Properties

Label 465.2.c.a.94.1
Level $465$
Weight $2$
Character 465.94
Analytic conductor $3.713$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [465,2,Mod(94,465)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("465.94"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(465, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 465 = 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 465.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.71304369399\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.1016580161536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 12x^{8} + 48x^{6} + 72x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 94.1
Root \(2.10518i\) of defining polynomial
Character \(\chi\) \(=\) 465.94
Dual form 465.2.c.a.94.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.58691i q^{2} -1.00000i q^{3} -4.69208 q^{4} +(-2.10518 - 0.753811i) q^{5} -2.58691 q^{6} -3.58691i q^{7} +6.96416i q^{8} -1.00000 q^{9} +(-1.95004 + 5.44589i) q^{10} +0.908949 q^{11} +4.69208i q^{12} +2.27208i q^{13} -9.27899 q^{14} +(-0.753811 + 2.10518i) q^{15} +8.63147 q^{16} -0.477180i q^{17} +2.58691i q^{18} +2.95004 q^{19} +(9.87766 + 3.53695i) q^{20} -3.58691 q^{21} -2.35137i q^{22} -6.10865i q^{23} +6.96416 q^{24} +(3.86354 + 3.17381i) q^{25} +5.87766 q^{26} +1.00000i q^{27} +16.8301i q^{28} -6.96871 q^{29} +(5.44589 + 1.95004i) q^{30} -1.00000 q^{31} -8.40048i q^{32} -0.908949i q^{33} -1.23442 q^{34} +(-2.70385 + 7.55107i) q^{35} +4.69208 q^{36} +8.99461i q^{37} -7.63147i q^{38} +2.27208 q^{39} +(5.24967 - 14.6608i) q^{40} +1.06752 q^{41} +9.27899i q^{42} +2.99545i q^{43} -4.26486 q^{44} +(2.10518 + 0.753811i) q^{45} -15.8025 q^{46} -12.7484i q^{47} -8.63147i q^{48} -5.86589 q^{49} +(8.21035 - 9.99461i) q^{50} -0.477180 q^{51} -10.6608i q^{52} -11.2038i q^{53} +2.58691 q^{54} +(-1.91350 - 0.685176i) q^{55} +24.9798 q^{56} -2.95004i q^{57} +18.0274i q^{58} -7.93217 q^{59} +(3.53695 - 9.87766i) q^{60} -10.9783 q^{61} +2.58691i q^{62} +3.58691i q^{63} -4.46831 q^{64} +(1.71272 - 4.78313i) q^{65} -2.35137 q^{66} -10.8018i q^{67} +2.23897i q^{68} -6.10865 q^{69} +(19.5339 + 6.99461i) q^{70} -13.9150 q^{71} -6.96416i q^{72} +3.35526i q^{73} +23.2682 q^{74} +(3.17381 - 3.86354i) q^{75} -13.8418 q^{76} -3.26031i q^{77} -5.87766i q^{78} +15.3540 q^{79} +(-18.1708 - 6.50650i) q^{80} +1.00000 q^{81} -2.76156i q^{82} +14.6010i q^{83} +16.8301 q^{84} +(-0.359704 + 1.00455i) q^{85} +7.74895 q^{86} +6.96871i q^{87} +6.33007i q^{88} -4.85556 q^{89} +(1.95004 - 5.44589i) q^{90} +8.14974 q^{91} +28.6623i q^{92} +1.00000i q^{93} -32.9790 q^{94} +(-6.21035 - 2.22377i) q^{95} -8.40048 q^{96} -11.1914i q^{97} +15.1745i q^{98} -0.908949 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 