Properties

Label 465.2.k.a.218.28
Level $465$
Weight $2$
Character 465.218
Analytic conductor $3.713$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(32,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,0,0,-4,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 218.28
Character \(\chi\) \(=\) 465.218
Dual form 465.2.k.a.32.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74033 + 1.74033i) q^{2} +(-1.17160 + 1.27567i) q^{3} +4.05749i q^{4} +(-0.384493 + 2.20276i) q^{5} +(-4.25907 + 0.181113i) q^{6} +(1.30230 - 1.30230i) q^{7} +(-3.58070 + 3.58070i) q^{8} +(-0.254684 - 2.98917i) q^{9} +(-4.50267 + 3.16439i) q^{10} +2.55932i q^{11} +(-5.17603 - 4.75377i) q^{12} +(2.37097 + 2.37097i) q^{13} +4.53284 q^{14} +(-2.35953 - 3.07125i) q^{15} -4.34822 q^{16} +(-3.38670 - 3.38670i) q^{17} +(4.75890 - 5.64537i) q^{18} -4.69306i q^{19} +(-8.93768 - 1.56007i) q^{20} +(0.135528 + 3.18708i) q^{21} +(-4.45405 + 4.45405i) q^{22} +(0.268531 - 0.268531i) q^{23} +(-0.372638 - 8.76297i) q^{24} +(-4.70433 - 1.69389i) q^{25} +8.25253i q^{26} +(4.11159 + 3.17723i) q^{27} +(5.28405 + 5.28405i) q^{28} +5.68539 q^{29} +(1.23863 - 9.45135i) q^{30} +1.00000 q^{31} +(-0.405926 - 0.405926i) q^{32} +(-3.26485 - 2.99851i) q^{33} -11.7879i q^{34} +(2.36793 + 3.36937i) q^{35} +(12.1285 - 1.03338i) q^{36} +(-2.80395 + 2.80395i) q^{37} +(8.16747 - 8.16747i) q^{38} +(-5.80242 + 0.246743i) q^{39} +(-6.51068 - 9.26419i) q^{40} -3.76694i q^{41} +(-5.31070 + 5.78243i) q^{42} +(7.57956 + 7.57956i) q^{43} -10.3844 q^{44} +(6.68236 + 0.588304i) q^{45} +0.934666 q^{46} +(-2.85488 - 2.85488i) q^{47} +(5.09439 - 5.54691i) q^{48} +3.60805i q^{49} +(-5.23915 - 11.1350i) q^{50} +(8.28820 - 0.352449i) q^{51} +(-9.62017 + 9.62017i) q^{52} +(-3.33548 + 3.33548i) q^{53} +(1.62610 + 12.6849i) q^{54} +(-5.63757 - 0.984039i) q^{55} +9.32626i q^{56} +(5.98682 + 5.49842i) q^{57} +(9.89445 + 9.89445i) q^{58} +12.5260 q^{59} +(12.4616 - 9.57377i) q^{60} -7.79487 q^{61} +(1.74033 + 1.74033i) q^{62} +(-4.22446 - 3.56111i) q^{63} +7.28355i q^{64} +(-6.13430 + 4.31106i) q^{65} +(-0.463526 - 10.9003i) q^{66} +(-4.02116 + 4.02116i) q^{67} +(13.7415 - 13.7415i) q^{68} +(0.0279457 + 0.657171i) q^{69} +(-1.74285 + 9.98478i) q^{70} -1.18160i q^{71} +(11.6153 + 9.79137i) q^{72} +(3.86864 + 3.86864i) q^{73} -9.75960 q^{74} +(7.67247 - 4.01662i) q^{75} +19.0420 q^{76} +(3.33299 + 3.33299i) q^{77} +(-10.5275 - 9.66870i) q^{78} -4.46527i q^{79} +(1.67186 - 9.57809i) q^{80} +(-8.87027 + 1.52259i) q^{81} +(6.55571 - 6.55571i) q^{82} +(-4.02931 + 4.02931i) q^{83} +(-12.9315 + 0.549903i) q^{84} +(8.76226 - 6.15794i) q^{85} +26.3819i q^{86} +(-6.66103 + 7.25270i) q^{87} +(-9.16415 - 9.16415i) q^{88} -16.4656 q^{89} +(10.6057 + 12.6533i) q^{90} +6.17540 q^{91} +(1.08956 + 1.08956i) q^{92} +(-1.17160 + 1.27567i) q^{93} -9.93684i q^{94} +(10.3377 + 1.80445i) q^{95} +(0.993414 - 0.0422441i) q^{96} +(13.6813 - 13.6813i) q^{97} +(-6.27919 + 6.27919i) q^{98} +(7.65023 - 0.651818i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{6} - 32 q^{10} + 4 q^{13} + 20 q^{15} - 60 q^{16} - 46 q^{18} - 4 q^{21} + 8 q^{22} - 8 q^{25} - 6 q^{27} + 112 q^{28} + 54 q^{30} + 60 q^{31} - 30 q^{33} - 4 q^{36} - 36 q^{37} - 36 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74033 + 1.74033i 1.23060 + 1.23060i 0.963734 + 0.266864i \(0.0859874\pi\)
0.266864 + 0.963734i \(0.414013\pi\)
\(3\) −1.17160 + 1.27567i −0.676426 + 0.736510i
\(4\) 4.05749i 2.02874i
\(5\) −0.384493 + 2.20276i −0.171950 + 0.985106i
\(6\) −4.25907 + 0.181113i −1.73876 + 0.0739392i
\(7\) 1.30230 1.30230i 0.492222 0.492222i −0.416784 0.909006i \(-0.636843\pi\)
0.909006 + 0.416784i \(0.136843\pi\)
\(8\) −3.58070 + 3.58070i −1.26597 + 1.26597i
\(9\) −0.254684 2.98917i −0.0848948 0.996390i
\(10\) −4.50267 + 3.16439i −1.42387 + 1.00067i
\(11\) 2.55932i 0.771663i 0.922569 + 0.385832i \(0.126085\pi\)
−0.922569 + 0.385832i \(0.873915\pi\)
\(12\) −5.17603 4.75377i −1.49419 1.37230i
\(13\) 2.37097 + 2.37097i 0.657588 + 0.657588i 0.954809 0.297221i \(-0.0960597\pi\)
−0.297221 + 0.954809i \(0.596060\pi\)
\(14\) 4.53284 1.21145
\(15\) −2.35953 3.07125i −0.609229 0.792995i
\(16\) −4.34822 −1.08705
\(17\) −3.38670 3.38670i −0.821396 0.821396i 0.164913 0.986308i \(-0.447266\pi\)
−0.986308 + 0.164913i \(0.947266\pi\)
\(18\) 4.75890 5.64537i 1.12168 1.33063i
\(19\) 4.69306i 1.07666i −0.842733 0.538331i \(-0.819055\pi\)
0.842733 0.538331i \(-0.180945\pi\)
\(20\) −8.93768 1.56007i −1.99853 0.348843i
\(21\) 0.135528 + 3.18708i 0.0295746 + 0.695478i
\(22\) −4.45405 + 4.45405i −0.949607 + 0.949607i
\(23\) 0.268531 0.268531i 0.0559927 0.0559927i −0.678556 0.734549i \(-0.737394\pi\)
0.734549 + 0.678556i \(0.237394\pi\)
\(24\) −0.372638 8.76297i −0.0760644 1.78873i
\(25\) −4.70433 1.69389i −0.940866 0.338779i
\(26\) 8.25253i 1.61845i
\(27\) 4.11159 + 3.17723i 0.791277 + 0.611458i
\(28\) 5.28405 + 5.28405i 0.998591 + 0.998591i
\(29\) 5.68539 1.05575 0.527875 0.849322i \(-0.322989\pi\)
0.527875 + 0.849322i \(0.322989\pi\)
\(30\) 1.23863 9.45135i 0.226142 1.72557i
\(31\) 1.00000 0.179605
\(32\) −0.405926 0.405926i −0.0717582 0.0717582i
\(33\) −3.26485 2.99851i −0.568338 0.521973i
\(34\) 11.7879i 2.02162i
\(35\) 2.36793 + 3.36937i 0.400253 + 0.569528i
\(36\) 12.1285 1.03338i 2.02142 0.172230i
\(37\) −2.80395 + 2.80395i −0.460967 + 0.460967i −0.898972 0.438005i \(-0.855685\pi\)
0.438005 + 0.898972i \(0.355685\pi\)
\(38\) 8.16747 8.16747i 1.32494 1.32494i
\(39\) −5.80242 + 0.246743i −0.929131 + 0.0395105i
\(40\) −6.51068 9.26419i −1.02943 1.46480i
\(41\) 3.76694i 0.588297i −0.955760 0.294148i \(-0.904964\pi\)
0.955760 0.294148i \(-0.0950360\pi\)
\(42\) −5.31070 + 5.78243i −0.819459 + 0.892248i
\(43\) 7.57956 + 7.57956i 1.15587 + 1.15587i 0.985355 + 0.170518i \(0.0545441\pi\)
0.170518 + 0.985355i \(0.445456\pi\)
\(44\) −10.3844 −1.56551
\(45\) 6.68236 + 0.588304i 0.996147 + 0.0876993i
\(46\) 0.934666 0.137809
\(47\) −2.85488 2.85488i −0.416427 0.416427i 0.467544 0.883970i \(-0.345139\pi\)
−0.883970 + 0.467544i \(0.845139\pi\)
\(48\) 5.09439 5.54691i 0.735312 0.800627i
\(49\) 3.60805i 0.515436i
\(50\) −5.23915 11.1350i −0.740928 1.57473i
\(51\) 8.28820 0.352449i 1.16058 0.0493527i
\(52\) −9.62017 + 9.62017i −1.33408 + 1.33408i
\(53\) −3.33548 + 3.33548i −0.458164 + 0.458164i −0.898052 0.439888i \(-0.855018\pi\)
0.439888 + 0.898052i \(0.355018\pi\)
\(54\) 1.62610 + 12.6849i 0.221284 + 1.72620i
\(55\) −5.63757 0.984039i −0.760170 0.132688i
\(56\) 9.32626i 1.24627i
\(57\) 5.98682 + 5.49842i 0.792973 + 0.728283i
\(58\) 9.89445 + 9.89445i 1.29920 + 1.29920i
\(59\) 12.5260 1.63075 0.815375 0.578933i \(-0.196531\pi\)
0.815375 + 0.578933i \(0.196531\pi\)
\(60\) 12.4616 9.57377i 1.60878 1.23597i
\(61\) −7.79487 −0.998031 −0.499016 0.866593i \(-0.666305\pi\)
−0.499016 + 0.866593i \(0.666305\pi\)
\(62\) 1.74033 + 1.74033i 0.221022 + 0.221022i
\(63\) −4.22446 3.56111i −0.532232 0.448658i
\(64\) 7.28355i 0.910443i
\(65\) −6.13430 + 4.31106i −0.760866 + 0.534721i
\(66\) −0.463526 10.9003i −0.0570562 1.34173i
\(67\) −4.02116 + 4.02116i −0.491263 + 0.491263i −0.908704 0.417441i \(-0.862927\pi\)
0.417441 + 0.908704i \(0.362927\pi\)
\(68\) 13.7415 13.7415i 1.66640 1.66640i
