.0432075i
\(254\) −42.1195 −2.64281
\(255\) 3.96311 18.1214i 0.248180 1.13481i
\(256\) −32.3787 −2.02367
\(257\) 21.6611 + 21.6611i 1.35118 + 1.35118i 0.884343 + 0.466838i \(0.154607\pi\)
0.466838 + 0.884343i \(0.345393\pi\)
\(258\) −30.9091 33.6546i −1.92432 2.09525i
\(259\) 7.30315i 0.453796i
\(260\) 17.4921 + 24.8898i 1.08481 + 1.54360i
\(261\) −1.44798 + 16.9946i −0.0896278 + 1.05194i
\(262\) 7.69491 7.69491i 0.475393 0.475393i
\(263\) 9.30589 9.30589i 0.573826 0.573826i −0.359370 0.933195i \(-0.617008\pi\)
0.933195 + 0.359370i \(0.117008\pi\)
\(264\) −22.4272 0.953699i −1.38030 0.0586961i
\(265\) −6.06481 8.62975i −0.372558 0.530121i
\(266\) 21.2729i 1.30433i
\(267\) 21.0047 19.2912i 1.28547 1.18060i
\(268\) −16.3158 16.3158i −0.996646 0.996646i
\(269\) 2.97259 0.181242 0.0906210 0.995885i \(-0.471115\pi\)
0.0906210 + 0.995885i \(0.471115\pi\)
\(270\) 27.3167 + 8.45918i 1.66244 + 0.514809i
\(271\) 4.29904 0.261148 0.130574 0.991439i \(-0.458318\pi\)
0.130574 + 0.991439i \(0.458318\pi\)
\(272\) −14.7261 14.7261i −0.892902 0.892902i
\(273\) 7.87780 7.23513i 0.476786 0.437890i
\(274\) 50.2744i 3.03719i
\(275\) −4.33521 + 12.0399i −0.261423 + 0.726032i
\(276\) −2.66646 0.113389i −0.160502 0.00682522i
\(277\) −7.69471 + 7.69471i −0.462330 + 0.462330i −0.899419 0.437088i \(-0.856010\pi\)
0.437088 + 0.899419i \(0.356010\pi\)
\(278\) −34.8730 + 34.8730i −2.09154 + 2.09154i
\(279\) 0.254684 2.98917i 0.0152476 0.178957i
\(280\) −20.5435 3.58588i −1.22771 0.214297i
\(281\) 14.7446i 0.879591i −0.898098 0.439796i \(-0.855051\pi\)
0.898098 0.439796i \(-0.144949\pi\)
\(282\) −11.6421 12.6762i −0.693274 0.754855i
\(283\) −10.3694 10.3694i −0.616398 0.616398i 0.328208 0.944606i \(-0.393555\pi\)
−0.944606 + 0.328208i \(0.893555\pi\)
\(284\) −4.79433 −0.284491
\(285\) −15.3016 + 9.80982i −0.906391 + 0.581084i
\(286\) −21.1208 −1.24890
\(287\) 4.90567 + 4.90567i 0.289572 + 0.289572i
\(288\) 1.31676 1.11000i 0.0775911 0.0654073i
\(289\) 5.93949i 0.349382i
\(290\) 25.5995 17.9908i 1.50325 1.05645i
\(291\) 1.42379 33.4819i 0.0834641 1.96274i
\(292\) −15.6969 + 15.6969i −0.918594 + 0.918594i
\(293\) −4.21552 + 4.21552i −0.246273 + 0.246273i −0.819439 0.573166i \(-0.805715\pi\)
0.573166 + 0.819439i \(0.305715\pi\)
\(294\) 0.653466 15.3669i 0.0381109 0.896218i
\(295\) −4.81617 + 27.5919i −0.280408 + 1.60646i
\(296\) 20.0802i 1.16714i
\(297\) −10.5229 + 8.13154i −0.610599 + 0.471840i
\(298\) −17.2566 17.2566i −0.999651 0.999651i
\(299\) −1.27336 −0.0736402
\(300\) −13.5957 32.4021i −0.784946 1.87074i
\(301\) 19.7417 1.13789
\(302\) −17.4227 17.4227i −1.00256 1.00256i
\(303\) 21.7820 + 23.7168i 1.25134 + 1.36250i
\(304\) 20.4065i 1.17039i
\(305\) −2.99707 + 17.1703i −0.171612 + 0.983166i
\(306\) −35.2362 3.00221i −2.01432 0.171625i
\(307\) 7.61622 7.61622i 0.434681 0.434681i −0.455536 0.890217i \(-0.650553\pi\)
0.890217 + 0.455536i \(0.150553\pi\)
\(308\) 13.5236 13.5236i 0.770576 0.770576i
\(309\) 5.44764 + 0.231656i 0.309905 + 0.0131785i
\(310\) −4.50267 + 3.16439i −0.255735 + 0.179725i
\(311\) 7.65741i 0.434212i −0.976148 0.217106i \(-0.930338\pi\)
0.976148 0.217106i \(-0.0696618\pi\)
\(312\) 21.6602 19.8932i 1.22627 1.12623i
\(313\) −2.60386 2.60386i −0.147179 0.147179i 0.629678 0.776856i \(-0.283187\pi\)
−0.776856 + 0.629678i \(0.783187\pi\)
\(314\) 53.5640 3.02279
\(315\) −10.6747 + 6.22001i −0.601451 + 0.350458i
\(316\) 18.1178 1.01921
\(317\) −8.97912 8.97912i −0.504318 0.504318i 0.408459 0.912777i \(-0.366066\pi\)
−0.912777 + 0.408459i \(0.866066\pi\)
\(318\) −14.8101 + 13.6019i −0.830512 + 0.762759i
\(319\) 14.5507i 0.814684i
\(320\) 16.0439 + 2.80047i 0.896883 + 0.156551i
\(321\) −4.56087 0.193947i −0.254563 0.0108251i
\(322\) 1.21721 1.21721i 0.0678325 0.0678325i
\(323\) 15.8940 15.8940i 0.884366 0.884366i
\(324\) 6.17789 35.9910i 0.343216 1.99950i
\(325\) −7.13765 15.1700i −0.395926 0.841479i
\(326\) 52.5420i 2.91003i
\(327\) −21.8638 23.8058i −1.20907 1.31647i
\(328\) 13.4883 + 13.4883i 0.744766 + 0.744766i
\(329\) 7.43579 0.409948
\(330\) 23.8326 + 5.21213i 1.31194 + 0.286918i
\(331\) −1.32694 −0.0729354 −0.0364677 0.999335i \(-0.511611\pi\)
−0.0364677 + 0.999335i \(0.511611\pi\)
\(332\) 16.3489 + 16.3489i 0.897260 + 0.897260i
\(333\) 7.66737 + 9.09562i 0.420169 + 0.498437i
\(334\) 16.3931i 0.896990i
\(335\) 7.31155 + 10.4038i 0.399473 + 0.568418i
\(336\) −0.589305 + 13.8581i −0.0321492 + 0.756022i
\(337\) −12.2571 + 12.2571i −0.667686 + 0.667686i −0.957180 0.289494i \(-0.906513\pi\)
0.289494 + 0.957180i \(0.406513\pi\)
\(338\) −3.05779 + 3.05779i −0.166322 + 0.166322i
\(339\) −0.727961 + 17.1188i −0.0395374 + 0.929764i
\(340\) 24.9857 + 35.5528i 1.35504 + 1.92812i
\(341\) 2.55932i 0.138595i
\(342\) 22.3338 + 26.4941i 1.20768 + 1.43264i
\(343\) 13.8148 + 13.8148i 0.745930 + 0.745930i
\(344\) 54.2803 2.92660
\(345\) 1.43685 + 0.314235i 0.0773572 + 0.0169178i
\(346\) −7.87772 −0.423509
\(347\) 16.8052 + 16.8052i 0.902153 + 0.902153i 0.995622 0.0934693i \(-0.0297957\pi\)