6 q^{4} - 6 q^{6} - 10 q^{9} + 2 q^{10} - 32 q^{14} + 2 q^{15} + 6 q^{16} + 8 q^{19} + 28 q^{20} - 16 q^{21} + 18 q^{24} - 2 q^{25} - 12 q^{26} - 8 q^{29} + 4 q^{30} - 10 q^{31} - 12 q^{34} + 4 q^{35}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/465\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(406\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58691i 1.82922i −0.404339 0.914609i \(-0.632498\pi\)
0.404339 0.914609i \(-0.367502\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −4.69208 −2.34604
\(5\) −2.10518 0.753811i −0.941464 0.337115i
\(6\) −2.58691 −1.05610
\(7\) 3.58691i 1.35572i −0.735190 0.677862i \(-0.762907\pi\)
0.735190 0.677862i \(-0.237093\pi\)
\(8\) 6.96416i 2.46220i
\(9\) −1.00000 −0.333333
\(10\) −1.95004 + 5.44589i −0.616656 + 1.72214i
\(11\) 0.908949 0.274058 0.137029 0.990567i \(-0.456245\pi\)
0.137029 + 0.990567i \(0.456245\pi\)
\(12\) 4.69208i 1.35449i
\(13\) 2.27208i 0.630162i 0.949065 + 0.315081i \(0.102032\pi\)
−0.949065 + 0.315081i \(0.897968\pi\)
\(14\) −9.27899 −2.47991
\(15\) −0.753811 + 2.10518i −0.194633 + 0.543554i
\(16\) 8.63147 2.15787
\(17\) 0.477180i 0.115733i −0.998324 0.0578666i \(-0.981570\pi\)
0.998324 0.0578666i \(-0.0184298\pi\)
\(18\) 2.58691i 0.609740i
\(19\) 2.95004 0.676785 0.338393 0.941005i \(-0.390117\pi\)
0.338393 + 0.941005i \(0.390117\pi\)
\(20\) 9.87766 + 3.53695i 2.20871 + 0.790885i
\(21\) −3.58691 −0.782727
\(22\) 2.35137i 0.501313i
\(23\) 6.10865i 1.27374i −0.770970 0.636871i \(-0.780228\pi\)
0.770970 0.636871i \(-0.219772\pi\)
\(24\) 6.96416 1.42155
\(25\) 3.86354 + 3.17381i 0.772707 + 0.634762i
\(26\) 5.87766 1.15270
\(27\) 1.00000i 0.192450i
\(28\) 16.8301i 3.18058i
\(29\) −6.96871 −1.29406 −0.647029 0.762466i \(-0.723989\pi\)
−0.647029 + 0.762466i \(0.723989\pi\)
\(30\) 5.44589 + 1.95004i 0.994280 + 0.356027i
\(31\) −1.00000 −0.179605
\(32\) 8.40048i 1.48501i
\(33\) 0.908949i 0.158228i
\(34\) −1.23442 −0.211701
\(35\) −2.70385 + 7.55107i −0.457034 + 1.27636i
\(36\) 4.69208 0.782014
\(37\) 8.99461i 1.47870i 0.673319 + 0.739352i \(0.264868\pi\)
−0.673319 + 0.739352i \(0.735132\pi\)
\(38\) 7.63147i 1.23799i
\(39\) 2.27208 0.363824
\(40\) 5.24967 14.6608i 0.830045 2.31808i
\(41\) 1.06752 0.166718 0.0833590 0.996520i \(-0.473435\pi\)
0.0833590 + 0.996520i \(0.473435\pi\)
\(42\) 9.27899i 1.43178i
\(43\) 2.99545i 0.456802i 0.973567 + 0.228401i \(0.0733497\pi\)
−0.973567 + 0.228401i \(0.926650\pi\)
\(44\) −4.26486 −0.642952
\(45\) 2.10518 + 0.753811i 0.313821 + 0.112372i
\(46\) −15.8025 −2.32995
\(47\) 12.7484i 1.85955i −0.368131 0.929774i \(-0.620002\pi\)
0.368131 0.929774i \(-0.379998\pi\)
\(48\) 8.63147i 1.24585i
\(49\) −5.86589 −0.837985
\(50\) 8.21035 9.99461i 1.16112 1.41345i