\(69\) 0.0279457 + 0.657171i 0.00336426 + 0.0791141i
\(70\) −1.74285 + 9.98478i −0.208310 + 1.19341i
\(71\) 1.18160i 0.140230i −0.997539 0.0701152i \(-0.977663\pi\)
0.997539 0.0701152i \(-0.0223367\pi\)
\(72\) 11.6153 + 9.79137i 1.36887 + 1.15392i
\(73\) 3.86864 + 3.86864i 0.452790 + 0.452790i 0.896279 0.443490i \(-0.146260\pi\)
−0.443490 + 0.896279i \(0.646260\pi\)
\(74\) −9.75960 −1.13453
\(75\) 7.67247 4.01662i 0.885941 0.463799i
\(76\) 19.0420 2.18427
\(77\) 3.33299 + 3.33299i 0.379829 + 0.379829i
\(78\) −10.5275 9.66870i −1.19201 1.09476i
\(79\) 4.46527i 0.502383i −0.967937 0.251191i \(-0.919178\pi\)
0.967937 0.251191i \(-0.0808223\pi\)
\(80\) 1.67186 9.57809i 0.186919 1.07086i
\(81\) −8.87027 + 1.52259i −0.985586 + 0.169177i
\(82\) 6.55571 6.55571i 0.723957 0.723957i
\(83\) −4.02931 + 4.02931i −0.442274 + 0.442274i −0.892776 0.450502i \(-0.851245\pi\)
0.450502 + 0.892776i \(0.351245\pi\)
\(84\) −12.9315 + 0.549903i −1.41095 + 0.0599993i
\(85\) 8.76226 6.15794i 0.950401 0.667922i
\(86\) 26.3819i 2.84483i
\(87\) −6.66103 + 7.25270i −0.714137 + 0.777571i
\(88\) −9.16415 9.16415i −0.976901 0.976901i
\(89\) −16.4656 −1.74535 −0.872675 0.488301i \(-0.837617\pi\)
−0.872675 + 0.488301i \(0.837617\pi\)
\(90\) 10.6057 + 12.6533i 1.11793 + 1.33378i
\(91\) 6.17540 0.647358
\(92\) 1.08956 + 1.08956i 0.113595 + 0.113595i
\(93\) −1.17160 + 1.27567i −0.121490 + 0.132281i
\(94\) 9.93684i 1.02491i
\(95\) 10.3377 + 1.80445i 1.06063 + 0.185133i
\(96\) 0.993414 0.0422441i 0.101390 0.00431152i
\(97\) 13.6813 13.6813i 1.38912 1.38912i 0.561959 0.827165i \(-0.310048\pi\)
0.827165 0.561959i \(-0.189952\pi\)
\(98\) −6.27919 + 6.27919i −0.634294 + 0.634294i
\(99\) 7.65023 0.651818i 0.768877 0.0655102i
\(100\) 6.87295 19.0878i 0.687295 1.90878i
\(101\) 18.5916i 1.84993i −0.380047 0.924967i \(-0.624092\pi\)
0.380047 0.924967i \(-0.375908\pi\)
\(102\) 15.0376 + 13.8108i 1.48894 + 1.36747i
\(103\) 2.22600 + 2.22600i 0.219334 + 0.219334i 0.808218 0.588884i \(-0.200432\pi\)
−0.588884 + 0.808218i \(0.700432\pi\)
\(104\) −16.9795 −1.66497
\(105\) −7.07249 0.926873i −0.690205 0.0904536i
\(106\) −11.6097 −1.12763
\(107\) 1.86365 + 1.86365i 0.180166 + 0.180166i 0.791428 0.611262i \(-0.209338\pi\)
−0.611262 + 0.791428i \(0.709338\pi\)
\(108\) −12.8916 + 16.6827i −1.24049 + 1.60530i
\(109\) 18.6614i 1.78744i −0.448629 0.893718i \(-0.648088\pi\)
0.448629 0.893718i \(-0.351912\pi\)
\(110\) −8.09867 11.5238i −0.772178 1.09875i
\(111\) −0.291803 6.86205i −0.0276967 0.651317i
\(112\) −5.66267 + 5.66267i −0.535072 + 0.535072i
\(113\) 6.99502 6.99502i 0.658036 0.658036i −0.296879 0.954915i \(-0.595946\pi\)
0.954915 + 0.296879i \(0.0959457\pi\)
\(114\) 0.849977 + 19.9881i 0.0796076 + 1.87206i
\(115\) 0.488263 + 0.694759i 0.0455307 + 0.0647866i
\(116\) 23.0684i 2.14185i
\(117\) 6.48338 7.69108i 0.599388 0.711040i
\(118\) 21.7994 + 21.7994i 2.00680 + 2.00680i
\(119\) −8.82097 −0.808617
\(120\) 19.4460 + 2.54846i 1.77517 + 0.232642i
\(121\) 4.44990 0.404536
\(122\) −13.5656 13.5656i −1.22818 1.22818i
\(123\) 4.80538 + 4.41336i 0.433287 + 0.397940i
\(124\) 4.05749i 0.364373i
\(125\) 5.54003 9.71124i 0.495515 0.868599i
\(126\) −1.15445 13.5494i −0.102846 1.20708i
\(127\) 12.1010 12.1010i 1.07379 1.07379i 0.0767411 0.997051i \(-0.475548\pi\)
0.997051 0.0767411i \(-0.0244515\pi\)
\(128\) −13.4876 + 13.4876i −1.19215 + 1.19215i
\(129\) −18.5493 + 0.788794i −1.63317 + 0.0694494i
\(130\) −18.1784 3.17304i −1.59435 0.278294i
\(131\) 4.42153i 0.386311i −0.981168 0.193155i \(-0.938128\pi\)
0.981168 0.193155i \(-0.0618721\pi\)
\(132\) 12.1664 13.2471i 1.05895 1.15301i
\(133\) −6.11176 6.11176i −0.529957 0.529957i
\(134\) −13.9963 −1.20909
\(135\) −8.57957 + 7.83524i −0.738411 + 0.674350i
\(136\) 24.2535 2.07972
\(137\) 14.4439 + 14.4439i 1.23403 + 1.23403i 0.962403 + 0.271625i \(0.0875611\pi\)
0.271625 + 0.962403i \(0.412439\pi\)
\(138\) −1.09506 + 1.19233i −0.0932176 + 0.101498i
\(139\) 20.0382i 1.69961i −0.527094 0.849807i \(-0.676718\pi\)
0.527094 0.849807i \(-0.323282\pi\)
\(140\) −13.6712 + 9.60783i −1.15543 + 0.812009i
\(141\) 6.98668 0.297103i 0.588384 0.0250206i
\(142\) 2.05638 2.05638i 0.172567 0.172567i
\(143\) −6.06806 + 6.06806i −0.507437 + 0.507437i
\(144\) 1.10742 + 12.9976i 0.0922853 + 1.08313i
\(145\) −2.18599 + 12.5236i −0.181537 + 1.04003i
\(146\) 13.4654i 1.11440i
\(147\) −4.60269 4.22721i −0.379624 0.348654i
\(148\) −11.3770 11.3770i −0.935184 0.935184i
\(149\) −9.91574 −0.812329 −0.406165 0.913800i \(-0.633134\pi\)
−0.406165 + 0.913800i \(0.633134\pi\)
\(150\) 20.3428 + 6.36239i 1.66099 + 0.519487i
\(151\) 10.0111 0.814695 0.407347 0.913273i \(-0.366454\pi\)
0.407347 + 0.913273i \(0.366454\pi\)
\(152\) 16.8045 + 16.8045i 1.36302 + 1.36302i
\(153\) −9.26088 + 10.9860i −0.748698 + 0.888163i
\(154\) 11.6010i 0.934834i
\(155\) −0.384493 + 2.20276i −0.0308832 + 0.176930i
\(156\) −1.00116 23.5432i −0.0801567 1.88497i
\(157\) −15.3890 + 15.3890i −1.22818 + 1.22818i −0.263527 + 0.964652i \(0.584886\pi\)
−0.964652 + 0.263527i \(0.915114\pi\)
\(158\) 7.77104 7.77104i 0.618231 0.618231i
\(159\) −0.347119 8.16286i −0.0275283 0.647357i
\(160\) 1.05023 0.738083i 0.0830283 0.0583506i
\(161\) 0.699415i 0.0551216i
\(162\) −18.0870 12.7874i −1.42105 1.00467i
\(163\) 15.0954 + 15.0954i 1.18237 + 1.18237i 0.979130 + 0.203235i \(0.0651457\pi\)
0.203235 + 0.979130i \(0.434854\pi\)
\(164\) 15.2843 1.19350
\(165\) 7.86032 6.03879i 0.611925 0.470119i
\(166\) −14.0246 −1.08852
\(167\) −4.70977 4.70977i −0.364453 0.364453i 0.500996 0.865449i \(-0.332967\pi\)
−0.865449 + 0.500996i \(0.832967\pi\)
\(168\) −11.8973 10.9267i −0.917894 0.843013i
\(169\) 1.75702i 0.135155i
\(170\) 25.9660 + 4.53238i 1.99151 + 0.347618i
\(171\) −14.0284 + 1.19525i −1.07278 + 0.0914031i
\(172\) −30.7540 + 30.7540i −2.34497 + 2.34497i
\(173\) −2.26329 + 2.26329i −0.172074 + 0.172074i −0.787890 0.615816i \(-0.788827\pi\)
0.615816 + 0.787890i \(0.288827\pi\)
\(174\) −24.2145 + 1.02970i −1.83569 + 0.0780614i
\(175\) −8.33238 + 3.92048i −0.629869 + 0.296360i
\(176\) 11.1285i 0.838840i
\(177\) −14.6756 + 15.9791i −1.10308 + 1.20106i
\(178\) −28.6556 28.6556i −2.14782 2.14782i
\(179\) −1.55392 −0.116145 −0.0580725 0.998312i \(-0.518495\pi\)
−0.0580725 + 0.998312i \(0.518495\pi\)
\(180\) −2.38704 + 27.1136i −0.177919 + 2.02093i
\(181\) −12.4886 −0.928271 −0.464135 0.885764i \(-0.653635\pi\)
−0.464135 + 0.885764i \(0.653635\pi\)
\(182\) 10.7472 + 10.7472i 0.796638 + 0.796638i
\(183\) 9.13251 9.94371i 0.675095 0.735060i
\(184\) 1.92306i 0.141770i
\(185\) −5.09835 7.25455i −0.374838 0.533365i
\(186\) −4.25907 + 0.181113i −0.312290 + 0.0132799i
\(187\) 8.66764 8.66764i 0.633841 0.633841i
\(188\) 11.5836 11.5836i 0.844822 0.844822i
\(189\) 9.49221 1.21682i 0.690456 0.0885103i
\(190\) 14.8507 + 21.1313i 1.07738 + 1.53303i
\(191\) 6.16936i 0.446399i −0.974773 0.223200i \(-0.928350\pi\)
0.974773 0.223200i \(-0.0716502\pi\)
\(192\) −9.29143 8.53344i −0.670551 0.615848i
\(193\) −13.8267 13.8267i −0.995270 0.995270i 0.00471859 0.999989i \(-0.498498\pi\)
−0.999989 + 0.00471859i \(0.998498\pi\)
\(194\) 47.6199 3.41891
\(195\) 1.68747 12.8762i 0.120842 0.922086i
\(196\) −14.6396 −1.04569
