Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [465,2,Mod(32,465)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("465.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −1.98268 | + | 1.98268i | 1.34762 | − | 1.08808i | − | 5.86206i | 1.88142 | − | 1.20841i | −0.514593 | + | 4.82922i | 2.34234 | + | 2.34234i | 7.65723 | + | 7.65723i | 0.632171 | − | 2.93264i | −1.33436 | + | 6.12615i | |
32.2 | −1.93363 | + | 1.93363i | −1.43955 | − | 0.963170i | − | 5.47785i | −1.96536 | + | 1.06648i | 4.64597 | − | 0.921141i | 1.12676 | + | 1.12676i | 6.72487 | + | 6.72487i | 1.14461 | + | 2.77306i | 1.73810 | − | 5.86244i | |
32.3 | −1.74033 | + | 1.74033i | 1.27567 | + | 1.17160i | − | 4.05749i | 0.384493 | + | 2.20276i | −4.25907 | + | 0.181113i | 1.30230 | + | 1.30230i | 3.58070 | + | 3.58070i | 0.254684 | + | 2.98917i | −4.50267 | − | 3.16439i | |
32.4 | −1.50249 | + | 1.50249i | −1.48917 | + | 0.884514i | − | 2.51495i | −0.967939 | + | 2.01571i | 0.908494 | − | 3.56644i | −2.29931 | − | 2.29931i | 0.773713 | + | 0.773713i | 1.43527 | − | 2.63439i | −1.57427 | − | 4.48291i | |
32.5 | −1.36051 | + | 1.36051i | −1.70135 | − | 0.324676i | − | 1.70195i | 1.70565 | + | 1.44595i | 2.75642 | − | 1.87297i | 2.86044 | + | 2.86044i | −0.405497 | − | 0.405497i | 2.78917 | + | 1.10477i | −4.28776 | + | 0.353322i | |
32.6 | −1.34807 | + | 1.34807i | −1.62395 | + | 0.602318i | − | 1.63460i | 1.42410 | − | 1.72393i | 1.37723 | − | 3.00117i | 0.523054 | + | 0.523054i | −0.492586 | − | 0.492586i | 2.27443 | − | 1.95627i | 0.404203 | + | 4.24377i | |
32.7 | −1.21304 | + | 1.21304i | 1.54400 | − | 0.784900i | − | 0.942937i | 2.10454 | − | 0.755582i | −0.920817 | + | 2.82505i | −2.81077 | − | 2.81077i | −1.28226 | − | 1.28226i | 1.76786 | − | 2.42377i | −1.63634 | + | 3.46945i | |
32.8 | −1.04958 | + | 1.04958i | 1.71909 | − | 0.211486i | − | 0.203247i | −0.904608 | − | 2.04492i | −1.58236 | + | 2.02630i | 2.89230 | + | 2.89230i | −1.88584 | − | 1.88584i | 2.91055 | − | 0.727129i | 3.09577 | + | 1.19685i | |
32.9 | −1.04043 | + | 1.04043i | 0.828268 | + | 1.52117i | − | 0.164984i | −0.204789 | − | 2.22667i | −2.44443 | − | 0.720921i | −1.82623 | − | 1.82623i | −1.90920 | − | 1.90920i | −1.62795 | + | 2.51988i | 2.52976 | + | 2.10362i | |
32.10 | −0.963212 | + | 0.963212i | −0.212764 | + | 1.71893i | 0.144444i | 2.14970 | + | 0.615474i | −1.45076 | − | 1.86063i | 0.630920 | + | 0.630920i | −2.06556 | − | 2.06556i | −2.90946 | − | 0.731454i | −2.66345 | + | 1.47778i | ||
32.11 | −0.618987 | + | 0.618987i | 1.40641 | + | 1.01095i | 1.23371i | 0.181165 | + | 2.22872i | −1.49631 | + | 0.244784i | −3.65822 | − | 3.65822i | −2.00162 | − | 2.00162i | 0.955964 | + | 2.84361i | −1.49169 | − | 1.26741i | ||