\(51\) −0.477180 −0.0668186
\(52\) 10.6608i 1.47839i
\(53\) 11.2038i 1.53897i −0.638667 0.769483i \(-0.720514\pi\)
0.638667 0.769483i \(-0.279486\pi\)
\(54\) 2.58691 0.352033
\(55\) −1.91350 0.685176i −0.258016 0.0923891i
\(56\) 24.9798 3.33807
\(57\) 2.95004i 0.390742i
\(58\) 18.0274i 2.36711i
\(59\) −7.93217 −1.03268 −0.516340 0.856383i \(-0.672706\pi\)
−0.516340 + 0.856383i \(0.672706\pi\)
\(60\) 3.53695 9.87766i 0.456618 1.27520i
\(61\) −10.9783 −1.40563 −0.702813 0.711375i \(-0.748073\pi\)
−0.702813 + 0.711375i \(0.748073\pi\)
\(62\) 2.58691i 0.328537i
\(63\) 3.58691i 0.451908i
\(64\) −4.46831 −0.558539
\(65\) 1.71272 4.78313i 0.212437 0.593275i
\(66\) −2.35137 −0.289433
\(67\) 10.8018i 1.31965i −0.751419 0.659825i \(-0.770630\pi\)
0.751419 0.659825i \(-0.229370\pi\)
\(68\) 2.23897i 0.271515i
\(69\) −6.10865 −0.735396
\(70\) 19.5339 + 6.99461i 2.33475 + 0.836015i
\(71\) −13.9150 −1.65141 −0.825704 0.564104i \(-0.809222\pi\)
−0.825704 + 0.564104i \(0.809222\pi\)
\(72\) 6.96416i 0.820735i
\(73\) 3.35526i 0.392703i 0.980534 + 0.196352i \(0.0629094\pi\)
−0.980534 + 0.196352i \(0.937091\pi\)
\(74\) 23.2682 2.70487
\(75\) 3.17381 3.86354i 0.366480 0.446123i
\(76\) −13.8418 −1.58777
\(77\) 3.26031i 0.371547i
\(78\) 5.87766i 0.665514i
\(79\) 15.3540 1.72745 0.863727 0.503960i \(-0.168124\pi\)
0.863727 + 0.503960i \(0.168124\pi\)
\(80\) −18.1708 6.50650i −2.03155 0.727449i
\(81\) 1.00000 0.111111
\(82\) 2.76156i 0.304964i
\(83\) 14.6010i 1.60267i 0.598215 + 0.801336i \(0.295877\pi\)
−0.598215 + 0.801336i \(0.704123\pi\)
\(84\) 16.8301 1.83631
\(85\) −0.359704 + 1.00455i −0.0390154 + 0.108959i
\(86\) 7.74895 0.835591
\(87\) 6.96871i 0.747125i
\(88\) 6.33007i 0.674788i
\(89\) −4.85556 −0.514688 −0.257344 0.966320i \(-0.582847\pi\)
−0.257344 + 0.966320i \(0.582847\pi\)
\(90\) 1.95004 5.44589i 0.205552 0.574048i
\(91\) 8.14974 0.854325
\(92\) 28.6623i 2.98825i
\(93\) 1.00000i 0.103695i
\(94\) −32.9790 −3.40152
\(95\) −6.21035 2.22377i −0.637169 0.228154i
\(96\) −8.40048 −0.857371
\(97\) 11.1914i 1.13631i −0.822921 0.568156i \(-0.807657\pi\)
0.822921 0.568156i \(-0.192343\pi\)
\(98\) 15.1745i 1.53286i
\(99\) −0.908949 −0.0913528
\(100\) −18.1280 14.8918i −1.81280 1.48918i
\(101\) 0.0849038 0.00844824 0.00422412 0.999991i \(-0.498655\pi\)
0.00422412 + 0.999991i \(0.498655\pi\)
\(102\) 1.23442i 0.122226i
\(103\) 12.1556i 1.19772i −0.800852 0.598862i \(-0.795620\pi\)
0.800852 0.598862i \(-0.204380\pi\)
\(104\) −15.8232 −1.55159
\(105\) 7.55107 + 2.70385i 0.736909 + 0.263869i
\(106\) −28.9833 −2.81511
\(107\) 2.01952i 0.195234i −0.995224 0.0976171i \(-0.968878\pi\)
0.995224 0.0976171i \(-0.0311221\pi\)
\(108\) 4.69208i 0.451496i
\(109\) 6.73295 0.644899 0.322450 0.946587i \(-0.395494\pi\)