−0.0934693 + 0.995622i \(0.529796\pi\)
\(348\) −27.0270 29.4277i −1.44880 1.57749i
\(349\) 18.5688i 0.993965i 0.867761 + 0.496983i \(0.165559\pi\)
−0.867761 + 0.496983i \(0.834441\pi\)
\(350\) 21.3240 + 7.67815i 1.13982 + 0.410415i
\(351\) 2.21534 17.2816i 0.118246 0.922422i
\(352\) 1.03889 1.03889i 0.0553732 0.0553732i
\(353\) −19.3920 + 19.3920i −1.03213 + 1.03213i −0.0326657 + 0.999466i \(0.510400\pi\)
−0.999466 + 0.0326657i \(0.989600\pi\)
\(354\) 53.3492 + 2.26863i 2.83548 + 0.120576i
\(355\) 2.60279 + 0.454317i 0.138142 + 0.0241127i
\(356\) 66.8089i 3.54087i
\(357\) 11.2527 10.3347i 0.595555 0.546970i
\(358\) −2.70432 2.70432i −0.142928 0.142928i
\(359\) −2.35818 −0.124460 −0.0622300 0.998062i \(-0.519821\pi\)
−0.0622300 + 0.998062i \(0.519821\pi\)
\(360\) −29.3504 + 17.1021i −1.54690 + 0.901359i
\(361\) −3.02486 −0.159203
\(362\) 21.7343 + 21.7343i 1.14233 + 1.14233i
\(363\) 5.67661 5.21352i 0.297945 0.273639i
\(364\) 25.0566i 1.31332i
\(365\) 10.0092 7.03423i 0.523903 0.368188i
\(366\) 33.1989 + 1.41176i 1.73533 + 0.0737936i
\(367\) −9.30245 + 9.30245i −0.485584 + 0.485584i −0.906909 0.421326i \(-0.861565\pi\)
0.421326 + 0.906909i \(0.361565\pi\)
\(368\) 1.16763 1.16763i 0.0608671 0.0608671i
\(369\) 11.2600 + 0.959381i 0.586173 + 0.0499434i
\(370\) 3.75250 21.4981i 0.195083 1.11763i
\(371\) 8.68757i 0.451036i
\(372\) 4.75377 + 5.17603i 0.246471 + 0.268364i
\(373\) −5.91864 5.91864i −0.306455 0.306455i 0.537077 0.843533i \(-0.319528\pi\)
−0.843533 + 0.537077i \(0.819528\pi\)
\(374\) −30.1691 −1.56001
\(375\) 4.31047 + 18.8791i 0.222592 + 0.974912i
\(376\) 20.4449 1.05437
\(377\) −13.4799 13.4799i −0.694249 0.694249i
\(378\) 14.4019 + 18.6372i 0.740754 + 0.958595i
\(379\) 18.1658i 0.933116i 0.884491 + 0.466558i \(0.154506\pi\)
−0.884491 + 0.466558i \(0.845494\pi\)
\(380\) 7.32153 41.9451i 0.375586 2.15174i
\(381\) 1.25934 29.6146i 0.0645177 1.51720i
\(382\) 10.7367 10.7367i 0.549338 0.549338i
\(383\) 19.5567 19.5567i 0.999299 0.999299i −0.000700330 1.00000i \(-0.500223\pi\)
1.00000 0.000700330i \(0.000222922\pi\)
\(384\) 1.40364 33.0079i 0.0716290 1.68443i
\(385\) −8.62329 + 6.06027i −0.439484 + 0.308860i
\(386\) 48.1261i 2.44956i
\(387\) 24.5870 20.7262i 1.24983 1.05357i
\(388\) 55.5116 + 55.5116i 2.81818 + 2.81818i
\(389\) −31.6425 −1.60434 −0.802170 0.597095i \(-0.796321\pi\)
−0.802170 + 0.597095i \(0.796321\pi\)
\(390\) −26.9072 + 17.2501i −1.36250 + 0.873493i
\(391\) −1.81887 −0.0919843
\(392\) 12.9194 + 12.9194i 0.652526 + 0.652526i
\(393\) 5.18028 + 5.64042i 0.261311 + 0.284522i
\(394\) 35.5828i 1.79263i
\(395\) −9.83594 1.71687i −0.494900 0.0863849i
\(396\) 2.64474 31.0407i 0.132903 1.55985i
\(397\) −18.4634 + 18.4634i −0.926651 + 0.926651i −0.997488 0.0708365i \(-0.977433\pi\)
0.0708365 + 0.997488i \(0.477433\pi\)
\(398\) 5.54409 5.54409i 0.277900 0.277900i
\(399\) −14.9572 0.636041i −0.748795 0.0318419i
\(400\) 20.4555 + 7.36542i 1.02277 + 0.368271i
\(401\) 1.22570i 0.0612083i 0.999532 + 0.0306041i \(0.00974312\pi\)
−0.999532 + 0.0306041i \(0.990257\pi\)
\(402\) 17.8547 16.3981i 0.890510 0.817863i
\(403\) 2.37097 + 2.37097i 0.118106 + 0.118106i
\(404\) −75.4352 −3.75304
\(405\) −6.76446 + 18.9537i −0.336129 + 0.941816i
\(406\) 25.7710 1.27899
\(407\) 7.17621 + 7.17621i 0.355711 + 0.355711i
\(408\) 30.9396 28.4155i 1.53174 1.40678i
\(409\) 33.9950i 1.68094i −0.541854 0.840472i \(-0.682278\pi\)
0.541854 0.840472i \(-0.317722\pi\)
\(410\) −11.9201 16.9613i −0.588689 0.837659i
\(411\) −35.3483 1.50316i −1.74360 0.0741453i
\(412\) −9.03196 + 9.03196i −0.444973 + 0.444973i
\(413\) −16.3126 + 16.3126i −0.802690 + 0.802690i
\(414\) 0.238045 2.79387i 0.0116993 0.137311i
\(415\) −7.32637 10.4248i −0.359637 0.511736i
\(416\) 1.92487i 0.0943748i
\(417\) −23.4768 25.5621i −1.14966 1.25178i
\(418\) 20.9032 + 20.9032i 1.02241 + 1.02241i
\(419\) −25.8945 −1.26503 −0.632514 0.774549i \(-0.717977\pi\)
−0.632514 + 0.774549i \(0.717977\pi\)
\(420\) 6.18339 28.2737i 0.301718 1.37961i
\(421\) −11.4846 −0.559724 −0.279862 0.960040i \(-0.590289\pi\)
−0.279862 + 0.960040i \(0.590289\pi\)
\(422\) −15.9891 15.9891i −0.778338 0.778338i
\(423\) 9.26080 7.80662i 0.450276 0.379571i
\(424\) 23.8867i 1.16004i
\(425\) −10.1955 21.6689i −0.494552 1.05109i
\(426\) 0.214004 5.03252i 0.0103685 0.243827i
\(427\) −10.1512 + 10.1512i −0.491252 + 0.491252i
\(428\) 7.56174 7.56174i 0.365510 0.365510i
\(429\) 0.631494 14.8502i 0.0304888 0.716976i
\(430\) −58.1130 10.1436i −2.80246 0.489169i
\(431\) 25.7652i 1.24107i 0.784180 + 0.620533i \(0.213084\pi\)
−0.784180 + 0.620533i \(0.786916\pi\)
\(432\) 13.8153 + 17.8781i 0.664689 + 0.860161i
\(433\) 2.29857 + 2.29857i 0.110462 + 0.110462i 0.760178 0.649715i \(-0.225112\pi\)
−0.649715 + 0.760178i \(0.725112\pi\)
\(434\) −4.53284 −0.217584
\(435\) 11.8841 + 18.5371i 0.569797 + 0.888786i
\(436\) 75.7183 3.62625
\(437\) 1.26024 + 1.26024i 0.0602852 + 0.0602852i
\(438\) −15.7761 17.1774i −0.753812 0.820770i
\(439\) 4.69778i 0.224213i 0.993696 + 0.112106i \(0.0357597\pi\)