\(197\) −10.2230 10.2230i −0.728359 0.728359i 0.241934 0.970293i \(-0.422218\pi\)
−0.970293 + 0.241934i \(0.922218\pi\)
\(198\) 14.4483 + 12.1795i 1.02680 + 0.865562i
\(199\) 3.18566i 0.225825i 0.993605 + 0.112913i \(0.0360180\pi\)
−0.993605 + 0.112913i \(0.963982\pi\)
\(200\) 22.9101 10.7795i 1.61999 0.762224i
\(201\) −0.418476 9.84089i −0.0295170 0.694123i
\(202\) 32.3555 32.3555i 2.27653 2.27653i
\(203\) 7.40406 7.40406i 0.519663 0.519663i
\(204\) 1.43006 + 33.6292i 0.100124 + 2.35452i
\(205\) 8.29767 + 1.44836i 0.579535 + 0.101158i
\(206\) 7.74794i 0.539825i
\(207\) −0.871077 0.734295i −0.0605440 0.0510370i
\(208\) −10.3095 10.3095i −0.714834 0.714834i
\(209\) 12.0110 0.830821
\(210\) −10.6954 13.9215i −0.738052 0.960676i
\(211\) 9.18742 0.632488 0.316244 0.948678i \(-0.397578\pi\)
0.316244 + 0.948678i \(0.397578\pi\)
\(212\) −13.5337 13.5337i −0.929497 0.929497i
\(213\) 1.50734 + 1.38437i 0.103281 + 0.0948555i
\(214\) 6.48673i 0.443424i
\(215\) −19.6103 + 13.7817i −1.33741 + 0.939904i
\(216\) −26.0991 + 3.34567i −1.77582 + 0.227644i
\(217\) 1.30230 1.30230i 0.0884056 0.0884056i
\(218\) 32.4769 32.4769i 2.19962 2.19962i
\(219\) −9.46763 + 0.402603i −0.639763 + 0.0272054i
\(220\) 3.99272 22.8744i 0.269189 1.54219i
\(221\) 16.0595i 1.08028i
\(222\) 11.4344 12.4501i 0.767426 0.835593i
\(223\) 18.3841 + 18.3841i 1.23109 + 1.23109i 0.963545 + 0.267545i \(0.0862125\pi\)
0.267545 + 0.963545i \(0.413788\pi\)
\(224\) −1.05727 −0.0706419
\(225\) −3.86521 + 14.4935i −0.257681 + 0.966230i
\(226\) 24.3473 1.61956
\(227\) −4.46148 4.46148i −0.296119 0.296119i 0.543373 0.839492i \(-0.317147\pi\)
−0.839492 + 0.543373i \(0.817147\pi\)
\(228\) −22.3097 + 24.2914i −1.47750 + 1.60874i
\(229\) 7.03878i 0.465136i 0.972580 + 0.232568i \(0.0747128\pi\)
−0.972580 + 0.232568i \(0.925287\pi\)
\(230\) −0.359372 + 2.05885i −0.0236963 + 0.135756i
\(231\) −8.15675 + 0.346859i −0.536675 + 0.0228216i
\(232\) −20.3577 + 20.3577i −1.33655 + 1.33655i
\(233\) −6.31425 + 6.31425i −0.413660 + 0.413660i −0.883012 0.469351i \(-0.844488\pi\)
0.469351 + 0.883012i \(0.344488\pi\)
\(234\) 24.6682 2.10179i 1.61261 0.137398i
\(235\) 7.38630 5.19094i 0.481829 0.338619i
\(236\) 50.8242i 3.30837i
\(237\) 5.69623 + 5.23154i 0.370010 + 0.339825i
\(238\) −15.3514 15.3514i −0.995083 0.995083i
\(239\) 6.05585 0.391720 0.195860 0.980632i \(-0.437250\pi\)
0.195860 + 0.980632i \(0.437250\pi\)
\(240\) 10.2598 + 13.3545i 0.662265 + 0.862028i
\(241\) −19.4218 −1.25107 −0.625533 0.780198i \(-0.715118\pi\)
−0.625533 + 0.780198i \(0.715118\pi\)
\(242\) 7.74428 + 7.74428i 0.497821 + 0.497821i
\(243\) 8.45012 13.0994i 0.542076 0.840330i
\(244\) 31.6276i 2.02475i
\(245\) −7.94768 1.38727i −0.507759 0.0886294i
\(246\) 0.682243 + 16.0436i 0.0434982 + 1.02291i
\(247\) 11.1271 11.1271i 0.708001 0.708001i
\(248\) −3.58070 + 3.58070i −0.227375 + 0.227375i
\(249\) −0.419324 9.86084i −0.0265736 0.624905i
\(250\) 26.5422 7.25928i 1.67868 0.459117i
\(251\) 0.334433i 0.0211092i 0.999944 + 0.0105546i \(0.00335970\pi\)
−0.999944 + 0.0105546i \(0.996640\pi\)
\(252\) 14.4491 17.1407i 0.910211 1.07976i
\(253\) 0.687257 + 0.687257i 0.0432075 + 0.0432075i
\(254\) 42.1195 2.64281
\(255\) −2.41039 + 18.3925i −0.150945 + 1.15178i
\(256\) −32.3787 −2.02367
\(257\) −21.6611 21.6611i −1.35118 1.35118i −0.884343 0.466838i \(-0.845393\pi\)
−0.466838 0.884343i \(-0.654607\pi\)
\(258\) −33.6546 30.9091i −2.09525 1.92432i
\(259\) 7.30315i 0.453796i
\(260\) −17.4921 24.8898i −1.08481 1.54360i
\(261\) −1.44798 16.9946i −0.0896278 1.05194i
\(262\) 7.69491 7.69491i 0.475393 0.475393i
\(263\) −9.30589 + 9.30589i −0.573826 + 0.573826i −0.933195 0.359370i \(-0.882992\pi\)
0.359370 + 0.933195i \(0.382992\pi\)
\(264\) 22.4272 0.953699i 1.38030 0.0586961i
\(265\) −6.06481 8.62975i −0.372558 0.530121i
\(266\) 21.2729i 1.30433i
\(267\) 19.2912 21.0047i 1.18060 1.28547i
\(268\) −16.3158 16.3158i −0.996646 0.996646i
\(269\) −2.97259 −0.181242 −0.0906210 0.995885i \(-0.528885\pi\)
−0.0906210 + 0.995885i \(0.528885\pi\)
\(270\) −28.5672 1.29536i −1.73854 0.0788334i
\(271\) 4.29904 0.261148 0.130574 0.991439i \(-0.458318\pi\)
0.130574 + 0.991439i \(0.458318\pi\)
\(272\) 14.7261 + 14.7261i 0.892902 + 0.892902i
\(273\) −7.23513 + 7.87780i −0.437890 + 0.476786i
\(274\) 50.2744i 3.03719i
\(275\) 4.33521 12.0399i 0.261423 0.726032i
\(276\) −2.66646 + 0.113389i −0.160502 + 0.00682522i
\(277\) −7.69471 + 7.69471i −0.462330 + 0.462330i −0.899419 0.437088i \(-0.856010\pi\)
0.437088 + 0.899419i \(0.356010\pi\)
\(278\) 34.8730 34.8730i 2.09154 2.09154i
\(279\) −0.254684 2.98917i −0.0152476 0.178957i
\(280\) −20.5435 3.58588i −1.22771 0.214297i
\(281\) 14.7446i 0.879591i 0.898098 + 0.439796i \(0.144949\pi\)
−0.898098 + 0.439796i \(0.855051\pi\)
\(282\) 12.6762 + 11.6421i 0.754855 + 0.693274i
\(283\) −10.3694 10.3694i −0.616398 0.616398i 0.328208 0.944606i \(-0.393555\pi\)
−0.944606 + 0.328208i \(0.893555\pi\)
\(284\) 4.79433 0.284491
\(285\) −14.4136 + 11.0734i −0.853788 + 0.655934i
\(286\) −21.1208 −1.24890
\(287\) −4.90567 4.90567i −0.289572 0.289572i
\(288\) −1.11000 + 1.31676i −0.0654073 + 0.0775911i
\(289\) 5.93949i 0.349382i
\(290\) −25.5995 + 17.9908i −1.50325 + 1.05645i
\(291\) 1.42379 + 33.4819i 0.0834641 + 1.96274i
\(292\) −15.6969 + 15.6969i −0.918594 + 0.918594i
\(293\) 4.21552 4.21552i 0.246273 0.246273i −0.573166 0.819439i \(-0.694285\pi\)
0.819439 + 0.573166i \(0.194285\pi\)
\(294\) −0.653466 15.3669i −0.0381109 0.896218i
\(295\) −4.81617 + 27.5919i −0.280408 + 1.60646i
\(296\) 20.0802i 1.16714i
\(297\) −8.13154 + 10.5229i −0.471840 + 0.610599i
\(298\) −17.2566 17.2566i −0.999651 0.999651i
\(299\) 1.27336 0.0736402
\(300\) 16.2974 + 31.1309i 0.940929 + 1.79735i
\(301\) 19.7417 1.13789
\(302\) 17.4227 + 17.4227i 1.00256 + 1.00256i
\(303\) 23.7168 + 21.7820i 1.36250 + 1.25134i
\(304\) 20.4065i 1.17039i
\(305\) 2.99707 17.1703i 0.171612 0.983166i
\(306\) −35.2362 + 3.00221i −2.01432 + 0.171625i
\(307\) 7.61622 7.61622i 0.434681 0.434681i −0.455536 0.890217i \(-0.650553\pi\)
0.890217 + 0.455536i \(0.150553\pi\)
\(308\) −13.5236 + 13.5236i −0.770576 + 0.770576i
\(309\) −5.44764 + 0.231656i −0.309905 + 0.0131785i
\(310\) −4.50267 + 3.16439i −0.255735 + 0.179725i
\(311\) 7.65741i 0.434212i 0.976148 + 0.217106i \(0.0696618\pi\)
−0.976148 + 0.217106i \(0.930338\pi\)
\(312\) 19.8932 21.6602i 1.12623 1.22627i
\(313\) −2.60386 2.60386i −0.147179 0.147179i 0.629678 0.776856i \(-0.283187\pi\)
−0.776856 + 0.629678i \(0.783187\pi\)
\(314\) −53.5640 −3.02279
\(315\) 9.46855 7.93626i 0.533492 0.447158i
\(316\) 18.1178 1.01921
\(317\) 8.97912 + 8.97912i 0.504318 + 0.504318i 0.912777 0.408459i \(-0.133934\pi\)
−0.408459 + 0.912777i \(0.633934\pi\)
\(318\) 13.6019 14.8101i 0.762759 0.830512i
\(319\) 14.5507i 0.814684i
\(320\) −16.0439 2.80047i −0.896883 0.156551i
\(321\) −4.56087 + 0.193947i −0.254563 + 0.0108251i
\(322\) 1.21721 1.21721i 0.0678325 0.0678325i
\(323\) −15.8940 + 15.8940i −0.884366 + 0.884366i
\(324\) −6.17789 35.9910i −0.343216 1.99950i
\(325\) −7.13765 15.1700i −0.395926 0.841479i
\(326\) 52.5420i 2.91003i
\(327\) 23.8058 + 21.8638i 1.31647 + 1.20907i
\(328\) 13.4883 + 13.4883i 0.744766 + 0.744766i
\(329\) −7.43579 −0.409948