0.322450 + 0.946587i \(0.395494\pi\)
\(110\) −1.77249 + 4.95004i −0.169000 + 0.471968i
\(111\) 8.99461 0.853730
\(112\) 30.9603i 2.92547i
\(113\) 15.6406i 1.47134i 0.677339 + 0.735671i \(0.263133\pi\)
−0.677339 + 0.735671i \(0.736867\pi\)
\(114\) −7.63147 −0.714753
\(115\) −4.60477 + 12.8598i −0.429397 + 1.19918i
\(116\) 32.6978 3.03591
\(117\) 2.27208i 0.210054i
\(118\) 20.5198i 1.88900i
\(119\) −1.71160 −0.156902
\(120\) −14.6608 5.24967i −1.33834 0.479227i
\(121\) −10.1738 −0.924892
\(122\) 28.3998i 2.57120i
\(123\) 1.06752i 0.0962546i
\(124\) 4.69208 0.421361
\(125\) −5.74097 9.59381i −0.513488 0.858097i
\(126\) 9.27899 0.826638
\(127\) 1.96737i 0.174576i 0.996183 + 0.0872878i \(0.0278200\pi\)
−0.996183 + 0.0872878i \(0.972180\pi\)
\(128\) 5.24187i 0.463320i
\(129\) 2.99545 0.263735
\(130\) −12.3735 4.43065i −1.08523 0.388594i
\(131\) 18.2065 1.59071 0.795355 0.606144i \(-0.207284\pi\)
0.795355 + 0.606144i \(0.207284\pi\)
\(132\) 4.26486i 0.371209i
\(133\) 10.5815i 0.917534i
\(134\) −27.9433 −2.41393
\(135\) 0.753811 2.10518i 0.0648778 0.181185i
\(136\) 3.32316 0.284959
\(137\) 9.22738i 0.788348i −0.919036 0.394174i \(-0.871031\pi\)
0.919036 0.394174i \(-0.128969\pi\)
\(138\) 15.8025i 1.34520i
\(139\) −1.67631 −0.142182 −0.0710912 0.997470i \(-0.522648\pi\)
−0.0710912 + 0.997470i \(0.522648\pi\)
\(140\) 12.6867 35.4302i 1.07222 2.99440i
\(141\) −12.7484 −1.07361
\(142\) 35.9968i 3.02079i
\(143\) 2.06521i 0.172701i
\(144\) −8.63147 −0.719289
\(145\) 14.6704 + 5.25310i 1.21831 + 0.436246i
\(146\) 8.67973 0.718340
\(147\) 5.86589i 0.483811i
\(148\) 42.2034i 3.46910i
\(149\) 15.2671 1.25073 0.625364 0.780333i \(-0.284950\pi\)
0.625364 + 0.780333i \(0.284950\pi\)
\(150\) −9.99461 8.21035i −0.816056 0.670373i
\(151\) −7.33698 −0.597075 −0.298537 0.954398i \(-0.596499\pi\)
−0.298537 + 0.954398i \(0.596499\pi\)
\(152\) 20.5446i 1.66638i
\(153\) 0.477180i 0.0385777i
\(154\) −8.43413 −0.679641
\(155\) 2.10518 + 0.753811i 0.169092 + 0.0605476i
\(156\) −10.6608 −0.853547
\(157\) 1.78946i 0.142814i 0.997447 + 0.0714072i \(0.0227490\pi\)
−0.997447 + 0.0714072i \(0.977251\pi\)
\(158\) 39.7192i 3.15989i
\(159\) −11.2038 −0.888522
\(160\) −6.33238 + 17.6845i −0.500618 + 1.39808i
\(161\) −21.9112 −1.72684
\(162\) 2.58691i 0.203247i
\(163\) 15.0336i 1.17752i −0.808308 0.588759i \(-0.799617\pi\)
0.808308 0.588759i \(-0.200383\pi\)
\(164\) −5.00887 −0.391127
\(165\) −0.685176 + 1.91350i −0.0533409 + 0.148966i
\(166\) 37.7715 2.93164
\(167\) 7.26503i 0.562185i 0.959681 + 0.281092i \(0.0906967\pi\)
−0.959681 + 0.281092i \(0.909303\pi\)
\(168\) 24.9798i 1.92723i
\(169\) 7.83764 0.602896
\(170\) 2.59867 + 0.930520i 0.199309 + 0.0713677i
\(171\) −2.95004 −0.225595
\(172\) 14.0549i 1.07168i
