Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [465,2,Mod(464,465)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("465.464");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
464.1 | −2.57161 | −0.894699 | − | 1.48308i | 4.61316 | 1.24654 | − | 1.85638i | 2.30081 | + | 3.81389i | 0.730671i | −6.72001 | −1.39903 | + | 2.65381i | −3.20561 | + | 4.77387i | ||||||||
464.2 | −2.57161 | −0.894699 | + | 1.48308i | 4.61316 | 1.24654 | + | 1.85638i | 2.30081 | − | 3.81389i | − | 0.730671i | −6.72001 | −1.39903 | − | 2.65381i | −3.20561 | − | 4.77387i | |||||||
464.3 | −2.57161 | 0.894699 | − | 1.48308i | 4.61316 | 1.24654 | + | 1.85638i | −2.30081 | + | 3.81389i | − | 0.730671i | −6.72001 | −1.39903 | − | 2.65381i | −3.20561 | − | 4.77387i | |||||||
464.4 | −2.57161 | 0.894699 | + | 1.48308i | 4.61316 | 1.24654 | − | 1.85638i | −2.30081 | − | 3.81389i | 0.730671i | −6.72001 | −1.39903 | + | 2.65381i | −3.20561 | + | 4.77387i | ||||||||
464.5 | −2.20453 | −1.64942 | − | 0.528597i | 2.85997 | −0.685489 | + | 2.12840i | 3.63620 | + | 1.16531i | 4.42299i | −1.89584 | 2.44117 | + | 1.74376i | 1.51118 | − | 4.69214i | ||||||||
464.6 | −2.20453 | −1.64942 | + | 0.528597i | 2.85997 | −0.685489 | − | 2.12840i | 3.63620 | − | 1.16531i | − | 4.42299i | −1.89584 | 2.44117 | − | 1.74376i | 1.51118 | + | 4.69214i | |||||||
464.7 | −2.20453 | 1.64942 | − | 0.528597i | 2.85997 | −0.685489 | − | 2.12840i | −3.63620 | + | 1.16531i | − | 4.42299i | −1.89584 | 2.44117 | − | 1.74376i | 1.51118 | + | 4.69214i | |||||||
464.8 | −2.20453 | 1.64942 | + | 0.528597i | 2.85997 | −0.685489 | + | 2.12840i | −3.63620 | − | 1.16531i | 4.42299i | −1.89584 | 2.44117 | + | 1.74376i | 1.51118 | − | 4.69214i | ||||||||
464.9 | −1.11979 | −0.286684 | − | 1.70816i | −0.746077 | 1.75264 | − | 1.38861i | 0.321025 | + | 1.91278i | − | 3.60916i | 3.07502 | −2.83562 | + | 0.979406i | −1.96259 | + | 1.55495i | |||||||
464.10 | −1.11979 | −0.286684 | + | 1.70816i | −0.746077 | 1.75264 | + | 1.38861i | 0.321025 | − | 1.91278i | 3.60916i | 3.07502 | −2.83562 | − | 0.979406i | −1.96259 | − | 1.55495i | ||||||||
464.11 | −1.11979 | 0.286684 | − | 1.70816i | −0.746077 | 1.75264 | + | 1.38861i | −0.321025 | + | 1.91278i | 3.60916i | 3.07502 | −2.83562 | − | 0.979406i | −1.96259 | − | 1.55495i | ||||||||
464.12 | −1.11979 | 0.286684 | + | 1.70816i | −0.746077 | 1.75264 | − | 1.38861i | −0.321025 | − | 1.91278i | − | 3.60916i | 3.07502 | −2.83562 | + | 0.979406i | −1.96259 | + | 1.55495i | |||||||
464.13 | −0.522444 | −1.18184 | − | 1.26620i | −1.72705 | −2.21461 | − | 0.309042i | 0.617444 | + | 0.661518i | − | 3.85710i | 1.94718 | −0.206518 | + | 2.99288i | 1.15701 | + | 0.161457i | |||||||
464.14 | −0.522444 | −1.18184 | + | 1.26620i | −1.72705 | −2.21461 | + | 0.309042i | 0.617444 | − | 0.661518i | 3.85710i | 1.94718 | −0.206518 | − | 2.99288i | 1.15701 | − | 0.161457i | ||||||||
464.15 | −0.522444 | 1.18184 | − | 1.26620i | −1.72705 | −2.21461 | + | 0.309042i | −0.617444 | + | 0.661518i | 3.85710i | 1.94718 | −0.206518 | − | 2.99288i | 1.15701 | − | 0.161457i | ||||||||
464.16 | −0.522444 | 1.18184 | + | 1.26620i | −1.72705 | −2.21461 | − | 0.309042i | −0.617444 | − | 0.661518i | − | 3.85710i | 1.94718 | −0.206518 | + | 2.99288i | 1.15701 | + | 0.161457i | |||||||
464.17 | 0.522444 | −1.18184 | − | 1.26620i | −1.72705 | 2.21461 | − | 0.309042i | −0.617444 | − | 0.661518i | 3.85710i | −1.94718 | −0.206518 | + | 2.99288i | 1.15701 | − | 0.161457i | ||||||||
464.18 | 0.522444 | −1.18184 | + | 1.26620i | −1.72705 | 2.21461 | + | 0.309042i | −0.617444 | + | 0.661518i | − | 3.85710i | −1.94718 | −0.206518 | − | 2.99288i | 1.15701 | + | 0.161457i | |||||||
464.19 | 0.522444 | 1.18184 | − | 1.26620i | −1.72705 | 2.21461 | + | 0.309042i | 0.617444 | − | 0.661518i | − | 3.85710i | −1.94718 | −0.206518 | − | 2.99288i | 1.15701 | + | 0.161457i | |||||||
464.20 | 0.522444 | 1.18184 | + | 1.26620i | −1.72705 | 2.21461 | − | 0.309042i | 0.617444 | + | 0.661518i | 3.85710i | −1.94718 | −0.206518 | + | 2.99288i | 1.15701 | − | 0.161457i | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
31.b | odd | 2 | 1 | inner |
93.c | even | 2 | 1 | inner |
155.c | odd | 2 | 1 | inner |
465.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.g.f | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
5.b | even | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
15.d | odd | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
31.b | odd | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
93.c | even | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
155.c | odd | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
465.g | even | 2 | 1 | inner | 465.2.g.f | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.g.f | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
465.2.g.f | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
465.2.g.f | ✓ | 32 | 5.b | even | 2 | 1 | inner |
465.2.g.f | ✓ | 32 | 15.d | odd | 2 | 1 | inner |
465.2.g.f | ✓ | 32 | 31.b | odd | 2 | 1 | inner |
465.2.g.f | ✓ | 32 | 93.c | even | 2 | 1 | inner |
465.2.g.f | ✓ | 32 | 155.c | odd | 2 | 1 | inner |
465.2.g.f | ✓ | 32 | 465.g | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\):
\( T_{2}^{8} - 13T_{2}^{6} + 50T_{2}^{4} - 53T_{2}^{2} + 11 \)
|
\( T_{37}^{8} - 118T_{37}^{6} + 3568T_{37}^{4} - 5208T_{37}^{2} + 1936 \)
|