−0.993696 + 0.112106i \(0.964240\pi\)
\(440\) −23.7100 + 16.6629i −1.13033 + 0.794373i
\(441\) 10.7851 + 0.918915i 0.513575 + 0.0437578i
\(442\) 27.9488 27.9488i 1.32939 1.32939i
\(443\) −12.8335 + 12.8335i −0.609737 + 0.609737i −0.942877 0.333140i \(-0.891892\pi\)
0.333140 + 0.942877i \(0.391892\pi\)
\(444\) −27.8427 1.18399i −1.32136 0.0561895i
\(445\) 6.33090 36.2698i 0.300114 1.71935i
\(446\) 63.9887i 3.02995i
\(447\) 12.6492 11.6173i 0.598289 0.549481i
\(448\) 9.48533 + 9.48533i 0.448140 + 0.448140i
\(449\) 38.3820 1.81136 0.905679 0.423963i \(-0.139361\pi\)
0.905679 + 0.423963i \(0.139361\pi\)
\(450\) 34.6188 12.8248i 1.63194 0.604567i
\(451\) 9.64079 0.453967
\(452\) −28.3822 28.3822i −1.33499 1.33499i
\(453\) 12.7709 11.7291i 0.600031 0.551081i
\(454\) 15.5289i 0.728806i
\(455\) 2.37440 13.6030i 0.111314 0.637716i
\(456\) −41.1252 1.74881i −1.92586 0.0818957i
\(457\) 7.32388 7.32388i 0.342597 0.342597i −0.514746 0.857343i \(-0.672114\pi\)
0.857343 + 0.514746i \(0.172114\pi\)
\(458\) 12.2498 12.2498i 0.572395 0.572395i
\(459\) 3.16441 24.6851i 0.147702 1.15220i
\(460\) −2.81898 + 1.98112i −0.131435 + 0.0923701i
\(461\) 29.3813i 1.36842i 0.729284 + 0.684212i \(0.239853\pi\)
−0.729284 + 0.684212i \(0.760147\pi\)
\(462\) 13.5918 + 14.7991i 0.632346 + 0.688515i
\(463\) −7.50791 7.50791i −0.348922 0.348922i 0.510786 0.859708i \(-0.329354\pi\)
−0.859708 + 0.510786i \(0.829354\pi\)
\(464\) 24.7213 1.14766
\(465\) −2.09028 3.26048i −0.0969344 0.151201i
\(466\) −21.9777 −1.01810
\(467\) −22.5049 22.5049i −1.04140 1.04140i −0.999105 0.0422999i \(-0.986532\pi\)
−0.0422999 0.999105i \(-0.513468\pi\)
\(468\) 26.3062 + 31.2064i 1.21601 + 1.44252i
\(469\) 10.4735i 0.483620i
\(470\) −21.8885 3.82064i −1.00964 0.176233i
\(471\) −1.60151 + 37.6613i −0.0737939 + 1.73534i
\(472\) −44.8519 + 44.8519i −2.06448 + 2.06448i
\(473\) 19.3985 19.3985i 0.891944 0.891944i
\(474\) −0.808721 + 19.0179i −0.0371458 + 0.873521i
\(475\) −7.94955 + 22.0777i −0.364750 + 1.01300i
\(476\) 35.7910i 1.64048i
\(477\) −9.12083 10.8198i −0.417614 0.495406i
\(478\) 10.5392 + 10.5392i 0.482050 + 0.482050i
\(479\) −14.3792 −0.657004 −0.328502 0.944503i \(-0.606544\pi\)
−0.328502 + 0.944503i \(0.606544\pi\)
\(480\) 0.475014 2.17201i 0.0216813 0.0991383i
\(481\) −13.2962 −0.606253
\(482\) 33.8002 + 33.8002i 1.53956 + 1.53956i
\(483\) 0.819437 + 0.892224i 0.0372857 + 0.0405976i
\(484\) 18.0554i 0.820699i
\(485\) −24.8763 35.3970i −1.12957 1.60729i
\(486\) 37.5033 + 8.09134i 1.70119 + 0.367031i
\(487\) −9.90705 + 9.90705i −0.448931 + 0.448931i −0.894999 0.446068i \(-0.852824\pi\)
0.446068 + 0.894999i \(0.352824\pi\)
\(488\) −27.9111 + 27.9111i −1.26348 + 1.26348i
\(489\) 36.9427 + 1.57096i 1.67061 + 0.0710412i
\(490\) −11.4173 16.2459i −0.515780 0.733914i
\(491\) 16.4515i 0.742445i −0.928544 0.371223i \(-0.878939\pi\)
0.928544 0.371223i \(-0.121061\pi\)
\(492\) −19.4978 + 17.9072i −0.879027 + 0.807317i
\(493\) −19.2547 19.2547i −0.867189 0.867189i
\(494\) −38.7296 −1.74253
\(495\) −4.37726 + 16.6010i −0.196743 + 0.746161i
\(496\) −4.34822 −0.195241
\(497\) 1.53880 + 1.53880i 0.0690244 + 0.0690244i
\(498\) −17.8909 + 16.4313i −0.801708 + 0.736305i
\(499\) 14.2093i 0.636096i −0.948075 0.318048i \(-0.896973\pi\)
0.948075 0.318048i \(-0.103027\pi\)
\(500\) −39.4032 22.4786i −1.76216 1.00527i
\(501\) 11.5261 + 0.490139i 0.514949 + 0.0218978i
\(502\) −0.582023 + 0.582023i −0.0259770 + 0.0259770i
\(503\) 3.98638 3.98638i 0.177744 0.177744i −0.612628 0.790372i \(-0.709887\pi\)
0.790372 + 0.612628i \(0.209887\pi\)
\(504\) −27.8778 2.37525i −1.24178 0.105802i
\(505\) 40.9529 + 7.14834i 1.82238 + 0.318097i
\(506\) 2.39211i 0.106342i
\(507\) −2.05853 2.24138i −0.0914226 0.0995433i
\(508\) 49.0997 + 49.0997i 2.17845 + 2.17845i
\(509\) −3.81193 −0.168961 −0.0844803 0.996425i \(-0.526923\pi\)
−0.0844803 + 0.996425i \(0.526923\pi\)
\(510\) −38.4344 + 24.6401i −1.70190 + 1.09108i
\(511\) 10.0762 0.445746
\(512\) 29.3743 + 29.3743i 1.29817 + 1.29817i
\(513\) −19.2960 + 14.9110i −0.851938 + 0.658335i
\(514\) 75.3948i 3.32552i
\(515\) 5.75923 4.04747i 0.253782 0.178353i
\(516\) −3.20052 + 75.2635i −0.140895 + 3.31329i
\(517\) 7.30653 7.30653i 0.321341 0.321341i
\(518\) 12.7099 12.7099i 0.558440 0.558440i
\(519\) 0.235537 5.53889i 0.0103389 0.243130i
\(520\) 6.52848 37.4017i 0.286293 1.64017i
\(521\) 8.28196i 0.362839i −0.983406 0.181420i \(-0.941931\pi\)
0.983406 0.181420i \(-0.0580692\pi\)
\(522\) 32.0961 27.0562i 1.40481 1.18422i
\(523\) −4.50113 4.50113i −0.196820 0.196820i 0.601815 0.798635i \(-0.294444\pi\)
−0.798635 + 0.601815i \(0.794444\pi\)
\(524\) −17.9403 −0.783725
\(525\) −6.03614 + 14.7635i −0.263439 + 0.644332i
\(526\) −32.3906 −1.41230
\(527\) 3.38670 + 3.38670i 0.147527 + 0.147527i
\(528\) 13.0382 + 14.1963i 0.567413 + 0.617814i
\(529\) 22.8558i 0.993730i
\(530\) −4.46384 + 25.5734i −0.193897 + 1.11084i
\(531\) −3.19018 + 37.4424i −0.138442 + 1.62486i
\(532\) 24.7984 24.7984i 1.07515 1.07515i
