Defining parameters
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(465, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 44 | 92 |
Cusp forms | 120 | 44 | 76 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(465, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
465.2.i.a | $2$ | $3.713$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(1\) | \(4\) | \(q+(-1+\zeta_{6})q^{3}-2q^{4}+\zeta_{6}q^{5}+(4+\cdots)q^{7}+\cdots\) |
465.2.i.b | $4$ | $3.713$ | \(\Q(\sqrt{-3}, \sqrt{97})\) | None | \(0\) | \(2\) | \(2\) | \(0\) | \(q+(1-\beta _{2})q^{3}-2q^{4}+\beta _{2}q^{5}-\beta _{2}q^{9}+\cdots\) |
465.2.i.c | $6$ | $3.713$ | 6.0.309123.1 | None | \(-4\) | \(3\) | \(3\) | \(-2\) | \(q+(-1-\beta _{3})q^{2}+(1-\beta _{4})q^{3}+(3+\beta _{1}+\cdots)q^{4}+\cdots\) |
465.2.i.d | $8$ | $3.713$ | 8.0.\(\cdots\).1 | None | \(0\) | \(-4\) | \(-4\) | \(8\) | \(q-\beta _{6}q^{2}+(-1-\beta _{3})q^{3}+(2+\beta _{2})q^{4}+\cdots\) |
465.2.i.e | $10$ | $3.713$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(2\) | \(-5\) | \(5\) | \(-4\) | \(q-\beta _{2}q^{2}-\beta _{4}q^{3}+(1-\beta _{2}-\beta _{3}+\beta _{6}+\cdots)q^{4}+\cdots\) |
465.2.i.f | $14$ | $3.713$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(2\) | \(7\) | \(-7\) | \(-2\) | \(q-\beta _{2}q^{2}+(1+\beta _{6})q^{3}+(2-\beta _{3})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(465, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(465, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 2}\)