\(173\) 10.3984i 0.790575i −0.918557 0.395288i \(-0.870645\pi\)
0.918557 0.395288i \(-0.129355\pi\)
\(174\) 18.0274 1.36665
\(175\) 11.3842 13.8581i 0.860562 1.04758i
\(176\) 7.84557 0.591382
\(177\) 7.93217i 0.596219i
\(178\) 12.5609i 0.941477i
\(179\) 12.6366 0.944504 0.472252 0.881464i \(-0.343441\pi\)
0.472252 + 0.881464i \(0.343441\pi\)
\(180\) −9.87766 3.53695i −0.736237 0.263628i
\(181\) 11.6810 0.868243 0.434122 0.900854i \(-0.357059\pi\)
0.434122 + 0.900854i \(0.357059\pi\)
\(182\) 21.0826i 1.56275i
\(183\) 10.9783i 0.811539i
\(184\) 42.5417 3.13621
\(185\) 6.78024 18.9352i 0.498493 1.39215i
\(186\) 2.58691 0.189681
\(187\) 0.433733i 0.0317177i
\(188\) 59.8166i 4.36258i
\(189\) 3.58691 0.260909
\(190\) −5.75269 + 16.0656i −0.417344 + 1.16552i
\(191\) −2.43675 −0.176317 −0.0881584 0.996106i \(-0.528098\pi\)
−0.0881584 + 0.996106i \(0.528098\pi\)
\(192\) 4.46831i 0.322472i
\(193\) 11.5074i 0.828323i −0.910203 0.414162i \(-0.864075\pi\)
0.910203 0.414162i \(-0.135925\pi\)
\(194\) −28.9510 −2.07856
\(195\) −4.78313 1.71272i −0.342527 0.122651i
\(196\) 27.5233 1.96595
\(197\) 13.5963i 0.968696i −0.874875 0.484348i \(-0.839057\pi\)
0.874875 0.484348i \(-0.160943\pi\)
\(198\) 2.35137i 0.167104i
\(199\) 11.5595 0.819433 0.409717 0.912213i \(-0.365628\pi\)
0.409717 + 0.912213i \(0.365628\pi\)
\(200\) −22.1029 + 26.9063i −1.56291 + 1.90256i
\(201\) −10.8018 −0.761901
\(202\) 0.219638i 0.0154537i
\(203\) 24.9961i 1.75438i
\(204\) 2.23897 0.156759
\(205\) −2.24731 0.804705i −0.156959 0.0562031i
\(206\) −31.4453 −2.19090
\(207\) 6.10865i 0.424581i
\(208\) 19.6114i 1.35981i
\(209\) 2.68143 0.185479
\(210\) 6.99461 19.5339i 0.482674 1.34797i
\(211\) 4.88493 0.336292 0.168146 0.985762i \(-0.446222\pi\)
0.168146 + 0.985762i \(0.446222\pi\)
\(212\) 52.5693i 3.61048i
\(213\) 13.9150i 0.953441i
\(214\) −5.22430 −0.357126
\(215\) 2.25800 6.30595i 0.153995 0.430062i
\(216\) −6.96416 −0.473851
\(217\) 3.58691i 0.243495i
\(218\) 17.4175i 1.17966i
\(219\) 3.35526 0.226727
\(220\) 8.97829 + 3.21490i 0.605316 + 0.216749i
\(221\) 1.08419 0.0729307
\(222\) 23.2682i 1.56166i
\(223\) 2.71673i 0.181926i −0.995854 0.0909629i \(-0.971006\pi\)
0.995854 0.0909629i \(-0.0289945\pi\)
\(224\) −30.1317 −2.01326
\(225\) −3.86354 3.17381i −0.257569 0.211587i
\(226\) 40.4607 2.69140
\(227\) 15.8826i 1.05417i −0.849813 0.527084i \(-0.823285\pi\)
0.849813 0.527084i \(-0.176715\pi\)
\(228\) 13.8418i 0.916697i
\(229\) 4.20248 0.277708 0.138854 0.990313i \(-0.455658\pi\)
0.138854 + 0.990313i \(0.455658\pi\)
\(230\) 33.2671 + 11.9121i 2.19357 + 0.785462i
\(231\) −3.26031 −0.214513
\(232\) 48.5313i 3.18623i
\(233\) 15.7806i 1.03382i −0.856039 0.516912i \(-0.827081\pi\)
0.856039 0.516912i \(-0.172919\pi\)
\(234\) −5.87766 −0.384235