\(533\) −8.93129 + 8.93129i −0.386857 + 0.386857i
\(534\) −70.1281 2.98214i −3.03474 0.129050i
\(535\) −4.82174 + 3.38862i −0.208462 + 0.146503i
\(536\) 28.7971i 1.24385i
\(537\) 1.98229 1.82057i 0.0855420 0.0785636i
\(538\) −5.17328 5.17328i −0.223036 0.223036i
\(539\) 9.23415 0.397743
\(540\) −21.9827 41.7048i −0.945984 1.79469i
\(541\) −29.5788 −1.27169 −0.635847 0.771815i \(-0.719349\pi\)
−0.635847 + 0.771815i \(0.719349\pi\)
\(542\) −7.48175 7.48175i −0.321369 0.321369i
\(543\) −15.9314 + 14.6317i −0.683681 + 0.627907i
\(544\) 2.74950i 0.117884i
\(545\) −41.1066 7.17517i −1.76081 0.307350i
\(546\) −26.3015 1.11845i −1.12560 0.0478652i
\(547\) −0.136930 + 0.136930i −0.00585468 + 0.00585468i −0.710028 0.704173i \(-0.751318\pi\)
0.704173 + 0.710028i \(0.251318\pi\)
\(548\) 58.6060 58.6060i 2.50353 2.50353i
\(549\) −1.98523 + 23.3002i −0.0847277 + 0.994428i
\(550\) 28.4980 13.4086i 1.21516 0.571747i
\(551\) 26.6819i 1.13669i
\(552\) 2.25307 + 2.45320i 0.0958969 + 0.104415i
\(553\) −5.81511 5.81511i −0.247284 0.247284i
\(554\) 26.7826 1.13789
\(555\) 15.0033 + 3.28118i 0.636854 + 0.139278i
\(556\) 81.3045 3.44808
\(557\) −1.30891 1.30891i −0.0554602 0.0554602i 0.678833 0.734293i \(-0.262486\pi\)
−0.734293 + 0.678833i \(0.762486\pi\)
\(558\) −5.64537 + 4.75890i −0.238988 + 0.201460i
\(559\) 35.9418i 1.52018i
\(560\) 10.2963 + 14.6508i 0.435096 + 0.619108i
\(561\) 0.902028 21.2121i 0.0380837 0.895577i
\(562\) −25.6605 + 25.6605i −1.08242 + 1.08242i
\(563\) 29.9878 29.9878i 1.26383 1.26383i 0.314615 0.949219i \(-0.398125\pi\)
0.949219 0.314615i \(-0.101875\pi\)
\(564\) −1.20549 + 28.3483i −0.0507603 + 1.19368i
\(565\) 12.7188 + 18.0979i 0.535086 + 0.761385i
\(566\) 36.0924i 1.51708i
\(567\) −13.5346 + 9.56885i −0.568399 + 0.401854i
\(568\) 4.23096 + 4.23096i 0.177527 + 0.177527i
\(569\) −16.0104 −0.671189 −0.335595 0.942007i \(-0.608937\pi\)
−0.335595 + 0.942007i \(0.608937\pi\)
\(570\) 43.7022 + 9.55757i 1.83048 + 0.400322i
\(571\) 15.7012 0.657077 0.328538 0.944491i \(-0.393444\pi\)
0.328538 + 0.944491i \(0.393444\pi\)
\(572\) 24.6211 + 24.6211i 1.02946 + 1.02946i
\(573\) 7.22805 + 7.87009i 0.301956 + 0.328778i
\(574\) 17.0749i 0.712695i
\(575\) 1.71812 0.808397i 0.0716507 0.0337125i
\(576\) 21.7718 + 1.85501i 0.907157 + 0.0772919i
\(577\) −19.5189 + 19.5189i −0.812581 + 0.812581i −0.985020 0.172439i \(-0.944835\pi\)
0.172439 + 0.985020i \(0.444835\pi\)
\(578\) 10.3367 10.3367i 0.429949 0.429949i
\(579\) −33.8379 1.43893i −1.40625 0.0597998i
\(580\) −50.8142 8.86963i −2.10994 0.368291i
\(581\) 10.4947i 0.435394i
\(582\) −60.7474 + 55.7917i −2.51806 + 2.31264i
\(583\) −8.53656 8.53656i −0.353548 0.353548i
\(584\) 27.7049 1.14644
\(585\) −11.3242 19.4344i −0.468197 0.803515i
\(586\) 14.6728 0.606126
\(587\) 18.4221 + 18.4221i 0.760360 + 0.760360i 0.976387 0.216027i \(-0.0693100\pi\)
−0.216027 + 0.976387i \(0.569310\pi\)
\(588\) −18.6754 + 17.1518i −0.770159 + 0.707330i
\(589\) 4.69306i 0.193374i
\(590\) 56.4006 39.6372i 2.32198 1.63184i
\(591\) 25.0185 + 1.06389i 1.02912 + 0.0437627i
\(592\) 12.1922 12.1922i 0.501096 0.501096i
\(593\) −4.26981 + 4.26981i −0.175340 + 0.175340i −0.789321 0.613981i \(-0.789567\pi\)
0.613981 + 0.789321i \(0.289567\pi\)
\(594\) 32.4648 + 4.16170i 1.33205 + 0.170757i
\(595\) 3.39160 19.4305i 0.139042 0.796573i
\(596\) 40.2330i 1.64801i
\(597\) 3.73233 + 4.06386i 0.152754 + 0.166323i
\(598\) 2.21606 + 2.21606i 0.0906215 + 0.0906215i
\(599\) −1.20371 −0.0491822 −0.0245911 0.999698i \(-0.507828\pi\)
−0.0245911 + 0.999698i \(0.507828\pi\)
\(600\) −16.5965 + 40.5927i −0.677551 + 1.65719i
\(601\) 4.03047 0.164406 0.0822031 0.996616i \(-0.473804\pi\)
0.0822031 + 0.996616i \(0.473804\pi\)
\(602\) −34.3570 34.3570i −1.40029 1.40029i
\(603\) 10.9958 + 13.0441i 0.447784 + 0.531195i
\(604\) 40.6201i 1.65281i
\(605\) 1.71095 9.80207i 0.0695601 0.398511i
\(606\) 3.36719 79.1829i 0.136783 3.21659i
\(607\) 10.5261 10.5261i 0.427241 0.427241i −0.460446 0.887687i \(-0.652311\pi\)
0.887687 + 0.460446i \(0.152311\pi\)
\(608\) 1.90504 1.90504i 0.0772594 0.0772594i
\(609\) −0.770529 + 18.1198i −0.0312234 + 0.734251i
\(610\) 35.0978 24.6660i 1.42107 0.998697i
\(611\) 13.5376i 0.547674i
\(612\) 37.5759 + 44.5754i 1.51892 + 1.80185i
\(613\) −5.63618 5.63618i −0.227643 0.227643i 0.584064 0.811707i \(-0.301462\pi\)
−0.811707 + 0.584064i \(0.801462\pi\)
\(614\) −26.5095 −1.06983
\(615\) 12.2820 7.87396i 0.495259 0.317509i
\(616\) −23.8689 −0.961704
\(617\) −11.1982 11.1982i −0.450824 0.450824i 0.444804 0.895628i \(-0.353273\pi\)
−0.895628 + 0.444804i \(0.853273\pi\)
\(618\) −9.07752 9.88384i −0.365152 0.397586i
\(619\) 13.0830i 0.525851i −0.964816 0.262926i \(-0.915313\pi\)
0.964816 0.262926i \(-0.0846874\pi\)
\(620\) 8.93768 + 1.56007i 0.358946 + 0.0626541i
\(621\) 1.95728 + 0.250906i 0.0785429 + 0.0100685i
\(622\) −13.3264 + 13.3264i −0.534341 + 0.534341i
\(623\) 21.4431 21.4431i 0.859099 0.859099i
\(624\) −25.2302 1.07289i −1.01002 0.0429501i
\(625\) 19.2615 + 15.9373i 0.770458 + 0.637491i
