Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [465,2,Mod(94,465)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("465.94");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 465 = 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 465.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.71304369399\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 | − | 2.73720i | 1.00000i | −5.49226 | −0.841130 | − | 2.07184i | 2.73720 | 2.97118i | 9.55900i | −1.00000 | −5.67102 | + | 2.30234i | |||||||||||||
94.2 | − | 2.61420i | − | 1.00000i | −4.83402 | −0.308027 | + | 2.21475i | −2.61420 | 4.28641i | 7.40869i | −1.00000 | 5.78979 | + | 0.805243i | ||||||||||||
94.3 | − | 2.60996i | 1.00000i | −4.81187 | 1.75621 | + | 1.38410i | 2.60996 | − | 1.35174i | 7.33885i | −1.00000 | 3.61243 | − | 4.58364i | ||||||||||||
94.4 | − | 2.15913i | 1.00000i | −2.66183 | −1.85009 | + | 1.25586i | 2.15913 | − | 2.73322i | 1.42896i | −1.00000 | 2.71156 | + | 3.99457i | ||||||||||||
94.5 | − | 2.11614i | − | 1.00000i | −2.47806 | 1.31056 | − | 1.81175i | −2.11614 | 1.31151i | 1.01163i | −1.00000 | −3.83391 | − | 2.77334i | ||||||||||||
94.6 | − | 1.65822i | − | 1.00000i | −0.749697 | −0.117620 | − | 2.23297i | −1.65822 | 0.225788i | − | 2.07328i | −1.00000 | −3.70276 | + | 0.195040i | |||||||||||
94.7 | − | 1.34956i | 1.00000i | 0.178679 | 1.58199 | − | 1.58029i | 1.34956 | 3.66966i | − | 2.94027i | −1.00000 | −2.13270 | − | 2.13499i | ||||||||||||
94.8 | − | 1.31655i | 1.00000i | 0.266704 | 2.22783 | − | 0.191783i | 1.31655 | − | 4.78991i | − | 2.98422i | −1.00000 | −0.252491 | − | 2.93304i | |||||||||||
94.9 | − | 0.523109i | − | 1.00000i | 1.72636 | 0.328261 | + | 2.21184i | −0.523109 | 3.11438i | − | 1.94929i | −1.00000 | 1.15703 | − | 0.171716i | |||||||||||
94.10 | − | 0.364910i | − | 1.00000i | 1.86684 | −2.16572 | + | 0.556482i | −0.364910 | 0.715024i | − | 1.41105i | −1.00000 | 0.203066 | + | 0.790293i | |||||||||||
94.11 | − | 0.104188i | 1.00000i | 1.98914 | −1.92227 | + | 1.14231i | 0.104188 | 3.88714i | − | 0.415622i | −1.00000 | 0.119015 | + | 0.200278i | ||||||||||||
94.12 | 0.104188i | − | 1.00000i | 1.98914 | −1.92227 | − | 1.14231i | 0.104188 | − | 3.88714i | 0.415622i | −1.00000 | 0.119015 | − | 0.200278i | ||||||||||||
94.13 | 0.364910i | 1.00000i | 1.86684 | −2.16572 | − | 0.556482i | −0.364910 | − | 0.715024i | 1.41105i | −1.00000 | 0.203066 | − | 0.790293i | |||||||||||||
94.14 | 0.523109i | 1.00000i | 1.72636 | 0.328261 | − | 2.21184i | −0.523109 | − | 3.11438i | 1.94929i | −1.00000 | 1.15703 | + | 0.171716i | |||||||||||||
94.15 | 1.31655i | − | 1.00000i | 0.266704 | 2.22783 | + | 0.191783i | 1.31655 | 4.78991i | 2.98422i | −1.00000 | −0.252491 | + | 2.93304i | |||||||||||||
94.16 | 1.34956i | − | 1.00000i | 0.178679 | 1.58199 | + | 1.58029i | 1.34956 | − | 3.66966i | 2.94027i | −1.00000 | −2.13270 | + | 2.13499i | ||||||||||||
94.17 | 1.65822i | 1.00000i | −0.749697 | −0.117620 | + | 2.23297i | −1.65822 | − | 0.225788i | 2.07328i | −1.00000 | −3.70276 | − | 0.195040i | |||||||||||||
94.18 | 2.11614i | 1.00000i | −2.47806 | 1.31056 | + | 1.81175i | −2.11614 | − | 1.31151i | − | 1.01163i | −1.00000 | −3.83391 | + | 2.77334i | ||||||||||||
94.19 | 2.15913i | − | 1.00000i | −2.66183 | −1.85009 | − | 1.25586i | 2.15913 | 2.73322i | − | 1.42896i | −1.00000 | 2.71156 | − | 3.99457i | ||||||||||||
94.20 | 2.60996i | − | 1.00000i | −4.81187 | 1.75621 | − | 1.38410i | 2.60996 | 1.35174i | − | 7.33885i | −1.00000 | 3.61243 | + | 4.58364i | ||||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 465.2.c.b | ✓ | 22 |
3.b | odd | 2 | 1 | 1395.2.c.h | 22 | ||
5.b | even | 2 | 1 | inner | 465.2.c.b | ✓ | 22 |
5.c | odd | 4 | 1 | 2325.2.a.bc | 11 | ||
5.c | odd | 4 | 1 | 2325.2.a.bd | 11 | ||
15.d | odd | 2 | 1 | 1395.2.c.h | 22 | ||
15.e | even | 4 | 1 | 6975.2.a.ci | 11 | ||
15.e | even | 4 | 1 | 6975.2.a.cj | 11 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
465.2.c.b | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
465.2.c.b | ✓ | 22 | 5.b | even | 2 | 1 | inner |
1395.2.c.h | 22 | 3.b | odd | 2 | 1 | ||
1395.2.c.h | 22 | 15.d | odd | 2 | 1 | ||
2325.2.a.bc | 11 | 5.c | odd | 4 | 1 | ||
2325.2.a.bd | 11 | 5.c | odd | 4 | 1 | ||
6975.2.a.ci | 11 | 15.e | even | 4 | 1 | ||
6975.2.a.cj | 11 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{22} + 37 T_{2}^{20} + 582 T_{2}^{18} + 5076 T_{2}^{16} + 26847 T_{2}^{14} + 88469 T_{2}^{12} + \cdots + 25 \)
acting on \(S_{2}^{\mathrm{new}}(465, [\chi])\).