Properties

Label 465.2.i.e
Level $465$
Weight $2$
Character orbit 465.i
Analytic conductor $3.713$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [465,2,Mod(211,465)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(465, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("465.211");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} - 4x^{7} + 56x^{6} - 31x^{5} + 137x^{4} - 92x^{3} + 262x^{2} - 154x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - \beta_{4} q^{3} + (\beta_{6} - \beta_{3} - \beta_{2} + 1) q^{4} + ( - \beta_{4} + 1) q^{5} - \beta_1 q^{6} + (\beta_{8} - \beta_{4}) q^{7} + (\beta_{6} - 2 \beta_{3} - 2 \beta_{2}) q^{8}+ \cdots + ( - \beta_{9} + \beta_{8} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} - 5 q^{3} + 14 q^{4} + 5 q^{5} - q^{6} - 4 q^{7} + 6 q^{8} - 5 q^{9} + q^{10} + q^{11} - 7 q^{12} - q^{13} - 6 q^{14} - 10 q^{15} - 2 q^{16} + q^{17} - q^{18} - 7 q^{19} + 7 q^{20}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - x^{9} + 9x^{8} - 4x^{7} + 56x^{6} - 31x^{5} + 137x^{4} - 92x^{3} + 262x^{2} - 154x + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 1819 \nu^{9} - 40340 \nu^{8} + 114969 \nu^{7} - 367043 \nu^{6} + 590981 \nu^{5} + \cdots - 8605025 ) / 10775564 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 25627 \nu^{9} + 35180 \nu^{8} - 100263 \nu^{7} + 571185 \nu^{6} - 515387 \nu^{5} + 1628834 \nu^{4} + \cdots + 5239167 ) / 5387782 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 782275 \nu^{9} - 802284 \nu^{8} + 6596735 \nu^{7} - 1864441 \nu^{6} + 39769927 \nu^{5} + \cdots + 28079865 ) / 118531204 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 902085 \nu^{9} - 1018344 \nu^{8} + 9906397 \nu^{7} - 2776531 \nu^{6} + 45629097 \nu^{5} + \cdots + 30547055 ) / 118531204 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 45797 \nu^{9} - 50660 \nu^{8} + 144381 \nu^{7} + 41241 \nu^{6} + 742169 \nu^{5} - 2345558 \nu^{4} + \cdots - 15336741 ) / 5387782 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 155023 \nu^{9} + 590300 \nu^{8} - 1682355 \nu^{7} + 4671133 \nu^{6} - 8647895 \nu^{5} + \cdots + 61617563 ) / 10775564 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 2785161 \nu^{9} + 1980456 \nu^{8} - 25579093 \nu^{7} + 748559 \nu^{6} - 143773437 \nu^{5} + \cdots - 117207739 ) / 118531204 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 3815125 \nu^{9} - 1780048 \nu^{8} + 32550825 \nu^{7} - 10172395 \nu^{6} + 219499077 \nu^{5} + \cdots - 466753705 ) / 118531204 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} - \beta_{6} + \beta_{5} + 3\beta_{4} + \beta_{3} + \beta_{2} + \beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + 2\beta_{3} + 6\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{9} - 7\beta_{8} - \beta_{7} - 8\beta_{5} - 13\beta_{4} - 10\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{9} - 9\beta_{8} + 9\beta_{6} - 18\beta_{5} - 6\beta_{4} - 18\beta_{3} - 38\beta_{2} - 38\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{7} + 45\beta_{6} - 56\beta_{3} - 79\beta_{2} + 68 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 11\beta_{9} + 72\beta_{8} + 11\beta_{7} + 135\beta_{5} + 71\beta_{4} + 250\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 63 \beta_{9} + 291 \beta_{8} - 291 \beta_{6} + 385 \beta_{5} + 397 \beta_{4} + 385 \beta_{3} + \cdots - 397 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -94\beta_{7} - 548\beta_{6} + 965\beta_{3} + 1684\beta_{2} - 616 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
211.1
−1.04578 1.81134i
−0.876737 1.51855i
0.408584 + 0.707687i
0.696507 + 1.20639i
1.31743 + 2.28185i
−1.04578 + 1.81134i
−0.876737 + 1.51855i
0.408584 0.707687i
0.696507 1.20639i
1.31743 2.28185i
−2.09156 −0.500000 0.866025i 2.37462 0.500000 0.866025i 1.04578 + 1.81134i 1.26639 + 2.19346i −0.783545 −0.500000 + 0.866025i −1.04578 + 1.81134i