\(330\) 24.1890 + 3.17005i 1.33156 + 0.174505i
\(331\) −1.32694 −0.0729354 −0.0364677 0.999335i \(-0.511611\pi\)
−0.0364677 + 0.999335i \(0.511611\pi\)
\(332\) −16.3489 16.3489i −0.897260 0.897260i
\(333\) 9.09562 + 7.66737i 0.498437 + 0.420169i
\(334\) 16.3931i 0.896990i
\(335\) −7.31155 10.4038i −0.399473 0.568418i
\(336\) −0.589305 13.8581i −0.0321492 0.756022i
\(337\) −12.2571 + 12.2571i −0.667686 + 0.667686i −0.957180 0.289494i \(-0.906513\pi\)
0.289494 + 0.957180i \(0.406513\pi\)
\(338\) 3.05779 3.05779i 0.166322 0.166322i
\(339\) 0.727961 + 17.1188i 0.0395374 + 0.929764i
\(340\) 24.9857 + 35.5528i 1.35504 + 1.92812i
\(341\) 2.55932i 0.138595i
\(342\) −26.4941 22.3338i −1.43264 1.20768i
\(343\) 13.8148 + 13.8148i 0.745930 + 0.745930i
\(344\) −54.2803 −2.92660
\(345\) −1.45834 0.191120i −0.0785142 0.0102895i
\(346\) −7.87772 −0.423509
\(347\) −16.8052 16.8052i −0.902153 0.902153i 0.0934693 0.995622i \(-0.470204\pi\)
−0.995622 + 0.0934693i \(0.970204\pi\)
\(348\) −29.4277 27.0270i −1.57749 1.44880i
\(349\) 18.5688i 0.993965i 0.867761 + 0.496983i \(0.165559\pi\)
−0.867761 + 0.496983i \(0.834441\pi\)
\(350\) −21.3240 7.67815i −1.13982 0.410415i
\(351\) 2.21534 + 17.2816i 0.118246 + 0.922422i
\(352\) 1.03889 1.03889i 0.0553732 0.0553732i
\(353\) 19.3920 19.3920i 1.03213 1.03213i 0.0326657 0.999466i \(-0.489600\pi\)
0.999466 0.0326657i \(-0.0103997\pi\)
\(354\) −53.3492 + 2.26863i −2.83548 + 0.120576i
\(355\) 2.60279 + 0.454317i 0.138142 + 0.0241127i
\(356\) 66.8089i 3.54087i
\(357\) 10.3347 11.2527i 0.546970 0.595555i
\(358\) −2.70432 2.70432i −0.142928 0.142928i
\(359\) 2.35818 0.124460 0.0622300 0.998062i \(-0.480179\pi\)
0.0622300 + 0.998062i \(0.480179\pi\)
\(360\) −26.0341 + 21.8210i −1.37212 + 1.15007i
\(361\) −3.02486 −0.159203
\(362\) −21.7343 21.7343i −1.14233 1.14233i
\(363\) −5.21352 + 5.67661i −0.273639 + 0.297945i
\(364\) 25.0566i 1.31332i
\(365\) −10.0092 + 7.03423i −0.523903 + 0.368188i
\(366\) 33.1989 1.41176i 1.73533 0.0737936i
\(367\) −9.30245 + 9.30245i −0.485584 + 0.485584i −0.906909 0.421326i \(-0.861565\pi\)
0.421326 + 0.906909i \(0.361565\pi\)
\(368\) −1.16763 + 1.16763i −0.0608671 + 0.0608671i
\(369\) −11.2600 + 0.959381i −0.586173 + 0.0499434i
\(370\) 3.75250 21.4981i 0.195083 1.11763i
\(371\) 8.68757i 0.451036i
\(372\) −5.17603 4.75377i −0.268364 0.246471i
\(373\) −5.91864 5.91864i −0.306455 0.306455i 0.537077 0.843533i \(-0.319528\pi\)
−0.843533 + 0.537077i \(0.819528\pi\)
\(374\) 30.1691 1.56001
\(375\) 5.89764 + 18.4450i 0.304553 + 0.952495i
\(376\) 20.4449 1.05437
\(377\) 13.4799 + 13.4799i 0.694249 + 0.694249i
\(378\) 18.6372 + 14.4019i 0.958595 + 0.740754i
\(379\) 18.1658i 0.933116i 0.884491 + 0.466558i \(0.154506\pi\)
−0.884491 + 0.466558i \(0.845494\pi\)
\(380\) −7.32153 + 41.9451i −0.375586 + 2.15174i
\(381\) 1.25934 + 29.6146i 0.0645177 + 1.51720i
\(382\) 10.7367 10.7367i 0.549338 0.549338i
\(383\) −19.5567 + 19.5567i −0.999299 + 0.999299i −1.00000 0.000700330i \(-0.999777\pi\)
0.000700330 1.00000i \(0.499777\pi\)
\(384\) −1.40364 33.0079i −0.0716290 1.68443i
\(385\) −8.62329 + 6.06027i −0.439484 + 0.308860i
\(386\) 48.1261i 2.44956i
\(387\) 20.7262 24.5870i 1.05357 1.24983i
\(388\) 55.5116 + 55.5116i 2.81818 + 2.81818i
\(389\) 31.6425 1.60434 0.802170 0.597095i \(-0.203679\pi\)
0.802170 + 0.597095i \(0.203679\pi\)
\(390\) 25.3456 19.4721i 1.28342 0.986008i
\(391\) −1.81887 −0.0919843
\(392\) −12.9194 12.9194i −0.652526 0.652526i
\(393\) 5.64042 + 5.18028i 0.284522 + 0.261311i
\(394\) 35.5828i 1.79263i
\(395\) 9.83594 + 1.71687i 0.494900 + 0.0863849i
\(396\) 2.64474 + 31.0407i 0.132903 + 1.55985i
\(397\) −18.4634 + 18.4634i −0.926651 + 0.926651i −0.997488 0.0708365i \(-0.977433\pi\)
0.0708365 + 0.997488i \(0.477433\pi\)
\(398\) −5.54409 + 5.54409i −0.277900 + 0.277900i
\(399\) 14.9572 0.636041i 0.748795 0.0318419i
\(400\) 20.4555 + 7.36542i 1.02277 + 0.368271i
\(401\) 1.22570i 0.0612083i −0.999532 0.0306041i \(-0.990257\pi\)
0.999532 0.0306041i \(-0.00974312\pi\)
\(402\) 16.3981 17.8547i 0.817863 0.890510i
\(403\) 2.37097 + 2.37097i 0.118106 + 0.118106i
\(404\) 75.4352 3.75304
\(405\) 0.0566491 20.1245i 0.00281492 0.999996i
\(406\) 25.7710 1.27899
\(407\) −7.17621 7.17621i −0.355711 0.355711i
\(408\) −28.4155 + 30.9396i −1.40678 + 1.53174i
\(409\) 33.9950i 1.68094i −0.541854 0.840472i \(-0.682278\pi\)
0.541854 0.840472i \(-0.317722\pi\)
\(410\) 11.9201 + 16.9613i 0.588689 + 0.837659i
\(411\) −35.3483 + 1.50316i −1.74360 + 0.0741453i
\(412\) −9.03196 + 9.03196i −0.444973 + 0.444973i
\(413\) 16.3126 16.3126i 0.802690 0.802690i
\(414\) −0.238045 2.79387i −0.0116993 0.137311i
\(415\) −7.32637 10.4248i −0.359637 0.511736i
\(416\) 1.92487i 0.0943748i
\(417\) 25.5621 + 23.4768i 1.25178 + 1.14966i
\(418\) 20.9032 + 20.9032i 1.02241 + 1.02241i
\(419\) 25.8945 1.26503 0.632514 0.774549i \(-0.282023\pi\)
0.632514 + 0.774549i \(0.282023\pi\)
\(420\) 3.76077 28.6965i 0.183507 1.40025i
\(421\) −11.4846 −0.559724 −0.279862 0.960040i \(-0.590289\pi\)
−0.279862 + 0.960040i \(0.590289\pi\)
\(422\) 15.9891 + 15.9891i 0.778338 + 0.778338i
\(423\) −7.80662 + 9.26080i −0.379571 + 0.450276i
\(424\) 23.8867i 1.16004i
\(425\) 10.1955 + 21.6689i 0.494552 + 1.05109i
\(426\) 0.214004 + 5.03252i 0.0103685 + 0.243827i
\(427\) −10.1512 + 10.1512i −0.491252 + 0.491252i
\(428\) −7.56174 + 7.56174i −0.365510 + 0.365510i
\(429\) −0.631494 14.8502i −0.0304888 0.716976i
\(430\) −58.1130 10.1436i −2.80246 0.489169i
\(431\) 25.7652i 1.24107i −0.784180 0.620533i \(-0.786916\pi\)
0.784180 0.620533i \(-0.213084\pi\)
\(432\) −17.8781 13.8153i −0.860161 0.664689i
\(433\) 2.29857 + 2.29857i 0.110462 + 0.110462i 0.760178 0.649715i \(-0.225112\pi\)
−0.649715 + 0.760178i \(0.725112\pi\)
\(434\) 4.53284 0.217584
\(435\) −13.4149 17.4613i −0.643193 0.837204i
\(436\) 75.7183 3.62625
\(437\) −1.26024 1.26024i −0.0602852 0.0602852i
\(438\) −17.1774 15.7761i −0.820770 0.753812i
\(439\) 4.69778i 0.224213i 0.993696 + 0.112106i \(0.0357597\pi\)
−0.993696 + 0.112106i \(0.964240\pi\)
\(440\) 23.7100 16.6629i 1.13033 0.794373i
\(441\) 10.7851 0.918915i 0.513575 0.0437578i
\(442\) 27.9488 27.9488i 1.32939 1.32939i
\(443\) 12.8335 12.8335i 0.609737 0.609737i −0.333140 0.942877i \(-0.608108\pi\)
0.942877 + 0.333140i \(0.108108\pi\)
\(444\) 27.8427 1.18399i 1.32136 0.0561895i
\(445\) 6.33090 36.2698i 0.300114 1.71935i
\(446\) 63.9887i 3.02995i
\(447\) 11.6173 12.6492i 0.549481 0.598289i
\(448\) 9.48533 + 9.48533i 0.448140 + 0.448140i
\(449\) −38.3820 −1.81136 −0.905679 0.423963i \(-0.860639\pi\)
−0.905679 + 0.423963i \(0.860639\pi\)
\(450\) −31.9501 + 18.4966i −1.50614 + 0.871939i
\(451\) 9.64079 0.453967
\(452\) 28.3822 + 28.3822i 1.33499 + 1.33499i
\(453\) −11.7291 + 12.7709i −0.551081 + 0.600031i
\(454\) 15.5289i 0.728806i
\(455\) −2.37440 + 13.6030i −0.111314 + 0.637716i
\(456\) −41.1252 + 1.74881i −1.92586 + 0.0818957i
\(457\) 7.32388 7.32388i 0.342597 0.342597i −0.514746 0.857343i \(-0.672114\pi\)
0.857343 + 0.514746i \(0.172114\pi\)
\(458\) −12.2498 + 12.2498i −0.572395 + 0.572395i
\(459\) −3.16441 24.6851i −0.147702 1.15220i
\(460\) −2.81898 + 1.98112i −0.131435 + 0.0923701i
\(461\) 29.3813i 1.36842i −0.729284 0.684212i \(-0.760147\pi\)