\(235\) −9.60990 + 26.8377i −0.626881 + 1.75070i
\(236\) 37.2184 2.42271
\(237\) 15.3540i 0.997346i
\(238\) 4.42775i 0.287008i
\(239\) 8.89923 0.575643 0.287822 0.957684i \(-0.407069\pi\)
0.287822 + 0.957684i \(0.407069\pi\)
\(240\) −6.50650 + 18.1708i −0.419993 + 1.17292i
\(241\) −24.9570 −1.60762 −0.803811 0.594885i \(-0.797197\pi\)
−0.803811 + 0.594885i \(0.797197\pi\)
\(242\) 26.3187i 1.69183i
\(243\) 1.00000i 0.0641500i
\(244\) 51.5110 3.29766
\(245\) 12.3487 + 4.42178i 0.788932 + 0.282497i
\(246\) −2.76156 −0.176071
\(247\) 6.70273i 0.426485i
\(248\) 6.96416i 0.442225i
\(249\) 14.6010 0.925303
\(250\) −24.8183 + 14.8514i −1.56965 + 0.939282i
\(251\) −19.3924 −1.22404 −0.612020 0.790842i \(-0.709643\pi\)
−0.612020 + 0.790842i \(0.709643\pi\)
\(252\) 16.8301i 1.06019i
\(253\) 5.55245i 0.349080i
\(254\) 5.08939 0.319337
\(255\) 1.00455 + 0.359704i 0.0629073 + 0.0225255i
\(256\) −22.4968 −1.40605
\(257\) 3.00568i 0.187489i 0.995596 + 0.0937447i \(0.0298838\pi\)
−0.995596 + 0.0937447i \(0.970116\pi\)
\(258\) 7.74895i 0.482429i
\(259\) 32.2628 2.00471
\(260\) −8.03623 + 22.4429i −0.498386 + 1.39185i
\(261\) 6.96871 0.431353
\(262\) 47.0985i 2.90976i
\(263\) 19.8092i 1.22149i 0.791828 + 0.610744i \(0.209129\pi\)
−0.791828 + 0.610744i \(0.790871\pi\)
\(264\) 6.33007 0.389589
\(265\) −8.44558 + 23.5861i −0.518808 + 1.44888i
\(266\) −27.3734 −1.67837
\(267\) 4.85556i 0.297155i
\(268\) 50.6830i 3.09596i
\(269\) 18.1586 1.10715 0.553574 0.832800i \(-0.313264\pi\)
0.553574 + 0.832800i \(0.313264\pi\)
\(270\) −5.44589 1.95004i −0.331427 0.118676i
\(271\) −8.15979 −0.495672 −0.247836 0.968802i \(-0.579719\pi\)
−0.247836 + 0.968802i \(0.579719\pi\)
\(272\) 4.11877i 0.249737i
\(273\) 8.14974i 0.493245i
\(274\) −23.8704 −1.44206
\(275\) 3.51176 + 2.88483i 0.211767 + 0.173962i
\(276\) 28.6623 1.72527
\(277\) 7.51962i 0.451810i −0.974149 0.225905i \(-0.927466\pi\)
0.974149 0.225905i \(-0.0725339\pi\)
\(278\) 4.33644i 0.260083i
\(279\) 1.00000 0.0598684
\(280\) −52.5869 18.8301i −3.14267 1.12531i
\(281\) 17.2223 1.02740 0.513698 0.857971i \(-0.328275\pi\)
0.513698 + 0.857971i \(0.328275\pi\)
\(282\) 32.9790i 1.96387i
\(283\) 19.1614i 1.13903i 0.821981 + 0.569515i \(0.192869\pi\)
−0.821981 + 0.569515i \(0.807131\pi\)
\(284\) 65.2904 3.87427
\(285\) −2.22377 + 6.21035i −0.131725 + 0.367870i
\(286\) 5.34249 0.315908
\(287\) 3.82908i 0.226023i
\(288\) 8.40048i 0.495003i
\(289\) 16.7723 0.986606
\(290\) 13.5893 37.9509i 0.797989 2.22855i
\(291\) −11.1914 −0.656050
\(292\) 15.7431i 0.921298i
\(293\) 14.5797i 0.851757i −0.904780 0.425879i \(-0.859965\pi\)
0.904780 0.425879i \(-0.140035\pi\)
\(294\) 15.1745 0.884996
\(295\) 16.6986 + 5.97936i 0.972231 + 0.348132i
\(296\) −62.6399 −3.64087
\(297\) 0.908949i 0.0527426i