\(626\) 9.06314i 0.362236i
\(627\) −15.3222 + 14.0722i −0.611908 + 0.561989i
\(628\) −62.4408 62.4408i −2.49166 2.49166i
\(629\) −18.9923 −0.757273
\(630\) 29.4023 + 7.75263i 1.17142 + 0.308872i
\(631\) 26.1928 1.04272 0.521360 0.853337i \(-0.325425\pi\)
0.521360 + 0.853337i \(0.325425\pi\)
\(632\) −15.9888 15.9888i −0.636001 0.636001i
\(633\) 11.7201 10.7640i 0.465834 0.427831i
\(634\) 31.2532i 1.24122i
\(635\) −22.0029 31.3084i −0.873160 1.24244i
\(636\) 33.1207 + 1.40843i 1.31332 + 0.0558478i
\(637\) −8.55457 + 8.55457i −0.338945 + 0.338945i
\(638\) 25.3230 25.3230i 1.00255 1.00255i
\(639\) 3.53201 + 0.300936i 0.139724 + 0.0119048i
\(640\) −24.5241 34.8959i −0.969401 1.37938i
\(641\) 4.55409i 0.179876i 0.995947 + 0.0899379i \(0.0286669\pi\)
−0.995947 + 0.0899379i \(0.971333\pi\)
\(642\) 7.59988 + 8.27495i 0.299943 + 0.326586i
\(643\) −27.2969 27.2969i −1.07648 1.07648i −0.996822 0.0796607i \(-0.974616\pi\)
−0.0796607 0.996822i \(-0.525384\pi\)
\(644\) −2.83786 −0.111828
\(645\) 8.86960 40.5564i 0.349240 1.59691i
\(646\) −55.3216 −2.17660
\(647\) 23.8541 + 23.8541i 0.937803 + 0.937803i 0.998176 0.0603727i \(-0.0192289\pi\)
−0.0603727 + 0.998176i \(0.519229\pi\)
\(648\) −37.2137 + 26.3098i −1.46189 + 1.03355i
\(649\) 32.0581i 1.25839i
\(650\) −13.9789 + 38.8226i −0.548297 + 1.52275i
\(651\) 0.135528 3.18708i 0.00531176 0.124912i
\(652\) −61.2495 + 61.2495i −2.39872 + 2.39872i
\(653\) 5.07325 5.07325i 0.198532 0.198532i −0.600839 0.799370i \(-0.705167\pi\)
0.799370 + 0.600839i \(0.205167\pi\)
\(654\) −3.37982 + 79.4801i −0.132162 + 3.10792i
\(655\) 9.73957 + 1.70004i 0.380557 + 0.0664262i
\(656\) 16.3795i 0.639511i
\(657\) 12.5493 10.5787i 0.489595 0.412716i
\(658\) −12.9407 12.9407i −0.504481 0.504481i
\(659\) 32.9568 1.28381 0.641907 0.766782i \(-0.278143\pi\)
0.641907 + 0.766782i \(0.278143\pi\)
\(660\) −21.7063 33.8581i −0.844916 1.31792i
\(661\) −3.56963 −0.138842 −0.0694212 0.997587i \(-0.522115\pi\)
−0.0694212 + 0.997587i \(0.522115\pi\)
\(662\) 2.30932 + 2.30932i 0.0897541 + 0.0897541i
\(663\) 18.8154 + 20.4867i 0.730730 + 0.795638i
\(664\) 28.8555i 1.11981i
\(665\) −15.8127 + 11.1128i −0.613190 + 0.430937i
\(666\) 2.48562 29.1731i 0.0963158 1.13043i
\(667\) 1.52671 1.52671i 0.0591143 0.0591143i
\(668\) −19.1098 + 19.1098i −0.739381 + 0.739381i
\(669\) 44.9910 + 1.91321i 1.73945 + 0.0739688i
\(670\) 5.38147 30.8305i 0.207904 1.19109i
\(671\) 19.9495i 0.770144i
\(672\) 1.34873 1.23870i 0.0520285 0.0477840i
\(673\) −16.9220 16.9220i −0.652295 0.652295i 0.301250 0.953545i \(-0.402596\pi\)
−0.953545 + 0.301250i \(0.902596\pi\)
\(674\) 42.6627 1.64331
\(675\) 7.98215 + 24.7242i 0.307233 + 0.951634i
\(676\) 7.12908 0.274195
\(677\) −15.8295 15.8295i −0.608377 0.608377i 0.334145 0.942522i \(-0.391552\pi\)
−0.942522 + 0.334145i \(0.891552\pi\)
\(678\) 31.0592 28.5254i 1.19282 1.09551i
\(679\) 35.6342i 1.36751i
\(680\) 9.32530 53.4248i 0.357609 2.04875i
\(681\) 10.9185 + 0.464299i 0.418397 + 0.0177920i
\(682\) −4.45405 + 4.45405i −0.170554 + 0.170554i
\(683\) −0.807396 + 0.807396i −0.0308941 + 0.0308941i −0.722385 0.691491i \(-0.756954\pi\)
0.691491 + 0.722385i \(0.256954\pi\)
\(684\) 4.84971 56.9199i 0.185433 2.17639i
\(685\) −37.3701 + 26.2630i −1.42784 + 1.00346i
\(686\) 48.0846i 1.83588i
\(687\) 8.24667 + 8.97919i 0.314630 + 0.342577i
\(688\) −32.9576 32.9576i −1.25650 1.25650i
\(689\) 15.8167 0.602566
\(690\) −1.95371 3.04746i −0.0743766 0.116015i
\(691\) −26.8549 −1.02161 −0.510804 0.859697i \(-0.670652\pi\)
−0.510804 + 0.859697i \(0.670652\pi\)
\(692\) 9.18325 + 9.18325i 0.349095 + 0.349095i
\(693\) −10.8117 + 9.11401i −0.410704 + 0.346212i
\(694\) 58.4933i 2.22037i
\(695\) −44.1393 7.70452i −1.67430 0.292249i
\(696\) −2.11859 + 49.8209i −0.0803051 + 1.88846i
\(697\) −12.7575 + 12.7575i −0.483225 + 0.483225i
\(698\) 32.3158 32.3158i 1.22317 1.22317i
\(699\) 0.657114 15.4527i 0.0248544 0.584476i
\(700\) −15.9073 33.8085i −0.601239 1.27784i
\(701\) 3.77870i 0.142719i 0.997451 + 0.0713597i \(0.0227338\pi\)
−0.997451 + 0.0713597i \(0.977266\pi\)
\(702\) −33.9310 + 26.2202i −1.28064 + 0.989617i
\(703\) 13.1591 + 13.1591i 0.496306 + 0.496306i
\(704\) 18.6409 0.702556
\(705\) 3.34077 15.2758i 0.125821 0.575318i
\(706\) 67.4969 2.54028
\(707\) 24.2118 + 24.2118i 0.910578 + 0.910578i
\(708\) −59.5458 64.8350i −2.23787 2.43665i
\(709\) 18.2349i 0.684825i 0.939550 + 0.342413i \(0.111244\pi\)
−0.939550 + 0.342413i \(0.888756\pi\)
\(710\) −3.73905 5.32037i −0.140324 0.199670i
\(711\) −13.3475 1.13724i −0.500569 0.0426497i
\(712\) 58.9584 58.9584i 2.20956 2.20956i
\(713\) −0.268531 + 0.268531i −0.0100566 + 0.0100566i
\(714\) −37.5691 1.59760i −1.40599 0.0597885i
\(715\) −11.0334 15.6996i −0.412625 0.587133i
\(716\) 6.30499i 0.235628i
\(717\) −7.72528 + 7.09506i −0.288506 + 0.264970i
\(718\) 4.10401 + 4.10401i 0.153160 + 0.153160i
\(719\) 4.30553 0.160569 0.0802845 0.996772i \(-0.474417\pi\)
0.0802845 + 0.996772i \(0.474417\pi\)
\(720\) 28.2048 + 7.43686i 1.05113 + 0.277155i