0.729284 0.684212i \(-0.239853\pi\)
\(462\) −14.7991 13.5918i −0.688515 0.632346i
\(463\) −7.50791 7.50791i −0.348922 0.348922i 0.510786 0.859708i \(-0.329354\pi\)
−0.859708 + 0.510786i \(0.829354\pi\)
\(464\) −24.7213 −1.14766
\(465\) −2.35953 3.07125i −0.109421 0.142426i
\(466\) −21.9777 −1.01810
\(467\) 22.5049 + 22.5049i 1.04140 + 1.04140i 0.999105 + 0.0422999i \(0.0134685\pi\)
0.0422999 + 0.999105i \(0.486532\pi\)
\(468\) 31.2064 + 26.3062i 1.44252 + 1.21601i
\(469\) 10.4735i 0.483620i
\(470\) 21.8885 + 3.82064i 1.00964 + 0.176233i
\(471\) −1.60151 37.6613i −0.0737939 1.73534i
\(472\) −44.8519 + 44.8519i −2.06448 + 2.06448i
\(473\) −19.3985 + 19.3985i −0.891944 + 0.891944i
\(474\) 0.808721 + 19.0179i 0.0371458 + 0.873521i
\(475\) −7.94955 + 22.0777i −0.364750 + 1.01300i
\(476\) 35.7910i 1.64048i
\(477\) 10.8198 + 9.12083i 0.495406 + 0.417614i
\(478\) 10.5392 + 10.5392i 0.482050 + 0.482050i
\(479\) 14.3792 0.657004 0.328502 0.944503i \(-0.393456\pi\)
0.328502 + 0.944503i \(0.393456\pi\)
\(480\) −0.288907 + 2.20450i −0.0131867 + 0.100621i
\(481\) −13.2962 −0.606253
\(482\) −33.8002 33.8002i −1.53956 1.53956i
\(483\) 0.892224 + 0.819437i 0.0405976 + 0.0372857i
\(484\) 18.0554i 0.820699i
\(485\) 24.8763 + 35.3970i 1.12957 + 1.60729i
\(486\) 37.5033 8.09134i 1.70119 0.367031i
\(487\) −9.90705 + 9.90705i −0.448931 + 0.448931i −0.894999 0.446068i \(-0.852824\pi\)
0.446068 + 0.894999i \(0.352824\pi\)
\(488\) 27.9111 27.9111i 1.26348 1.26348i
\(489\) −36.9427 + 1.57096i −1.67061 + 0.0710412i
\(490\) −11.4173 16.2459i −0.515780 0.733914i
\(491\) 16.4515i 0.742445i 0.928544 + 0.371223i \(0.121061\pi\)
−0.928544 + 0.371223i \(0.878939\pi\)
\(492\) −17.9072 + 19.4978i −0.807317 + 0.879027i
\(493\) −19.2547 19.2547i −0.867189 0.867189i
\(494\) 38.7296 1.74253
\(495\) −1.50566 + 17.1023i −0.0676743 + 0.768690i
\(496\) −4.34822 −0.195241
\(497\) −1.53880 1.53880i −0.0690244 0.0690244i
\(498\) 16.4313 17.8909i 0.736305 0.801708i
\(499\) 14.2093i 0.636096i −0.948075 0.318048i \(-0.896973\pi\)
0.948075 0.318048i \(-0.103027\pi\)
\(500\) 39.4032 + 22.4786i 1.76216 + 1.00527i
\(501\) 11.5261 0.490139i 0.514949 0.0218978i
\(502\) −0.582023 + 0.582023i −0.0259770 + 0.0259770i
\(503\) −3.98638 + 3.98638i −0.177744 + 0.177744i −0.790372 0.612628i \(-0.790113\pi\)
0.612628 + 0.790372i \(0.290113\pi\)
\(504\) 27.8778 2.37525i 1.24178 0.105802i
\(505\) 40.9529 + 7.14834i 1.82238 + 0.318097i
\(506\) 2.39211i 0.106342i
\(507\) 2.24138 + 2.05853i 0.0995433 + 0.0914226i
\(508\) 49.0997 + 49.0997i 2.17845 + 2.17845i
\(509\) 3.81193 0.168961 0.0844803 0.996425i \(-0.473077\pi\)
0.0844803 + 0.996425i \(0.473077\pi\)
\(510\) −36.2038 + 27.8140i −1.60313 + 1.23163i
\(511\) 10.0762 0.445746
\(512\) −29.3743 29.3743i −1.29817 1.29817i
\(513\) 14.9110 19.2960i 0.658335 0.851938i
\(514\) 75.3948i 3.32552i
\(515\) −5.75923 + 4.04747i −0.253782 + 0.178353i
\(516\) −3.20052 75.2635i −0.140895 3.31329i
\(517\) 7.30653 7.30653i 0.321341 0.321341i
\(518\) −12.7099 + 12.7099i −0.558440 + 0.558440i
\(519\) −0.235537 5.53889i −0.0103389 0.243130i
\(520\) 6.52848 37.4017i 0.286293 1.64017i
\(521\) 8.28196i 0.362839i 0.983406 + 0.181420i \(0.0580692\pi\)
−0.983406 + 0.181420i \(0.941931\pi\)
\(522\) 27.0562 32.0961i 1.18422 1.40481i
\(523\) −4.50113 4.50113i −0.196820 0.196820i 0.601815 0.798635i \(-0.294444\pi\)
−0.798635 + 0.601815i \(0.794444\pi\)
\(524\) 17.9403 0.783725
\(525\) 4.76100 15.2226i 0.207787 0.664371i
\(526\) −32.3906 −1.41230
\(527\) −3.38670 3.38670i −0.147527 0.147527i
\(528\) 14.1963 + 13.0382i 0.617814 + 0.567413i
\(529\) 22.8558i 0.993730i
\(530\) 4.46384 25.5734i 0.193897 1.11084i
\(531\) −3.19018 37.4424i −0.138442 1.62486i
\(532\) 24.7984 24.7984i 1.07515 1.07515i
\(533\) 8.93129 8.93129i 0.386857 0.386857i
\(534\) 70.1281 2.98214i 3.03474 0.129050i
\(535\) −4.82174 + 3.38862i −0.208462 + 0.146503i
\(536\) 28.7971i 1.24385i
\(537\) 1.82057 1.98229i 0.0785636 0.0855420i
\(538\) −5.17328 5.17328i −0.223036 0.223036i
\(539\) −9.23415 −0.397743
\(540\) −31.7914 34.8115i −1.36808 1.49805i
\(541\) −29.5788 −1.27169 −0.635847 0.771815i \(-0.719349\pi\)
−0.635847 + 0.771815i \(0.719349\pi\)
\(542\) 7.48175 + 7.48175i 0.321369 + 0.321369i
\(543\) 14.6317 15.9314i 0.627907 0.683681i
\(544\) 2.74950i 0.117884i
\(545\) 41.1066 + 7.17517i 1.76081 + 0.307350i
\(546\) −26.3015 + 1.11845i −1.12560 + 0.0478652i
\(547\) −0.136930 + 0.136930i −0.00585468 + 0.00585468i −0.710028 0.704173i \(-0.751318\pi\)
0.704173 + 0.710028i \(0.251318\pi\)
\(548\) −58.6060 + 58.6060i −2.50353 + 2.50353i
\(549\) 1.98523 + 23.3002i 0.0847277 + 0.994428i
\(550\) 28.4980 13.4086i 1.21516 0.571747i
\(551\) 26.6819i 1.13669i
\(552\) −2.45320 2.25307i −0.104415 0.0958969i
\(553\) −5.81511 5.81511i −0.247284 0.247284i
\(554\) −26.7826 −1.13789
\(555\) 15.2277 + 1.99564i 0.646379 + 0.0847101i
\(556\) 81.3045 3.44808
\(557\) 1.30891 + 1.30891i 0.0554602 + 0.0554602i 0.734293 0.678833i \(-0.237514\pi\)
−0.678833 + 0.734293i \(0.737514\pi\)
\(558\) 4.75890 5.64537i 0.201460 0.238988i
\(559\) 35.9418i 1.52018i
\(560\) −10.2963 14.6508i −0.435096 0.619108i
\(561\) 0.902028 + 21.2121i 0.0380837 + 0.895577i
\(562\) −25.6605 + 25.6605i −1.08242 + 1.08242i
\(563\) −29.9878 + 29.9878i −1.26383 + 1.26383i −0.314615 + 0.949219i \(0.601875\pi\)
−0.949219 + 0.314615i \(0.898125\pi\)
\(564\) 1.20549 + 28.3483i 0.0507603 + 1.19368i
\(565\) 12.7188 + 18.0979i 0.535086 + 0.761385i
\(566\) 36.0924i 1.51708i
\(567\) −9.56885 + 13.5346i −0.401854 + 0.568399i
\(568\) 4.23096 + 4.23096i 0.177527 + 0.177527i
\(569\) 16.0104 0.671189 0.335595 0.942007i \(-0.391063\pi\)
0.335595 + 0.942007i \(0.391063\pi\)
\(570\) −44.3558 5.81297i −1.85786 0.243479i
\(571\) 15.7012 0.657077 0.328538 0.944491i \(-0.393444\pi\)
0.328538 + 0.944491i \(0.393444\pi\)
\(572\) −24.6211 24.6211i −1.02946 1.02946i
\(573\) 7.87009 + 7.22805i 0.328778 + 0.301956i
\(574\) 17.0749i 0.712695i
\(575\) −1.71812 + 0.808397i −0.0716507 + 0.0337125i
\(576\) 21.7718 1.85501i 0.907157 0.0772919i
\(577\) −19.5189 + 19.5189i −0.812581 + 0.812581i −0.985020 0.172439i \(-0.944835\pi\)
0.172439 + 0.985020i \(0.444835\pi\)
\(578\) −10.3367 + 10.3367i −0.429949 + 0.429949i
\(579\) 33.8379 1.43893i 1.40625 0.0597998i
\(580\) −50.8142 8.86963i −2.10994 0.368291i
\(581\) 10.4947i 0.435394i
\(582\) −55.7917 + 60.7474i −2.31264 + 2.51806i
\(583\) −8.53656 8.53656i −0.353548 0.353548i
\(584\) −27.7049 −1.14644
\(585\) 14.4488 + 17.2385i 0.597385 + 0.712725i
\(586\) 14.6728 0.606126
\(587\) −18.4221 18.4221i −0.760360 0.760360i 0.216027 0.976387i \(-0.430690\pi\)
−0.976387 + 0.216027i \(0.930690\pi\)
\(588\) 17.1518 18.6754i 0.707330 0.770159i
\(589\) 4.69306i 0.193374i
\(590\) −56.4006 + 39.6372i −2.32198 + 1.63184i
\(591\) 25.0185 1.06389i 1.02912 0.0437627i
\(592\) 12.1922 12.1922i 0.501096 0.501096i
\(593\) 4.26981 4.26981i 0.175340 0.175340i −0.613981 0.789321i \(-0.710433\pi\)
0.789321 + 0.613981i \(0.210433\pi\)
\(594\) −32.4648 + 4.16170i −1.33205 + 0.170757i
\(595\) 3.39160 19.4305i 0.139042 0.796573i
\(596\) 40.2330i 1.64801i
\(597\) −4.06386 3.73233i −0.166323 0.152754i
\(598\) 2.21606 + 2.21606i 0.0906215 + 0.0906215i