\(298\) 39.4945i 2.28786i
\(299\) 13.8794 0.802664
\(300\) −14.8918 + 18.1280i −0.859778 + 1.04662i
\(301\) 10.7444 0.619297
\(302\) 18.9801i 1.09218i
\(303\) 0.0849038i 0.00487759i
\(304\) 25.4632 1.46041
\(305\) 23.1112 + 8.27556i 1.32335 + 0.473857i
\(306\) 1.23442 0.0705671
\(307\) 8.86561i 0.505987i 0.967468 + 0.252993i \(0.0814151\pi\)
−0.967468 + 0.252993i \(0.918585\pi\)
\(308\) 15.2977i 0.871665i
\(309\) −12.1556 −0.691507
\(310\) 1.95004 5.44589i 0.110755 0.309306i
\(311\) −16.5334 −0.937524 −0.468762 0.883324i \(-0.655300\pi\)
−0.468762 + 0.883324i \(0.655300\pi\)
\(312\) 15.8232i 0.895810i
\(313\) 12.5419i 0.708911i −0.935073 0.354455i \(-0.884666\pi\)
0.935073 0.354455i \(-0.115334\pi\)
\(314\) 4.62916 0.261239
\(315\) 2.70385 7.55107i 0.152345 0.425455i
\(316\) −72.0420 −4.05268
\(317\) 6.14459i 0.345115i 0.984999 + 0.172557i \(0.0552030\pi\)
−0.984999 + 0.172557i \(0.944797\pi\)
\(318\) 28.9833i 1.62530i
\(319\) −6.33420 −0.354647
\(320\) 9.40658 + 3.36826i 0.525844 + 0.188292i
\(321\) −2.01952 −0.112719
\(322\) 56.6821i 3.15877i
\(323\) 1.40770i 0.0783266i
\(324\) −4.69208 −0.260671
\(325\) −7.21116 + 8.77827i −0.400003 + 0.486931i
\(326\) −38.8904 −2.15394
\(327\) 6.73295i 0.372333i
\(328\) 7.43435i 0.410493i
\(329\) −45.7274 −2.52103
\(330\) 4.95004 + 1.77249i 0.272491 + 0.0975721i
\(331\) 23.1429 1.27205 0.636023 0.771670i \(-0.280578\pi\)
0.636023 + 0.771670i \(0.280578\pi\)
\(332\) 68.5092i 3.75993i
\(333\) 8.99461i 0.492901i
\(334\) 18.7939 1.02836
\(335\) −8.14253 + 22.7397i −0.444874 + 1.24240i
\(336\) −30.9603 −1.68902
\(337\) 32.5847i 1.77500i −0.460804 0.887502i \(-0.652439\pi\)
0.460804 0.887502i \(-0.347561\pi\)
\(338\) 20.2752i 1.10283i
\(339\) 15.6406 0.849479
\(340\) 1.68776 4.71343i 0.0915317 0.255621i
\(341\) −0.908949 −0.0492223
\(342\) 7.63147i 0.412663i
\(343\) 4.06793i 0.219648i
\(344\) −20.8608 −1.12474
\(345\) 12.8598 + 4.60477i 0.692348 + 0.247913i
\(346\) −26.8997 −1.44613
\(347\) 18.8088i 1.00971i 0.863204 + 0.504856i \(0.168454\pi\)
−0.863204 + 0.504856i \(0.831546\pi\)
\(348\) 32.6978i 1.75278i
\(349\) −33.0149 −1.76725 −0.883623 0.468198i \(-0.844903\pi\)
−0.883623 + 0.468198i \(0.844903\pi\)
\(350\) −35.8497 29.4498i −1.91625 1.57416i
\(351\) −2.27208 −0.121275
\(352\) 7.63561i 0.406979i
\(353\) 22.3180i 1.18787i −0.804514 0.593933i \(-0.797574\pi\)
0.804514 0.593933i \(-0.202426\pi\)
\(354\) 20.5198 1.09061
\(355\) 29.2936 + 10.4893i 1.55474 + 0.556714i
\(356\) 22.7827 1.20748
\(357\) 1.71160i 0.0905875i
\(358\) 32.6897i 1.72770i
\(359\) −3.91977 −0.206878 −0.103439 0.994636i \(-0.532985\pi\)
−0.103439 + 0.994636i \(0.532985\pi\)
\(360\) −5.24967 + 14.6608i −0.276682 + 0.772692i
\(361\) −10.2973 −0.541962
