Properties

Label 465.2.g.c
Level $465$
Weight $2$
Character orbit 465.g
Analytic conductor $3.713$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [465,2,Mod(464,465)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(465, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("465.464");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + (\beta_{2} + 2) q^{3} + ( - \beta_{3} - 2 \beta_{2} - 1) q^{5} + ( - \beta_{3} + \beta_1) q^{6} + ( - \beta_{3} - 2 \beta_1) q^{7} + 2 \beta_{3} q^{8} + (3 \beta_{2} + 3) q^{9} + ( - \beta_{3} - 2 \beta_1 + 2) q^{10}+ \cdots + 9 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 6 q^{9} + 8 q^{10} + 6 q^{15} - 16 q^{16} - 4 q^{19} + 24 q^{22} - 4 q^{25} + 12 q^{30} - 20 q^{31} - 12 q^{37} - 16 q^{40} + 12 q^{42} - 36 q^{43} + 18 q^{45} - 24 q^{48} + 4 q^{49} - 6 q^{51}+ \cdots + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
464.1
−0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 1.22474i
0.707107 + 1.22474i
−1.41421 1.50000 0.866025i 0 −1.41421 + 1.73205i −2.12132 + 1.22474i 2.44949i 2.82843 1.50000 2.59808i 2.00000 2.44949i
464.2 −1.41421 1.50000 + 0.866025i 0 −1.41421 1.73205i −2.12132 1.22474i 2.44949i 2.82843 1.50000 + 2.59808i 2.00000 + 2.44949i
464.3 1.41421 1.50000 0.866025i 0 1.41421 + 1.73205i 2.12132 1.22474i 2.44949i −2.82843 1.50000 2.59808i 2.00000 + 2.44949i
464.4 1.41421 1.50000 + 0.866025i 0 1.41421 1.73205i 2.12132 + 1.22474i 2.44949i −2.82843 1.50000 + 2.59808i 2.00000 2.44949i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
155.c odd 2 1 inner
465.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 465.2.g.c yes 4
3.b odd 2 1 inner 465.2.g.c yes 4
5.b even 2 1 465.2.g.a 4
15.d odd 2 1 465.2.g.a 4
31.b odd 2 1 465.2.g.a 4
93.c even 2 1 465.2.g.a 4
155.c odd 2 1 inner 465.2.g.c yes 4
465.g even 2 1 inner 465.2.g.c yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.2.g.a 4 5.b even 2 1
465.2.g.a 4 15.d odd 2 1
465.2.g.a 4 31.b odd 2 1
465.2.g.a 4 93.c even 2 1
465.2.g.c yes 4 1.a even 1 1 trivial
465.2.g.c yes 4 3.b odd 2 1 inner
465.2.g.c yes 4 155.c odd 2 1 inner
465.2.g.c yes 4 465.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\):

\( T_{2}^{2} - 2 \) Copy content Toggle raw display
\( T_{37} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 10 T + 31)^{2} \) Copy content Toggle raw display
$37$ \( (T + 3)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$43$ \( (T + 9)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 75)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 96)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 147)^{2} \) Copy content Toggle raw display
$73$ \( (T - 3)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 162)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
show more
show less