\(599\) 1.20371 0.0491822 0.0245911 0.999698i \(-0.492172\pi\)
0.0245911 + 0.999698i \(0.492172\pi\)
\(600\) −13.0905 + 41.8551i −0.534418 + 1.70873i
\(601\) 4.03047 0.164406 0.0822031 0.996616i \(-0.473804\pi\)
0.0822031 + 0.996616i \(0.473804\pi\)
\(602\) 34.3570 + 34.3570i 1.40029 + 1.40029i
\(603\) 13.0441 + 10.9958i 0.531195 + 0.447784i
\(604\) 40.6201i 1.65281i
\(605\) −1.71095 + 9.80207i −0.0695601 + 0.398511i
\(606\) 3.36719 + 79.1829i 0.136783 + 3.21659i
\(607\) 10.5261 10.5261i 0.427241 0.427241i −0.460446 0.887687i \(-0.652311\pi\)
0.887687 + 0.460446i \(0.152311\pi\)
\(608\) −1.90504 + 1.90504i −0.0772594 + 0.0772594i
\(609\) 0.770529 + 18.1198i 0.0312234 + 0.734251i
\(610\) 35.0978 24.6660i 1.42107 0.998697i
\(611\) 13.5376i 0.547674i
\(612\) −44.5754 37.5759i −1.80185 1.51892i
\(613\) −5.63618 5.63618i −0.227643 0.227643i 0.584064 0.811707i \(-0.301462\pi\)
−0.811707 + 0.584064i \(0.801462\pi\)
\(614\) 26.5095 1.06983
\(615\) −11.5692 + 8.88821i −0.466516 + 0.358407i
\(616\) −23.8689 −0.961704
\(617\) 11.1982 + 11.1982i 0.450824 + 0.450824i 0.895628 0.444804i \(-0.146727\pi\)
−0.444804 + 0.895628i \(0.646727\pi\)
\(618\) −9.88384 9.07752i −0.397586 0.365152i
\(619\) 13.0830i 0.525851i −0.964816 0.262926i \(-0.915313\pi\)
0.964816 0.262926i \(-0.0846874\pi\)
\(620\) −8.93768 1.56007i −0.358946 0.0626541i
\(621\) 1.95728 0.250906i 0.0785429 0.0100685i
\(622\) −13.3264 + 13.3264i −0.534341 + 0.534341i
\(623\) −21.4431 + 21.4431i −0.859099 + 0.859099i
\(624\) 25.2302 1.07289i 1.01002 0.0429501i
\(625\) 19.2615 + 15.9373i 0.770458 + 0.637491i
\(626\) 9.06314i 0.362236i
\(627\) −14.0722 + 15.3222i −0.561989 + 0.611908i
\(628\) −62.4408 62.4408i −2.49166 2.49166i
\(629\) 18.9923 0.757273
\(630\) 30.2901 + 2.66669i 1.20679 + 0.106244i
\(631\) 26.1928 1.04272 0.521360 0.853337i \(-0.325425\pi\)
0.521360 + 0.853337i \(0.325425\pi\)
\(632\) 15.9888 + 15.9888i 0.636001 + 0.636001i
\(633\) −10.7640 + 11.7201i −0.427831 + 0.465834i
\(634\) 31.2532i 1.24122i
\(635\) 22.0029 + 31.3084i 0.873160 + 1.24244i
\(636\) 33.1207 1.40843i 1.31332 0.0558478i
\(637\) −8.55457 + 8.55457i −0.338945 + 0.338945i
\(638\) −25.3230 + 25.3230i −1.00255 + 1.00255i
\(639\) −3.53201 + 0.300936i −0.139724 + 0.0119048i
\(640\) −24.5241 34.8959i −0.969401 1.37938i
\(641\) 4.55409i 0.179876i −0.995947 0.0899379i \(-0.971333\pi\)
0.995947 0.0899379i \(-0.0286669\pi\)
\(642\) −8.27495 7.59988i −0.326586 0.299943i
\(643\) −27.2969 27.2969i −1.07648 1.07648i −0.996822 0.0796607i \(-0.974616\pi\)
−0.0796607 0.996822i \(-0.525384\pi\)
\(644\) 2.83786 0.111828
\(645\) 5.39455 41.1630i 0.212410 1.62079i
\(646\) −55.3216 −2.17660
\(647\) −23.8541 23.8541i −0.937803 0.937803i 0.0603727 0.998176i \(-0.480771\pi\)
−0.998176 + 0.0603727i \(0.980771\pi\)
\(648\) 26.3098 37.2137i 1.03355 1.46189i
\(649\) 32.0581i 1.25839i
\(650\) 13.9789 38.8226i 0.548297 1.52275i
\(651\) 0.135528 + 3.18708i 0.00531176 + 0.124912i
\(652\) −61.2495 + 61.2495i −2.39872 + 2.39872i
\(653\) −5.07325 + 5.07325i −0.198532 + 0.198532i −0.799370 0.600839i \(-0.794833\pi\)
0.600839 + 0.799370i \(0.294833\pi\)
\(654\) 3.37982 + 79.4801i 0.132162 + 3.10792i
\(655\) 9.73957 + 1.70004i 0.380557 + 0.0664262i
\(656\) 16.3795i 0.639511i
\(657\) 10.5787 12.5493i 0.412716 0.489595i
\(658\) −12.9407 12.9407i −0.504481 0.504481i
\(659\) −32.9568 −1.28381 −0.641907 0.766782i \(-0.721857\pi\)
−0.641907 + 0.766782i \(0.721857\pi\)
\(660\) 24.5023 + 31.8931i 0.953751 + 1.24144i
\(661\) −3.56963 −0.138842 −0.0694212 0.997587i \(-0.522115\pi\)
−0.0694212 + 0.997587i \(0.522115\pi\)
\(662\) −2.30932 2.30932i −0.0897541 0.0897541i
\(663\) 20.4867 + 18.8154i 0.795638 + 0.730730i
\(664\) 28.8555i 1.11981i
\(665\) 15.8127 11.1128i 0.613190 0.430937i
\(666\) 2.48562 + 29.1731i 0.0963158 + 1.13043i
\(667\) 1.52671 1.52671i 0.0591143 0.0591143i
\(668\) 19.1098 19.1098i 0.739381 0.739381i
\(669\) −44.9910 + 1.91321i −1.73945 + 0.0739688i
\(670\) 5.38147 30.8305i 0.207904 1.19109i
\(671\) 19.9495i 0.770144i
\(672\) 1.23870 1.34873i 0.0477840 0.0520285i
\(673\) −16.9220 16.9220i −0.652295 0.652295i 0.301250 0.953545i \(-0.402596\pi\)
−0.953545 + 0.301250i \(0.902596\pi\)
\(674\) −42.6627 −1.64331
\(675\) −13.9604 21.9113i −0.537336 0.843368i
\(676\) 7.12908 0.274195
\(677\) 15.8295 + 15.8295i 0.608377 + 0.608377i 0.942522 0.334145i \(-0.108448\pi\)
−0.334145 + 0.942522i \(0.608448\pi\)
\(678\) −28.5254 + 31.0592i −1.09551 + 1.19282i
\(679\) 35.6342i 1.36751i
\(680\) −9.32530 + 53.4248i −0.357609 + 2.04875i
\(681\) 10.9185 0.464299i 0.418397 0.0177920i
\(682\) −4.45405 + 4.45405i −0.170554 + 0.170554i
\(683\) 0.807396 0.807396i 0.0308941 0.0308941i −0.691491 0.722385i \(-0.743046\pi\)
0.722385 + 0.691491i \(0.243046\pi\)
\(684\) −4.84971 56.9199i −0.185433 2.17639i
\(685\) −37.3701 + 26.2630i −1.42784 + 1.00346i
\(686\) 48.0846i 1.83588i
\(687\) −8.97919 8.24667i −0.342577 0.314630i
\(688\) −32.9576 32.9576i −1.25650 1.25650i
\(689\) −15.8167 −0.602566
\(690\) −2.20537 2.87060i −0.0839571 0.109282i
\(691\) −26.8549 −1.02161 −0.510804 0.859697i \(-0.670652\pi\)
−0.510804 + 0.859697i \(0.670652\pi\)
\(692\) −9.18325 9.18325i −0.349095 0.349095i
\(693\) 9.11401 10.8117i 0.346212 0.410704i
\(694\) 58.4933i 2.22037i
\(695\) 44.1393 + 7.70452i 1.67430 + 0.292249i
\(696\) −2.11859 49.8209i −0.0803051 1.88846i
\(697\) −12.7575 + 12.7575i −0.483225 + 0.483225i
\(698\) −32.3158 + 32.3158i −1.22317 + 1.22317i
\(699\) −0.657114 15.4527i −0.0248544 0.584476i
\(700\) −15.9073 33.8085i −0.601239 1.27784i
\(701\) 3.77870i 0.142719i −0.997451 0.0713597i \(-0.977266\pi\)
0.997451 0.0713597i \(-0.0227338\pi\)
\(702\) −26.2202 + 33.9310i −0.989617 + 1.28064i
\(703\) 13.1591 + 13.1591i 0.496306 + 0.496306i
\(704\) −18.6409 −0.702556
\(705\) −2.03188 + 15.5042i −0.0765250 + 0.583923i
\(706\) 67.4969 2.54028
\(707\) −24.2118 24.2118i −0.910578 0.910578i
\(708\) −64.8350 59.5458i −2.43665 2.23787i
\(709\) 18.2349i 0.684825i 0.939550 + 0.342413i \(0.111244\pi\)
−0.939550 + 0.342413i \(0.888756\pi\)
\(710\) 3.73905 + 5.32037i 0.140324 + 0.199670i
\(711\) −13.3475 + 1.13724i −0.500569 + 0.0426497i
\(712\) 58.9584 58.9584i 2.20956 2.20956i
\(713\) 0.268531 0.268531i 0.0100566 0.0100566i
\(714\) 37.5691 1.59760i 1.40599 0.0597885i
\(715\) −11.0334 15.6996i −0.412625 0.587133i
\(716\) 6.30499i 0.235628i
\(717\) −7.09506 + 7.72528i −0.264970 + 0.288506i
\(718\) 4.10401 + 4.10401i 0.153160 + 0.153160i
\(719\) −4.30553 −0.160569 −0.0802845 0.996772i \(-0.525583\pi\)
−0.0802845 + 0.996772i \(0.525583\pi\)
\(720\) −29.0563 2.55808i −1.08287 0.0953339i
\(721\) 5.79782 0.215922
\(722\) −5.26425 5.26425i −0.195915 0.195915i
\(723\) 22.7546 24.7758i 0.846253 0.921422i
\(724\) 50.6723i 1.88322i
\(725\) −26.7460 9.63044i −0.993320 0.357666i
\(726\) −18.9524 + 0.805935i −0.703390 + 0.0299111i
\(727\) 4.10330 4.10330i 0.152183 0.152183i −0.626909 0.779092i \(-0.715680\pi\)
0.779092 + 0.626909i \(0.215680\pi\)
\(728\) −22.1123 + 22.1123i −0.819535 + 0.819535i
\(729\) 6.81040 + 26.1270i 0.252237 + 0.967665i
\(730\) −29.6611 5.17735i −1.09781 0.191622i
\(731\) 51.3394i 1.89886i
\(732\) 40.3465 + 37.0550i 1.49125 + 1.36959i