\(721\) 5.79782 0.215922
\(722\) 5.26425 + 5.26425i 0.195915 + 0.195915i
\(723\) −24.7758 + 22.7546i −0.921422 + 0.846253i
\(724\) 50.6723i 1.88322i
\(725\) 26.7460 + 9.63044i 0.993320 + 0.357666i
\(726\) −18.9524 0.805935i −0.703390 0.0299111i
\(727\) 4.10330 4.10330i 0.152183 0.152183i −0.626909 0.779092i \(-0.715680\pi\)
0.779092 + 0.626909i \(0.215680\pi\)
\(728\) 22.1123 22.1123i 0.819535 0.819535i
\(729\) −6.81040 + 26.1270i −0.252237 + 0.967665i
\(730\) −29.6611 5.17735i −1.09781 0.191622i
\(731\) 51.3394i 1.89886i
\(732\) −37.0550 40.3465i −1.36959 1.49125i
\(733\) 5.34821 + 5.34821i 0.197541 + 0.197541i 0.798945 0.601404i \(-0.205392\pi\)
−0.601404 + 0.798945i \(0.705392\pi\)
\(734\) 32.3786 1.19512
\(735\) 11.7640 7.54184i 0.433921 0.278185i
\(736\) −0.218008 −0.00803587
\(737\) 10.2914 + 10.2914i 0.379089 + 0.379089i
\(738\) −17.9265 21.2658i −0.659883 0.782804i
\(739\) 31.4904i 1.15839i −0.815188 0.579197i \(-0.803366\pi\)
0.815188 0.579197i \(-0.196634\pi\)
\(740\) −29.4352 + 20.6865i −1.08206 + 0.760450i
\(741\) 1.15798 27.2311i 0.0425395 1.00036i
\(742\) −15.1192 + 15.1192i −0.555044 + 0.555044i
\(743\) 15.5001 15.5001i 0.568645 0.568645i −0.363104 0.931749i \(-0.618283\pi\)
0.931749 + 0.363104i \(0.118283\pi\)
\(744\) 0.372638 8.76297i 0.0136616 0.321266i
\(745\) 3.81253 21.8420i 0.139680 0.800230i
\(746\) 20.6007i 0.754247i
\(747\) −11.0181 13.0705i −0.403131 0.478224i
\(748\) 35.1688 + 35.1688i 1.28590 + 1.28590i
\(749\) −4.85405 −0.177363
\(750\) 25.3542 40.3574i 0.925804 1.47365i
\(751\) −31.1823 −1.13786 −0.568930 0.822386i \(-0.692642\pi\)
−0.568930 + 0.822386i \(0.692642\pi\)
\(752\) −12.4136 12.4136i −0.452678 0.452678i
\(753\) −0.391823 0.426627i −0.0142788 0.0155472i
\(754\) 46.9188i 1.70868i
\(755\) 3.84921 22.0522i 0.140087 0.802561i
\(756\) 4.93721 38.5145i 0.179565 1.40076i
\(757\) −25.1331 + 25.1331i −0.913480 + 0.913480i −0.996544 0.0830643i \(-0.973529\pi\)
0.0830643 + 0.996544i \(0.473529\pi\)
\(758\) 31.6145 31.6145i 1.14829 1.14829i
\(759\) 1.68191 + 0.0715218i 0.0610494 + 0.00259608i
\(760\) −43.4774 + 30.5551i −1.57709 + 1.10835i
\(761\) 8.72350i 0.316226i −0.987421 0.158113i \(-0.949459\pi\)
0.987421 0.158113i \(-0.0505411\pi\)
\(762\) −53.7307 + 49.3474i −1.94646 + 1.78767i
\(763\) −24.3026 24.3026i −0.879815 0.879815i
\(764\) −25.0321 −0.905629
\(765\) −16.1755 27.7602i −0.584827 1.00367i
\(766\) −68.0701 −2.45947
\(767\) −29.6988 29.6988i −1.07236 1.07236i
\(768\) −41.3046 + 37.9350i −1.49045 + 1.36886i
\(769\) 21.7304i 0.783619i −0.920046 0.391809i \(-0.871849\pi\)
0.920046 0.391809i \(-0.128151\pi\)
\(770\) 25.5542 + 4.46050i 0.920910 + 0.160745i
\(771\) 53.0107 + 2.25423i 1.90913 + 0.0811843i
\(772\) 56.1018 56.1018i 2.01915 2.01915i
\(773\) −16.4735 + 16.4735i −0.592511 + 0.592511i −0.938309 0.345798i \(-0.887608\pi\)
0.345798 + 0.938309i \(0.387608\pi\)
\(774\) −78.8599 6.71905i −2.83456 0.241511i
\(775\) −4.70433 1.69389i −0.168985 0.0608464i
\(776\) 97.9772i 3.51718i
\(777\) 8.55641 + 9.31644i 0.306960 + 0.334225i
\(778\) 55.0684 + 55.0684i 1.97430 + 1.97430i
\(779\) 17.6785 0.633398
\(780\) 51.4752 + 11.2575i 1.84311 + 0.403084i
\(781\) 3.02409 0.108211
\(782\) 3.16543 + 3.16543i 0.113196 + 0.113196i
\(783\) 18.0638 + 23.3760i 0.645548 + 0.835391i
\(784\) 15.6886i 0.560307i
\(785\) 27.9814 + 39.8154i 0.998700 + 1.42107i
\(786\) 0.800797 18.8316i 0.0285635 0.671700i
\(787\) −11.1899 + 11.1899i −0.398878 + 0.398878i −0.877837 0.478959i \(-0.841014\pi\)
0.478959 + 0.877837i \(0.341014\pi\)
\(788\) −41.4797 + 41.4797i −1.47765 + 1.47765i
\(789\) 0.968450 22.7741i 0.0344777 0.810779i
\(790\) 14.1299 + 20.1057i 0.502718 + 0.715328i
\(791\) 18.2192i 0.647799i
\(792\) −29.7272 + 25.0592i −1.05631 + 0.890441i
\(793\) −18.4814 18.4814i −0.656294 0.656294i
\(794\) 64.2648 2.28067
\(795\) −17.8474 3.90318i −0.632981 0.138431i
\(796\) −12.9258 −0.458142
\(797\) −26.6744 26.6744i −0.944855 0.944855i 0.0537016 0.998557i \(-0.482898\pi\)
−0.998557 + 0.0537016i \(0.982898\pi\)
\(798\) 24.9235 + 27.1373i 0.882281 + 0.960650i
\(799\) 19.3372i 0.684102i
\(800\) −1.22201 2.59720i −0.0432047 0.0918250i
\(801\) 4.19353 49.2185i 0.148171 1.73905i
\(802\) 2.13311 2.13311i 0.0753228 0.0753228i
\(803\) 9.90107 9.90107i 0.349401 0.349401i
\(804\) −39.9293 1.69796i −1.40820 0.0598824i
\(805\) 1.54064 + 0.268920i 0.0543006 + 0.00947818i
\(806\) 8.25253i 0.290683i
\(807\) 3.79205 3.48270i 0.133487 0.122597i
\(808\) 66.5710 + 66.5710i 2.34196 + 2.34196i
\(809\) 8.76972 0.308327 0.154163 0.988045i \(-0.450732\pi\)
0.154163 + 0.988045i \(0.450732\pi\)
\(810\) 44.7580 21.2132i 1.57264 0.745358i
\(811\) −6.06391 −0.212933 −0.106466 0.994316i \(-0.533954\pi\)
−0.106466 + 0.994316i \(0.533954\pi\)
\(812\) −30.0419 30.0419i −1.05426 1.05426i
\(813\) 5.48417 5.03678i 0.192338 0.176648i
\(814\) 24.9779i 0.875475i
\(815\) 39.0557 27.4476i 1.36806 0.961447i
\(816\) −36.0389 1.53252i −1.26161 0.0536491i
\(817\) 35.5714 35.5714i 1.24449 1.24449i
\(818\) −59.1625 + 59.1625i −2.06857 + 2.06857i