32.12 | −0.614519 | + | 0.614519i | −0.407801 | − | 1.68336i | 1.24473i | −1.13325 | + | 1.92763i | 1.28506 | + | 0.783854i | −1.08114 | − | 1.08114i | −1.99395 | − | 1.99395i | −2.66740 | + | 1.37295i | −0.488159 | − | 1.88097i | ||
32.13 | −0.522133 | + | 0.522133i | 0.999094 | − | 1.41485i | 1.45476i | −2.19887 | − | 0.406185i | 0.217082 | + | 1.26040i | −1.35198 | − | 1.35198i | −1.80384 | − | 1.80384i | −1.00362 | − | 2.82714i | 1.36018 | − | 0.936017i | ||
32.14 | −0.450084 | + | 0.450084i | −1.12935 | + | 1.31323i | 1.59485i | −1.42766 | − | 1.72099i | −0.0827594 | − | 1.09937i | 0.166606 | + | 0.166606i | −1.61799 | − | 1.61799i | −0.449130 | − | 2.96619i | 1.41716 | + | 0.132024i | ||
32.15 | −0.237092 | + | 0.237092i | −0.864754 | − | 1.50073i | 1.88757i | 2.23042 | + | 0.158834i | 0.560838 | + | 0.150786i | 1.18294 | + | 1.18294i | −0.921712 | − | 0.921712i | −1.50440 | + | 2.59553i | −0.566472 | + | 0.491156i | ||
32.16 | 0.237092 | − | 0.237092i | 1.50073 | + | 0.864754i | 1.88757i | −2.23042 | − | 0.158834i | 0.560838 | − | 0.150786i | 1.18294 | + | 1.18294i | 0.921712 | + | 0.921712i | 1.50440 | + | 2.59553i | −0.566472 | + | 0.491156i | ||
32.17 | 0.450084 | − | 0.450084i | −1.31323 | + | 1.12935i | 1.59485i | 1.42766 | + | 1.72099i | −0.0827594 | + | 1.09937i | 0.166606 | + | 0.166606i | 1.61799 | + | 1.61799i | 0.449130 | − | 2.96619i | 1.41716 | + | 0.132024i | ||
32.18 | 0.522133 | − | 0.522133i | 1.41485 | − | 0.999094i | 1.45476i | 2.19887 | + | 0.406185i | 0.217082 | − | 1.26040i | −1.35198 | − | 1.35198i | 1.80384 | + | 1.80384i | 1.00362 | − | 2.82714i | 1.36018 | − | 0.936017i | ||
32.19 | 0.614519 | − | 0.614519i | 1.68336 | + | 0.407801i | 1.24473i | 1.13325 | − | 1.92763i | 1.28506 | − | 0.783854i | −1.08114 | − | 1.08114i | 1.99395 | + | 1.99395i | 2.66740 | + | 1.37295i | −0.488159 | − | 1.88097i | ||
32.20 | 0.618987 | − | 0.618987i | −1.01095 | − | 1.40641i | 1.23371i | −0.181165 | − | 2.22872i | −1.49631 | − | 0.244784i | −3.65822 | − | 3.65822i | 2.00162 | + | 2.00162i | −0.955964 | + | 2.84361i | −1.49169 | − | 1.26741i | ||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.k.a | ✓ | 60 |
3.b | odd | 2 | 1 | inner | 465.2.k.a | ✓ | 60 |
5.c | odd | 4 | 1 | inner | 465.2.k.a | ✓ | 60 |
15.e | even | 4 | 1 | inner | 465.2.k.a | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.k.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
465.2.k.a | ✓ | 60 | 3.b | odd | 2 | 1 | inner |
465.2.k.a | ✓ | 60 | 5.c | odd | 4 | 1 | inner |
465.2.k.a | ✓ | 60 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{60} + 225 T_{2}^{56} + 20710 T_{2}^{52} + 1021100 T_{2}^{48} + 29870203 T_{2}^{44} + \cdots + 65610000 \)
acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\).