\(733\) 5.34821 + 5.34821i 0.197541 + 0.197541i 0.798945 0.601404i \(-0.205392\pi\)
−0.601404 + 0.798945i \(0.705392\pi\)
\(734\) −32.3786 −1.19512
\(735\) 11.0812 8.51331i 0.408738 0.314018i
\(736\) −0.218008 −0.00803587
\(737\) −10.2914 10.2914i −0.379089 0.379089i
\(738\) −21.2658 17.9265i −0.782804 0.659883i
\(739\) 31.4904i 1.15839i −0.815188 0.579197i \(-0.803366\pi\)
0.815188 0.579197i \(-0.196634\pi\)
\(740\) 29.4352 20.6865i 1.08206 0.760450i
\(741\) 1.15798 + 27.2311i 0.0425395 + 1.00036i
\(742\) −15.1192 + 15.1192i −0.555044 + 0.555044i
\(743\) −15.5001 + 15.5001i −0.568645 + 0.568645i −0.931749 0.363104i \(-0.881717\pi\)
0.363104 + 0.931749i \(0.381717\pi\)
\(744\) −0.372638 8.76297i −0.0136616 0.321266i
\(745\) 3.81253 21.8420i 0.139680 0.800230i
\(746\) 20.6007i 0.754247i
\(747\) 13.0705 + 11.0181i 0.478224 + 0.403131i
\(748\) 35.1688 + 35.1688i 1.28590 + 1.28590i
\(749\) 4.85405 0.177363
\(750\) −21.8365 + 42.3642i −0.797357 + 1.54692i
\(751\) −31.1823 −1.13786 −0.568930 0.822386i \(-0.692642\pi\)
−0.568930 + 0.822386i \(0.692642\pi\)
\(752\) 12.4136 + 12.4136i 0.452678 + 0.452678i
\(753\) −0.426627 0.391823i −0.0155472 0.0142788i
\(754\) 46.9188i 1.70868i
\(755\) −3.84921 + 22.0522i −0.140087 + 0.802561i
\(756\) 4.93721 + 38.5145i 0.179565 + 1.40076i
\(757\) −25.1331 + 25.1331i −0.913480 + 0.913480i −0.996544 0.0830643i \(-0.973529\pi\)
0.0830643 + 0.996544i \(0.473529\pi\)
\(758\) −31.6145 + 31.6145i −1.14829 + 1.14829i
\(759\) −1.68191 + 0.0715218i −0.0610494 + 0.00259608i
\(760\) −43.4774 + 30.5551i −1.57709 + 1.10835i
\(761\) 8.72350i 0.316226i 0.987421 + 0.158113i \(0.0505411\pi\)
−0.987421 + 0.158113i \(0.949459\pi\)
\(762\) −49.3474 + 53.7307i −1.78767 + 1.94646i
\(763\) −24.3026 24.3026i −0.879815 0.879815i
\(764\) 25.0321 0.905629
\(765\) −20.6387 24.6236i −0.746195 0.890267i
\(766\) −68.0701 −2.45947
\(767\) 29.6988 + 29.6988i 1.07236 + 1.07236i
\(768\) 37.9350 41.3046i 1.36886 1.49045i
\(769\) 21.7304i 0.783619i −0.920046 0.391809i \(-0.871849\pi\)
0.920046 0.391809i \(-0.128151\pi\)
\(770\) −25.5542 4.46050i −0.920910 0.160745i
\(771\) 53.0107 2.25423i 1.90913 0.0811843i
\(772\) 56.1018 56.1018i 2.01915 2.01915i
\(773\) 16.4735 16.4735i 0.592511 0.592511i −0.345798 0.938309i \(-0.612392\pi\)
0.938309 + 0.345798i \(0.112392\pi\)
\(774\) 78.8599 6.71905i 2.83456 0.241511i
\(775\) −4.70433 1.69389i −0.168985 0.0608464i
\(776\) 97.9772i 3.51718i
\(777\) −9.31644 8.55641i −0.334225 0.306960i
\(778\) 55.0684 + 55.0684i 1.97430 + 1.97430i
\(779\) −17.6785 −0.633398
\(780\) 52.2451 + 6.84689i 1.87067 + 0.245158i
\(781\) 3.02409 0.108211
\(782\) −3.16543 3.16543i −0.113196 0.113196i
\(783\) 23.3760 + 18.0638i 0.835391 + 0.645548i
\(784\) 15.6886i 0.560307i
\(785\) −27.9814 39.8154i −0.998700 1.42107i
\(786\) 0.800797 + 18.8316i 0.0285635 + 0.671700i
\(787\) −11.1899 + 11.1899i −0.398878 + 0.398878i −0.877837 0.478959i \(-0.841014\pi\)
0.478959 + 0.877837i \(0.341014\pi\)
\(788\) 41.4797 41.4797i 1.47765 1.47765i
\(789\) −0.968450 22.7741i −0.0344777 0.810779i
\(790\) 14.1299 + 20.1057i 0.502718 + 0.715328i
\(791\) 18.2192i 0.647799i
\(792\) −25.0592 + 29.7272i −0.890441 + 1.05631i
\(793\) −18.4814 18.4814i −0.656294 0.656294i
\(794\) −64.2648 −2.28067
\(795\) 18.1143 + 2.37394i 0.642448 + 0.0841949i
\(796\) −12.9258 −0.458142
\(797\) 26.6744 + 26.6744i 0.944855 + 0.944855i 0.998557 0.0537016i \(-0.0171020\pi\)
−0.0537016 + 0.998557i \(0.517102\pi\)
\(798\) 27.1373 + 24.9235i 0.960650 + 0.882281i
\(799\) 19.3372i 0.684102i
\(800\) 1.22201 + 2.59720i 0.0432047 + 0.0918250i
\(801\) 4.19353 + 49.2185i 0.148171 + 1.73905i
\(802\) 2.13311 2.13311i 0.0753228 0.0753228i
\(803\) −9.90107 + 9.90107i −0.349401 + 0.349401i
\(804\) 39.9293 1.69796i 1.40820 0.0598824i
\(805\) 1.54064 + 0.268920i 0.0543006 + 0.00947818i
\(806\) 8.25253i 0.290683i
\(807\) 3.48270 3.79205i 0.122597 0.133487i
\(808\) 66.5710 + 66.5710i 2.34196 + 2.34196i
\(809\) −8.76972 −0.308327 −0.154163 0.988045i \(-0.549268\pi\)
−0.154163 + 0.988045i \(0.549268\pi\)
\(810\) 35.1219 34.9247i 1.23406 1.22713i
\(811\) −6.06391 −0.212933 −0.106466 0.994316i \(-0.533954\pi\)
−0.106466 + 0.994316i \(0.533954\pi\)
\(812\) 30.0419 + 30.0419i 1.05426 + 1.05426i
\(813\) −5.03678 + 5.48417i −0.176648 + 0.192338i
\(814\) 24.9779i 0.875475i
\(815\) −39.0557 + 27.4476i −1.36806 + 0.961447i
\(816\) −36.0389 + 1.53252i −1.26161 + 0.0536491i
\(817\) 35.5714 35.5714i 1.24449 1.24449i
\(818\) 59.1625 59.1625i 2.06857 2.06857i
\(819\) −1.57278 18.4593i −0.0549574 0.645021i
\(820\) −5.87670 + 33.6677i −0.205223 + 1.17573i
\(821\) 41.6548i 1.45376i −0.686763 0.726881i \(-0.740969\pi\)
0.686763 0.726881i \(-0.259031\pi\)
\(822\) −64.1337 58.9017i −2.23692 2.05443i
\(823\) 33.0974 + 33.0974i 1.15370 + 1.15370i 0.985804 + 0.167898i \(0.0536980\pi\)
0.167898 + 0.985804i \(0.446302\pi\)
\(824\) −15.9413 −0.555341
\(825\) 10.2798 + 19.6363i 0.357896 + 0.683648i
\(826\) 56.7785 1.97558
\(827\) 27.5595 + 27.5595i 0.958338 + 0.958338i 0.999166 0.0408287i \(-0.0129998\pi\)
−0.0408287 + 0.999166i \(0.513000\pi\)
\(828\) 2.97939 3.53438i 0.103541 0.122828i
\(829\) 42.0783i 1.46144i 0.682677 + 0.730720i \(0.260815\pi\)
−0.682677 + 0.730720i \(0.739185\pi\)
\(830\) 5.39237 30.8929i 0.187172 1.07231i
\(831\) −0.800777 18.8311i −0.0277786 0.653243i
\(832\) −17.2691 + 17.2691i −0.598697 + 0.598697i
\(833\) 12.2194 12.2194i 0.423377 0.423377i
\(834\) 3.62918 + 85.3438i 0.125668 + 2.95522i
\(835\) 12.1854 8.56364i 0.421693 0.296357i
\(836\) 48.7346i 1.68552i
\(837\) 4.11159 + 3.17723i 0.142117 + 0.109821i
\(838\) 45.0649 + 45.0649i 1.55674 + 1.55674i
\(839\) −15.8726 −0.547983 −0.273991 0.961732i \(-0.588344\pi\)
−0.273991 + 0.961732i \(0.588344\pi\)
\(840\) 28.6433 22.0056i 0.988289 0.759266i
\(841\) 3.32367 0.114609
\(842\) −19.9869 19.9869i −0.688795 0.688795i
\(843\) −18.8093 17.2749i −0.647828 0.594979i
\(844\) 37.2778i 1.28316i
\(845\) 3.87030 + 0.675561i 0.133142 + 0.0232400i
\(846\) −29.7029 + 2.53076i −1.02121 + 0.0870093i
\(847\) 5.79508 5.79508i 0.199121 0.199121i
\(848\) 14.5034 14.5034i 0.498049 0.498049i
\(849\) 25.3768 1.07913i 0.870931 0.0370356i
\(850\) −19.9675 + 55.4544i −0.684880 + 1.90207i
\(851\) 1.50590i 0.0516216i
\(852\) −5.61706 + 6.11600i −0.192437 + 0.209531i
\(853\) 19.7306 + 19.7306i 0.675562 + 0.675562i 0.958993 0.283431i \(-0.0914727\pi\)
−0.283431 + 0.958993i \(0.591473\pi\)
\(854\) −35.3329 −1.20907
\(855\) 2.76095 31.3607i 0.0944225 1.07251i
\(856\) −13.3463 −0.456169
\(857\) −14.1707 14.1707i −0.484061 0.484061i 0.422365 0.906426i \(-0.361200\pi\)
−0.906426 + 0.422365i \(0.861200\pi\)
\(858\) 24.7453 26.9433i 0.844790 0.919828i
\(859\) 22.6000i 0.771102i −0.922687 0.385551i \(-0.874011\pi\)
0.922687 0.385551i \(-0.125989\pi\)
\(860\) −55.9190 79.5684i −1.90682 2.71326i
\(861\) 12.0055 0.510525i 0.409148 0.0173987i
\(862\) 44.8399 44.8399i 1.52725 1.52725i
\(863\) 26.4341 26.4341i 0.899828 0.899828i −0.0955929 0.995421i \(-0.530475\pi\)
0.995421 + 0.0955929i \(0.0304747\pi\)
\(864\) −0.379282 2.95872i −0.0129034 0.100658i
\(865\) −4.11526 5.85570i −0.139923 0.199100i
\(866\) 8.00054i 0.271869i
\(867\) −7.57685 6.95874i −0.257323 0.236331i
\(868\) 5.28405 + 5.28405i 0.179352 + 0.179352i