\(819\) 1.57278 18.4593i 0.0549574 0.645021i
\(820\) −5.87670 + 33.6677i −0.205223 + 1.17573i
\(821\) 41.6548i 1.45376i 0.686763 + 0.726881i \(0.259031\pi\)
−0.686763 + 0.726881i \(0.740969\pi\)
\(822\) 58.9017 + 64.1337i 2.05443 + 2.23692i
\(823\) 33.0974 + 33.0974i 1.15370 + 1.15370i 0.985804 + 0.167898i \(0.0536980\pi\)
0.167898 + 0.985804i \(0.446302\pi\)
\(824\) 15.9413 0.555341
\(825\) 8.57566 + 20.4381i 0.298566 + 0.711563i
\(826\) 56.7785 1.97558
\(827\) −27.5595 27.5595i −0.958338 0.958338i 0.0408287 0.999166i \(-0.487000\pi\)
−0.999166 + 0.0408287i \(0.987000\pi\)
\(828\) −3.53438 + 2.97939i −0.122828 + 0.103541i
\(829\) 42.0783i 1.46144i 0.682677 + 0.730720i \(0.260815\pi\)
−0.682677 + 0.730720i \(0.739185\pi\)
\(830\) −5.39237 + 30.8929i −0.187172 + 1.07231i
\(831\) −0.800777 + 18.8311i −0.0277786 + 0.653243i
\(832\) −17.2691 + 17.2691i −0.598697 + 0.598697i
\(833\) −12.2194 + 12.2194i −0.423377 + 0.423377i
\(834\) −3.62918 + 85.3438i −0.125668 + 2.95522i
\(835\) 12.1854 8.56364i 0.421693 0.296357i
\(836\) 48.7346i 1.68552i
\(837\) −3.17723 4.11159i −0.109821 0.142117i
\(838\) 45.0649 + 45.0649i 1.55674 + 1.55674i
\(839\) 15.8726 0.547983 0.273991 0.961732i \(-0.411656\pi\)
0.273991 + 0.961732i \(0.411656\pi\)
\(840\) −30.4081 + 19.4945i −1.04918 + 0.672624i
\(841\) 3.32367 0.114609
\(842\) 19.9869 + 19.9869i 0.688795 + 0.688795i
\(843\) −17.2749 18.8093i −0.594979 0.647828i
\(844\) 37.2778i 1.28316i
\(845\) −3.87030 0.675561i −0.133142 0.0232400i
\(846\) −29.7029 2.53076i −1.02121 0.0870093i
\(847\) 5.79508 5.79508i 0.199121 0.199121i
\(848\) −14.5034 + 14.5034i −0.498049 + 0.498049i
\(849\) −25.3768 1.07913i −0.870931 0.0370356i
\(850\) −19.9675 + 55.4544i −0.684880 + 1.90207i
\(851\) 1.50590i 0.0516216i
\(852\) −6.11600 + 5.61706i −0.209531 + 0.192437i
\(853\) 19.7306 + 19.7306i 0.675562 + 0.675562i 0.958993 0.283431i \(-0.0914727\pi\)
−0.283431 + 0.958993i \(0.591473\pi\)
\(854\) 35.3329 1.20907
\(855\) −8.02666 + 30.4416i −0.274506 + 1.04108i
\(856\) −13.3463 −0.456169
\(857\) 14.1707 + 14.1707i 0.484061 + 0.484061i 0.906426 0.422365i \(-0.138800\pi\)
−0.422365 + 0.906426i \(0.638800\pi\)
\(858\) −26.9433 + 24.7453i −0.919828 + 0.844790i
\(859\) 22.6000i 0.771102i −0.922687 0.385551i \(-0.874011\pi\)
0.922687 0.385551i \(-0.125989\pi\)
\(860\) 55.9190 + 79.5684i 1.90682 + 2.71326i
\(861\) 12.0055 + 0.510525i 0.409148 + 0.0173987i
\(862\) 44.8399 44.8399i 1.52725 1.52725i
\(863\) −26.4341 + 26.4341i −0.899828 + 0.899828i −0.995421 0.0955929i \(-0.969525\pi\)
0.0955929 + 0.995421i \(0.469525\pi\)
\(864\) 0.379282 2.95872i 0.0129034 0.100658i
\(865\) −4.11526 5.85570i −0.139923 0.199100i
\(866\) 8.00054i 0.271869i
\(867\) 6.95874 + 7.57685i 0.236331 + 0.257323i
\(868\) 5.28405 + 5.28405i 0.179352 + 0.179352i
\(869\) −11.4281 −0.387670
\(870\) 11.5785 52.9428i 0.392547 1.79493i
\(871\) −19.0681 −0.646097
\(872\) −66.8208 66.8208i −2.26284 2.26284i
\(873\) −37.4113 44.3801i −1.26618 1.50204i
\(874\) 4.38645i 0.148374i
\(875\) 5.43215 + 19.8617i 0.183640 + 0.671447i
\(876\) −1.63356 + 38.4148i −0.0551927 + 1.29791i
\(877\) 9.80802 9.80802i 0.331193 0.331193i −0.521846 0.853040i \(-0.674757\pi\)
0.853040 + 0.521846i \(0.174757\pi\)
\(878\) 8.17567 8.17567i 0.275916 0.275916i
\(879\) −0.438702 + 10.3165i −0.0147971 + 0.347968i
\(880\) 24.5134 + 4.27882i 0.826346 + 0.144239i
\(881\) 17.6496i 0.594629i −0.954780 0.297315i \(-0.903909\pi\)
0.954780 0.297315i \(-0.0960910\pi\)
\(882\) −17.1704 20.3688i −0.578156 0.685853i
\(883\) −13.6543 13.6543i −0.459503 0.459503i 0.438990 0.898492i \(-0.355336\pi\)
−0.898492 + 0.438990i \(0.855336\pi\)
\(884\) −65.1613 −2.19161
\(885\) 26.1829 + 40.8409i 0.880129 + 1.37285i
\(886\) 44.6690 1.50068
\(887\) 33.6240 + 33.6240i 1.12898 + 1.12898i 0.990343 + 0.138639i \(0.0442729\pi\)
0.138639 + 0.990343i \(0.455727\pi\)
\(888\) 23.5261 + 25.6158i 0.789484 + 0.859611i
\(889\) 31.5182i 1.05709i
\(890\) −74.1392 + 52.1035i −2.48515 + 1.74651i
\(891\) −3.89679 + 22.7018i −0.130547 + 0.760540i
\(892\) −74.5932 + 74.5932i −2.49757 + 2.49757i
\(893\) 13.3981 13.3981i 0.448351 0.448351i
\(894\) −42.2318 1.79587i −1.41244 0.0600630i
\(895\) 0.597469 3.42291i 0.0199712 0.114415i
\(896\) 35.1297i 1.17360i
\(897\) −1.62439 + 1.49187i −0.0542368 + 0.0498122i
\(898\) −66.7973 66.7973i −2.22905 2.22905i
\(899\) −5.68539 −0.189618
\(900\) −55.3061 25.4058i −1.84354 0.846859i
\(901\) 22.5926 0.752668
\(902\) −16.7781 16.7781i −0.558651 0.558651i
\(903\) 25.1839 23.1294i 0.838068 0.769699i
\(904\) 50.0942i 1.66611i
\(905\) −4.80178 + 27.5094i −0.159617 + 0.914445i
\(906\) −42.6381 1.81315i −1.41656 0.0602379i
\(907\) −4.29022 + 4.29022i −0.142454 + 0.142454i −0.774737 0.632283i \(-0.782118\pi\)
0.632283 + 0.774737i \(0.282118\pi\)
\(908\) −18.1024 + 18.1024i −0.600749 + 0.600749i
\(909\) 55.5735 + 4.73500i 1.84326 + 0.157050i
\(910\) −27.8058 + 19.5414i −0.921755 + 0.647790i
\(911\) 1.45363i 0.0481610i 0.999710 + 0.0240805i \(0.00766580\pi\)
