Properties

Label 465.2.g.d
Level $465$
Weight $2$
Character orbit 465.g
Analytic conductor $3.713$
Analytic rank $0$
Dimension $8$
CM discriminant -155
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [465,2,Mod(464,465)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(465, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("465.464");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.37827420160000.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - 2 q^{4} + \beta_{4} q^{5} + \beta_{2} q^{9} - 2 \beta_1 q^{12} + ( - \beta_{7} - \beta_{5}) q^{13} - \beta_{7} q^{15} + 4 q^{16} + (\beta_{5} + \beta_{3} - \beta_1) q^{17} + (\beta_{4} - 2 \beta_{2}) q^{19}+ \cdots + ( - 2 \beta_{6} - 1) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 32 q^{16} - 40 q^{25} + 4 q^{39} - 20 q^{45} + 56 q^{49} + 28 q^{51} - 64 q^{64} - 44 q^{69} + 52 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 13x^{4} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} - 4\nu^{2} ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 9\nu^{5} - 13\nu^{3} - 63\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{4} - 7 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + 4\nu^{3} ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} + 3\beta_{5} + \beta_{3} + 7\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{4} + 4\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -9\beta_{7} + 4\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
464.1
−1.70057 0.328723i
−1.70057 + 0.328723i
−0.328723 1.70057i
−0.328723 + 1.70057i
0.328723 1.70057i
0.328723 + 1.70057i
1.70057 0.328723i
1.70057 + 0.328723i
0 −1.70057 0.328723i −2.00000 2.23607i 0 0 0 2.78388 + 1.11803i 0
464.2 0 −1.70057 + 0.328723i −2.00000 2.23607i 0 0 0 2.78388 1.11803i 0
464.3 0 −0.328723 1.70057i −2.00000 2.23607i 0 0 0 −2.78388 + 1.11803i 0
464.4 0 −0.328723 + 1.70057i −2.00000 2.23607i 0 0 0 −2.78388 1.11803i 0
464.5 0 0.328723 1.70057i −2.00000 2.23607i 0 0 0 −2.78388 1.11803i 0
464.6 0 0.328723 + 1.70057i −2.00000 2.23607i 0 0 0 −2.78388 + 1.11803i 0
464.7 0 1.70057 0.328723i −2.00000 2.23607i 0 0 0 2.78388 1.11803i 0
464.8 0 1.70057 + 0.328723i −2.00000 2.23607i 0 0 0 2.78388 + 1.11803i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 464.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
155.c odd 2 1 CM by \(\Q(\sqrt{-155}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
31.b odd 2 1 inner
93.c even 2 1 inner
465.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 465.2.g.d 8
3.b odd 2 1 inner 465.2.g.d 8
5.b even 2 1 inner 465.2.g.d 8
15.d odd 2 1 inner 465.2.g.d 8
31.b odd 2 1 inner 465.2.g.d 8
93.c even 2 1 inner 465.2.g.d 8
155.c odd 2 1 CM 465.2.g.d 8
465.g even 2 1 inner 465.2.g.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.g.d 8 1.a even 1 1 trivial
465.2.g.d 8 3.b odd 2 1 inner
465.2.g.d 8 5.b even 2 1 inner
465.2.g.d 8 15.d odd 2 1 inner
465.2.g.d 8 31.b odd 2 1 inner
465.2.g.d 8 93.c even 2 1 inner
465.2.g.d 8 155.c odd 2 1 CM
465.2.g.d 8 465.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{37}^{4} - 148T_{37}^{2} + 5445 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 13T^{4} + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 52 T^{2} + 180)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 68 T^{2} + 1125)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 31)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 92 T^{2} + 1620)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{2} - 31)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} - 148 T^{2} + 5445)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 155)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 172 T^{2} + 3645)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 212 T^{2} + 45)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 155)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 5)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} - 292 T^{2} + 10125)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 332 T^{2} + 23805)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less