211.2 −1.75347 −0.500000 0.866025i 1.07467 0.500000 0.866025i 0.876737 + 1.51855i −1.23659 2.14184i 1.62254 −0.500000 + 0.866025i −0.876737 + 1.51855i
211.3 0.817167 −0.500000 0.866025i −1.33224 0.500000 0.866025i −0.408584 0.707687i −1.47074 2.54740i −2.72300 −0.500000 + 0.866025i 0.408584 0.707687i
211.4 1.39301 −0.500000 0.866025i −0.0595120 0.500000 0.866025i −0.696507 1.20639i −0.125047 0.216589i −2.86893 −0.500000 + 0.866025i 0.696507 1.20639i
211.5 2.63485 −0.500000 0.866025i 4.94245 0.500000 0.866025i −1.31743 2.28185i −0.434013 0.751733i 7.75293 −0.500000 + 0.866025i 1.31743 2.28185i
346.1 −2.09156 −0.500000 + 0.866025i 2.37462 0.500000 + 0.866025i 1.04578 1.81134i 1.26639 2.19346i −0.783545 −0.500000 0.866025i −1.04578 1.81134i
346.2 −1.75347 −0.500000 + 0.866025i 1.07467 0.500000 + 0.866025i 0.876737 1.51855i −1.23659 + 2.14184i 1.62254 −0.500000 0.866025i −0.876737 1.51855i
346.3 0.817167 −0.500000 + 0.866025i −1.33224 0.500000 + 0.866025i −0.408584 + 0.707687i −1.47074 + 2.54740i −2.72300 −0.500000 0.866025i 0.408584 + 0.707687i
346.4 1.39301 −0.500000 + 0.866025i −0.0595120 0.500000 + 0.866025i −0.696507 + 1.20639i −0.125047 + 0.216589i −2.86893 −0.500000 0.866025i 0.696507 + 1.20639i
346.5 2.63485 −0.500000 + 0.866025i 4.94245 0.500000 + 0.866025i −1.31743 + 2.28185i −0.434013 + 0.751733i 7.75293 −0.500000 0.866025i 1.31743 + 2.28185i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 211.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 465.2.i.e 10
31.c even 3 1 inner 465.2.i.e 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.i.e 10 1.a even 1 1 trivial
465.2.i.e 10 31.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\):

\( T_{2}^{5} - T_{2}^{4} - 8T_{2}^{3} + 6T_{2}^{2} + 14T_{2} - 11 \) Copy content Toggle raw display
\( T_{7}^{10} + 4 T_{7}^{9} + 19 T_{7}^{8} + 38 T_{7}^{7} + 131 T_{7}^{6} + 247 T_{7}^{5} + 575 T_{7}^{4} + \cdots + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{5} - T^{4} - 8 T^{3} + \cdots - 11)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{5} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{10} + 4 T^{9} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{10} - T^{9} + \cdots + 15376 \) Copy content Toggle raw display
$13$ \( T^{10} + T^{9} + \cdots + 3936256 \) Copy content Toggle raw display
$17$ \( T^{10} - T^{9} + \cdots + 5929 \) Copy content Toggle raw display
$19$ \( T^{10} + 7 T^{9} + \cdots + 10201 \) Copy content Toggle raw display
$23$ \( (T^{5} + 13 T^{4} + \cdots + 144)^{2} \) Copy content Toggle raw display
$29$ \( (T^{5} - 3 T^{4} - 34 T^{3} + \cdots - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{10} + 8 T^{9} + \cdots + 28629151 \) Copy content Toggle raw display
$37$ \( T^{10} - 2 T^{9} + \cdots + 1106704 \) Copy content Toggle raw display
$41$ \( T^{10} + 14 T^{9} + \cdots + 13075456 \) Copy content Toggle raw display
$43$ \( T^{10} - 8 T^{9} + \cdots + 394384 \) Copy content Toggle raw display
$47$ \( (T^{5} - 7 T^{4} + \cdots + 163)^{2} \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 266211856 \) Copy content Toggle raw display
$59$ \( T^{10} + 3 T^{9} + \cdots + 795664 \) Copy content Toggle raw display
$61$ \( (T^{5} + T^{4} + \cdots - 11873)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} - 18 T^{9} + \cdots + 35664784 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 361456144 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 33192467344 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 434847609 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots + 201554809 \) Copy content Toggle raw display
$89$ \( (T^{5} + 19 T^{4} + \cdots + 67196)^{2} \) Copy content Toggle raw display
$97$ \( (T^{5} - 19 T^{4} + \cdots + 292)^{2} \) Copy content Toggle raw display
show more
show less