−0.999710 + 0.0240805i \(0.992334\pi\)
\(912\) 23.9083 + 26.0320i 0.791683 + 0.862005i
\(913\) −10.3123 10.3123i −0.341286 0.341286i
\(914\) −25.4919 −0.843197
\(915\) 16.2935 + 25.4150i 0.538646 + 0.840195i
\(916\) −28.5598 −0.943641
\(917\) 5.75814 + 5.75814i 0.190150 + 0.190150i
\(918\) −48.4672 + 37.4530i −1.59966 + 1.23613i
\(919\) 12.9482i 0.427122i −0.976930 0.213561i \(-0.931494\pi\)
0.976930 0.213561i \(-0.0685063\pi\)
\(920\) 4.23605 + 0.739403i 0.139658 + 0.0243774i
\(921\) 0.792609 18.6390i 0.0261173 0.614176i
\(922\) 51.1331 51.1331i 1.68398 1.68398i
\(923\) −2.80154 + 2.80154i −0.0922139 + 0.0922139i
\(924\) 1.40738 33.0959i 0.0462993 1.08877i
\(925\) 17.9403 8.44113i 0.589874 0.277543i
\(926\) 26.1324i 0.858766i
\(927\) 7.22082 6.08696i 0.237163 0.199922i
\(928\) −2.30785 2.30785i −0.0757588 0.0757588i
\(929\) 34.5433 1.13333 0.566664 0.823949i \(-0.308234\pi\)
0.566664 + 0.823949i \(0.308234\pi\)
\(930\) −2.03653 + 9.31208i −0.0667805 + 0.305355i
\(931\) 16.9328 0.554951
\(932\) 25.6200 + 25.6200i 0.839210 + 0.839210i
\(933\) −8.97146 9.76836i −0.293713 0.319802i
\(934\) 78.3320i 2.56310i
\(935\) −15.7601 22.4254i −0.515411 0.733389i
\(936\) 4.32440 50.7545i 0.141348 1.65896i
\(937\) 32.2161 32.2161i 1.05245 1.05245i 0.0539082 0.998546i \(-0.482832\pi\)
0.998546 0.0539082i \(-0.0171678\pi\)
\(938\) 18.2273 18.2273i 0.595142 0.595142i
\(939\) −6.37237 0.270980i −0.207954 0.00884309i
\(940\) 21.0622 + 29.9698i 0.686972 + 0.977507i
\(941\) 19.8742i 0.647879i 0.946078 + 0.323939i \(0.105007\pi\)
−0.946078 + 0.323939i \(0.894993\pi\)
\(942\) 68.3301 62.7558i 2.22632 2.04469i
\(943\) −1.01154 1.01154i −0.0329403 0.0329403i
\(944\) 54.4659 1.77271
\(945\) −6.33004 + 20.4412i −0.205916 + 0.664953i
\(946\) −67.5195 −2.19525
\(947\) 16.6962 + 16.6962i 0.542555 + 0.542555i 0.924277 0.381722i \(-0.124669\pi\)
−0.381722 + 0.924277i \(0.624669\pi\)
\(948\) 23.1124 21.2269i 0.750655 0.689417i
\(949\) 18.3448i 0.595498i
\(950\) 52.2573 24.5877i 1.69545 0.797729i
\(951\) −21.9744 0.934443i −0.712569 0.0303014i
\(952\) 31.5853 31.5853i 1.02368 1.02368i
\(953\) 1.45649 1.45649i 0.0471804 0.0471804i −0.683123 0.730303i \(-0.739379\pi\)
0.730303 + 0.683123i \(0.239379\pi\)
\(954\) −2.95680 + 34.7033i −0.0957301 + 1.12356i
\(955\) 13.5896 + 2.37207i 0.439750 + 0.0767585i
\(956\) 24.5715i 0.794699i
\(957\) 17.0477 + 18.5620i 0.551074 + 0.600023i
\(958\) 25.0246 + 25.0246i 0.808508 + 0.808508i
\(959\) −37.6205 −1.21483
\(960\) 23.7479 15.2247i 0.766459 0.491374i
\(961\) 1.00000 0.0322581
\(962\) 23.1397 + 23.1397i 0.746054 + 0.746054i
\(963\) −6.04541 + 5.09612i −0.194811 + 0.164220i
\(964\) 78.8035i 2.53809i
\(965\) −35.7733 + 25.1407i −1.15158 + 0.809309i
\(966\) 0.126673 2.97885i 0.00407565 0.0958430i
\(967\) 3.93466 3.93466i 0.126530 0.126530i −0.641006 0.767536i \(-0.721483\pi\)
0.767536 + 0.641006i \(0.221483\pi\)
\(968\) 15.9337 15.9337i 0.512130 0.512130i
\(969\) 1.65407 38.8971i 0.0531362 1.24955i
\(970\) −18.3095 + 104.895i −0.587882 + 3.36798i
\(971\) 50.7595i 1.62895i −0.580199 0.814475i \(-0.697025\pi\)
0.580199 0.814475i \(-0.302975\pi\)
\(972\) −34.2863 53.1508i −1.09973 1.70481i
\(973\) −26.0956 26.0956i −0.836587 0.836587i
\(974\) 34.4830 1.10491
\(975\) −26.8785 10.9894i −0.860802 0.351944i
\(976\) 33.8938 1.08491
\(977\) −18.6011 18.6011i −0.595101 0.595101i 0.343904 0.939005i \(-0.388251\pi\)
−0.939005 + 0.343904i \(0.888251\pi\)
\(978\) −61.5585 67.0264i −1.96842 2.14327i
\(979\) 42.1407i 1.34682i
\(980\) −5.62883 + 32.2476i −0.179806 + 1.03011i
\(981\) −55.7820 4.75276i −1.78098 0.151744i
\(982\) −28.6310 + 28.6310i −0.913652 + 0.913652i
\(983\) −7.45897 + 7.45897i −0.237904 + 0.237904i −0.815982 0.578078i \(-0.803803\pi\)
0.578078 + 0.815982i \(0.303803\pi\)
\(984\) 33.0096 + 1.40370i 1.05231 + 0.0447485i
\(985\) 26.4495 18.5882i 0.842752 0.592269i
\(986\) 67.0191i 2.13432i
\(987\) 9.48563 8.71180i 0.301931 0.277300i
\(988\) 45.1481 + 45.1481i 1.43635 + 1.43635i
\(989\) −4.07070 −0.129441
\(990\) 36.5091 21.2734i 1.16034 0.676112i
\(991\) −9.46326 −0.300610 −0.150305 0.988640i \(-0.548026\pi\)
−0.150305 + 0.988640i \(0.548026\pi\)
\(992\) 0.405926 + 0.405926i 0.0128882 + 0.0128882i
\(993\) −1.69275 + 1.55465i −0.0537176 + 0.0493354i
\(994\) 5.35602i 0.169883i
\(995\) 7.01725 + 1.22486i 0.222462 + 0.0388308i
\(996\) 40.0102 + 1.70140i 1.26777 + 0.0539109i
\(997\) 31.8233 31.8233i 1.00785 1.00785i 0.00788547 0.999969i \(-0.497490\pi\)
0.999969 0.00788547i \(-0.00251005\pi\)
\(998\) −24.7288 + 24.7288i −0.782778 + 0.782778i
\(999\) 20.4375 + 2.61991i 0.646615 + 0.0828902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.k.a.218.3 yes 60
3.2 odd 2 inner 465.2.k.a.218.28 yes 60
5.2 odd 4 inner 465.2.k.a.32.28 yes 60
15.2 even 4 inner 465.2.k.a.32.3 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.k.a.32.3 60 15.2 even 4 inner
465.2.k.a.32.28 yes 60 5.2 odd 4 inner
465.2.k.a.218.3 yes 60 1.1 even 1 trivial
465.2.k.a.218.28 yes 60 3.2 odd 2 inner