\(869\) 11.4281 0.387670
\(870\) 7.04210 53.7346i 0.238750 1.82177i
\(871\) −19.0681 −0.646097
\(872\) 66.8208 + 66.8208i 2.26284 + 2.26284i
\(873\) −44.3801 37.4113i −1.50204 1.26618i
\(874\) 4.38645i 0.148374i
\(875\) −5.43215 19.8617i −0.183640 0.671447i
\(876\) −1.63356 38.4148i −0.0551927 1.29791i
\(877\) 9.80802 9.80802i 0.331193 0.331193i −0.521846 0.853040i \(-0.674757\pi\)
0.853040 + 0.521846i \(0.174757\pi\)
\(878\) −8.17567 + 8.17567i −0.275916 + 0.275916i
\(879\) 0.438702 + 10.3165i 0.0147971 + 0.347968i
\(880\) 24.5134 + 4.27882i 0.826346 + 0.144239i
\(881\) 17.6496i 0.594629i 0.954780 + 0.297315i \(0.0960910\pi\)
−0.954780 + 0.297315i \(0.903909\pi\)
\(882\) 20.3688 + 17.1704i 0.685853 + 0.578156i
\(883\) −13.6543 13.6543i −0.459503 0.459503i 0.438990 0.898492i \(-0.355336\pi\)
−0.898492 + 0.438990i \(0.855336\pi\)
\(884\) 65.1613 2.19161
\(885\) −29.5556 38.4706i −0.993499 1.29318i
\(886\) 44.6690 1.50068
\(887\) −33.6240 33.6240i −1.12898 1.12898i −0.990343 0.138639i \(-0.955727\pi\)
−0.138639 0.990343i \(-0.544273\pi\)
\(888\) 25.6158 + 23.5261i 0.859611 + 0.789484i
\(889\) 31.5182i 1.05709i
\(890\) 74.1392 52.1035i 2.48515 1.74651i
\(891\) −3.89679 22.7018i −0.130547 0.760540i
\(892\) −74.5932 + 74.5932i −2.49757 + 2.49757i
\(893\) −13.3981 + 13.3981i −0.448351 + 0.448351i
\(894\) 42.2318 1.79587i 1.41244 0.0600630i
\(895\) 0.597469 3.42291i 0.0199712 0.114415i
\(896\) 35.1297i 1.17360i
\(897\) −1.49187 + 1.62439i −0.0498122 + 0.0542368i
\(898\) −66.7973 66.7973i −2.22905 2.22905i
\(899\) 5.68539 0.189618
\(900\) −58.8070 15.6830i −1.96023 0.522768i
\(901\) 22.5926 0.752668
\(902\) 16.7781 + 16.7781i 0.558651 + 0.558651i
\(903\) −23.1294 + 25.1839i −0.769699 + 0.838068i
\(904\) 50.0942i 1.66611i
\(905\) 4.80178 27.5094i 0.159617 0.914445i
\(906\) −42.6381 + 1.81315i −1.41656 + 0.0602379i
\(907\) −4.29022 + 4.29022i −0.142454 + 0.142454i −0.774737 0.632283i \(-0.782118\pi\)
0.632283 + 0.774737i \(0.282118\pi\)
\(908\) 18.1024 18.1024i 0.600749 0.600749i
\(909\) −55.5735 + 4.73500i −1.84326 + 0.157050i
\(910\) −27.8058 + 19.5414i −0.921755 + 0.647790i
\(911\) 1.45363i 0.0481610i −0.999710 0.0240805i \(-0.992334\pi\)
0.999710 0.0240805i \(-0.00766580\pi\)
\(912\) −26.0320 23.9083i −0.862005 0.791683i
\(913\) −10.3123 10.3123i −0.341286 0.341286i
\(914\) 25.4919 0.843197
\(915\) 18.3923 + 23.9400i 0.608029 + 0.791433i
\(916\) −28.5598 −0.943641
\(917\) −5.75814 5.75814i −0.190150 0.190150i
\(918\) 37.4530 48.4672i 1.23613 1.59966i
\(919\) 12.9482i 0.427122i −0.976930 0.213561i \(-0.931494\pi\)
0.976930 0.213561i \(-0.0685063\pi\)
\(920\) −4.23605 0.739403i −0.139658 0.0243774i
\(921\) 0.792609 + 18.6390i 0.0261173 + 0.614176i
\(922\) 51.1331 51.1331i 1.68398 1.68398i
\(923\) 2.80154 2.80154i 0.0922139 0.0922139i
\(924\) −1.40738 33.0959i −0.0462993 1.08877i
\(925\) 17.9403 8.44113i 0.589874 0.277543i
\(926\) 26.1324i 0.858766i
\(927\) 6.08696 7.22082i 0.199922 0.237163i
\(928\) −2.30785 2.30785i −0.0757588 0.0757588i
\(929\) −34.5433 −1.13333 −0.566664 0.823949i \(-0.691766\pi\)
−0.566664 + 0.823949i \(0.691766\pi\)
\(930\) 1.23863 9.45135i 0.0406163 0.309922i
\(931\) 16.9328 0.554951
\(932\) −25.6200 25.6200i −0.839210 0.839210i
\(933\) −9.76836 8.97146i −0.319802 0.293713i
\(934\) 78.3320i 2.56310i
\(935\) 15.7601 + 22.4254i 0.515411 + 0.733389i
\(936\) 4.32440 + 50.7545i 0.141348 + 1.65896i
\(937\) 32.2161 32.2161i 1.05245 1.05245i 0.0539082 0.998546i \(-0.482832\pi\)
0.998546 0.0539082i \(-0.0171678\pi\)
\(938\) −18.2273 + 18.2273i −0.595142 + 0.595142i
\(939\) 6.37237 0.270980i 0.207954 0.00884309i
\(940\) 21.0622 + 29.9698i 0.686972 + 0.977507i
\(941\) 19.8742i 0.647879i −0.946078 0.323939i \(-0.894993\pi\)
0.946078 0.323939i \(-0.105007\pi\)
\(942\) 62.7558 68.3301i 2.04469 2.22632i
\(943\) −1.01154 1.01154i −0.0329403 0.0329403i
\(944\) −54.4659 −1.77271
\(945\) −0.969327 + 21.3769i −0.0315322 + 0.695392i
\(946\) −67.5195 −2.19525
\(947\) −16.6962 16.6962i −0.542555 0.542555i 0.381722 0.924277i \(-0.375331\pi\)
−0.924277 + 0.381722i \(0.875331\pi\)
\(948\) −21.2269 + 23.1124i −0.689417 + 0.750655i
\(949\) 18.3448i 0.595498i
\(950\) −52.2573 + 24.5877i −1.69545 + 0.797729i
\(951\) −21.9744 + 0.934443i −0.712569 + 0.0303014i
\(952\) 31.5853 31.5853i 1.02368 1.02368i
\(953\) −1.45649 + 1.45649i −0.0471804 + 0.0471804i −0.730303 0.683123i \(-0.760621\pi\)
0.683123 + 0.730303i \(0.260621\pi\)
\(954\) 2.95680 + 34.7033i 0.0957301 + 1.12356i
\(955\) 13.5896 + 2.37207i 0.439750 + 0.0767585i
\(956\) 24.5715i 0.794699i
\(957\) −18.5620 17.0477i −0.600023 0.551074i
\(958\) 25.0246 + 25.0246i 0.808508 + 0.808508i
\(959\) 37.6205 1.21483
\(960\) 22.3696 17.1858i 0.721977 0.554668i
\(961\) 1.00000 0.0322581
\(962\) −23.1397 23.1397i −0.746054 0.746054i
\(963\) 5.09612 6.04541i 0.164220 0.194811i
\(964\) 78.8035i 2.53809i
\(965\) 35.7733 25.1407i 1.15158 0.809309i
\(966\) 0.126673 + 2.97885i 0.00407565 + 0.0958430i
\(967\) 3.93466 3.93466i 0.126530 0.126530i −0.641006 0.767536i \(-0.721483\pi\)
0.767536 + 0.641006i \(0.221483\pi\)
\(968\) −15.9337 + 15.9337i −0.512130 + 0.512130i
\(969\) −1.65407 38.8971i −0.0531362 1.24955i
\(970\) −18.3095 + 104.895i −0.587882 + 3.36798i
\(971\) 50.7595i 1.62895i 0.580199 + 0.814475i \(0.302975\pi\)
−0.580199 + 0.814475i \(0.697025\pi\)
\(972\) 53.1508 + 34.2863i 1.70481 + 1.09973i
\(973\) −26.0956 26.0956i −0.836587 0.836587i
\(974\) −34.4830 −1.10491
\(975\) 27.7145 + 8.66791i 0.887573 + 0.277595i
\(976\) 33.8938 1.08491
\(977\) 18.6011 + 18.6011i 0.595101 + 0.595101i 0.939005 0.343904i \(-0.111749\pi\)
−0.343904 + 0.939005i \(0.611749\pi\)
\(978\) −67.0264 61.5585i −2.14327 1.96842i
\(979\) 42.1407i 1.34682i
\(980\) 5.62883 32.2476i 0.179806 1.03011i
\(981\) −55.7820 + 4.75276i −1.78098 + 0.151744i
\(982\) −28.6310 + 28.6310i −0.913652 + 0.913652i
\(983\) 7.45897 7.45897i 0.237904 0.237904i −0.578078 0.815982i \(-0.696197\pi\)
0.815982 + 0.578078i \(0.196197\pi\)
\(984\) −33.0096 + 1.40370i −1.05231 + 0.0447485i
\(985\) 26.4495 18.5882i 0.842752 0.592269i
\(986\) 67.0191i 2.13432i
\(987\) 8.71180 9.48563i 0.277300 0.301931i
\(988\) 45.1481 + 45.1481i 1.43635 + 1.43635i
\(989\) 4.07070 0.129441
\(990\) −32.3839 + 27.1432i −1.02923 + 0.862668i
\(991\) −9.46326 −0.300610 −0.150305 0.988640i \(-0.548026\pi\)
−0.150305 + 0.988640i \(0.548026\pi\)
\(992\) −0.405926 0.405926i −0.0128882 0.0128882i
\(993\) 1.55465 1.69275i 0.0493354 0.0537176i
\(994\) 5.35602i 0.169883i
\(995\) −7.01725 1.22486i −0.222462 0.0388308i
\(996\) 40.0102 1.70140i 1.26777 0.0539109i
\(997\) 31.8233 31.8233i 1.00785 1.00785i 0.00788547 0.999969i \(-0.497490\pi\)
0.999969 0.00788547i \(-0.00251005\pi\)
\(998\) 24.7288 24.7288i 0.782778 0.782778i
\(999\) −20.4375 + 2.61991i −0.646615 + 0.0828902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.k.a.218.28 yes 60
3.2 odd 2 inner 465.2.k.a.218.3 yes 60
5.2 odd 4 inner 465.2.k.a.32.3 60
15.2 even 4 inner 465.2.k.a.32.28 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.k.a.32.3 60 5.2 odd 4 inner
465.2.k.a.32.28 yes 60 15.2 even 4 inner
465.2.k.a.218.3 yes 60 3.2 odd 2 inner
465.2.k.a.218.28 yes 60 1.1 even 1 trivial