Properties

Label 465.2.i
Level $465$
Weight $2$
Character orbit 465.i
Rep. character $\chi_{465}(211,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $44$
Newform subspaces $6$
Sturm bound $128$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(128\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(465, [\chi])\).

Total New Old
Modular forms 136 44 92
Cusp forms 120 44 76
Eisenstein series 16 0 16

Trace form

\( 44 q + 2 q^{3} + 52 q^{4} - 2 q^{6} + 4 q^{7} - 22 q^{9} - 2 q^{10} - 4 q^{11} + 4 q^{12} + 10 q^{13} + 8 q^{14} - 8 q^{15} + 84 q^{16} + 12 q^{17} - 6 q^{19} - 8 q^{20} + 12 q^{21} - 48 q^{23} - 22 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(465, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
465.2.i.a 465.i 31.c $2$ $3.713$ \(\Q(\sqrt{-3}) \) None 465.2.i.a \(0\) \(-1\) \(1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-2q^{4}+\zeta_{6}q^{5}+(4+\cdots)q^{7}+\cdots\)
465.2.i.b 465.i 31.c $4$ $3.713$ \(\Q(\sqrt{-3}, \sqrt{97})\) None 465.2.i.b \(0\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{3}-2q^{4}+\beta _{2}q^{5}-\beta _{2}q^{9}+\cdots\)
465.2.i.c 465.i 31.c $6$ $3.713$ 6.0.309123.1 None 465.2.i.c \(-4\) \(3\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{3})q^{2}+(1-\beta _{4})q^{3}+(3+\beta _{1}+\cdots)q^{4}+\cdots\)
465.2.i.d 465.i 31.c $8$ $3.713$ 8.0.\(\cdots\).1 None 465.2.i.d \(0\) \(-4\) \(-4\) \(8\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{6}q^{2}+(-1-\beta _{3})q^{3}+(2+\beta _{2})q^{4}+\cdots\)
465.2.i.e 465.i 31.c $10$ $3.713$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 465.2.i.e \(2\) \(-5\) \(5\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}-\beta _{4}q^{3}+(1-\beta _{2}-\beta _{3}+\beta _{6}+\cdots)q^{4}+\cdots\)
465.2.i.f 465.i 31.c $14$ $3.713$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 465.2.i.f \(2\) \(7\) \(-7\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(1+\beta _{6})q^{3}+(2-\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(465, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(465, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 2}\)