\(362\) 30.2177i 1.58821i
\(363\) 10.1738i 0.533987i
\(364\) −38.2393 −2.00428
\(365\) 2.52923 7.06341i 0.132386 0.369716i
\(366\) 28.3998 1.48448
\(367\) 1.21874i 0.0636177i −0.999494 0.0318089i \(-0.989873\pi\)
0.999494 0.0318089i \(-0.0101268\pi\)
\(368\) 52.7267i 2.74857i
\(369\) −1.06752 −0.0555726
\(370\) −48.9837 17.5398i −2.54654 0.911853i
\(371\) −40.1871 −2.08641
\(372\) 4.69208i 0.243273i
\(373\) 25.0440i 1.29673i 0.761331 + 0.648363i \(0.224546\pi\)
−0.761331 + 0.648363i \(0.775454\pi\)
\(374\) −1.12203 −0.0580186
\(375\) −9.59381 + 5.74097i −0.495422 + 0.296463i
\(376\) 88.7821 4.57859
\(377\) 15.8335i 0.815466i
\(378\) 9.27899i 0.477260i
\(379\) −21.3191 −1.09509 −0.547543 0.836777i \(-0.684437\pi\)
−0.547543 + 0.836777i \(0.684437\pi\)
\(380\) 29.1395 + 10.4341i 1.49482 + 0.535259i
\(381\) 1.96737 0.100791
\(382\) 6.30364i 0.322522i
\(383\) 20.2362i 1.03402i 0.855979 + 0.517011i \(0.172955\pi\)
−0.855979 + 0.517011i \(0.827045\pi\)
\(384\) −5.24187 −0.267498
\(385\) −2.45766 + 6.86354i −0.125254 + 0.349798i
\(386\) −29.7687 −1.51518
\(387\) 2.99545i 0.152267i
\(388\) 52.5108i 2.66583i
\(389\) −28.4523 −1.44259 −0.721295 0.692628i \(-0.756453\pi\)
−0.721295 + 0.692628i \(0.756453\pi\)
\(390\) −4.43065 + 12.3735i −0.224355 + 0.626557i
\(391\) −2.91493 −0.147414
\(392\) 40.8511i 2.06329i
\(393\) 18.2065i 0.918397i
\(394\) −35.1723 −1.77196
\(395\) −32.3228 11.5740i −1.62634 0.582350i
\(396\) 4.26486 0.214317
\(397\) 0.525011i 0.0263495i −0.999913 0.0131748i \(-0.995806\pi\)
0.999913 0.0131748i \(-0.00419378\pi\)
\(398\) 29.9034i 1.49892i
\(399\) −10.5815 −0.529738
\(400\) 33.3480 + 27.3947i 1.66740 + 1.36973i
\(401\) 18.3870 0.918205 0.459103 0.888383i \(-0.348171\pi\)
0.459103 + 0.888383i \(0.348171\pi\)
\(402\) 27.9433i 1.39368i
\(403\) 2.27208i 0.113180i
\(404\) −0.398376 −0.0198199
\(405\) −2.10518 0.753811i −0.104607 0.0374572i
\(406\) 64.6626 3.20915
\(407\) 8.17564i 0.405251i
\(408\) 3.32316i 0.164521i
\(409\) 1.38591 0.0685291 0.0342645 0.999413i \(-0.489091\pi\)
0.0342645 + 0.999413i \(0.489091\pi\)
\(410\) −2.08170 + 5.81358i −0.102808 + 0.287112i
\(411\) −9.22738 −0.455153
\(412\) 57.0350i 2.80991i
\(413\) 28.4520i 1.40003i
\(414\) 15.8025 0.776651
\(415\) 11.0064 30.7377i 0.540284 1.50886i
\(416\) 19.0866 0.935797
\(417\) 1.67631i 0.0820890i
\(418\) 6.93662i 0.339281i
\(419\) 22.6214 1.10513 0.552564 0.833471i \(-0.313650\pi\)
0.552564 + 0.833471i \(0.313650\pi\)
\(420\) −35.4302 12.6867i −1.72882 0.619047i
\(421\) 14.5501 0.709127 0.354564 0.935032i \(-0.384629\pi\)
0.354564 + 0.935032i \(0.384629\pi\)
\(422\) 12.6369i 0.615152i
\(423\) 12.7484i 0.619849i
\(424\) 78.0254 3.78925
\(425\) 1.51448 1.84360i 0.0734631 0.0894279i
\(426\) 35.9968 1.74405
\(427\) 39.3781i 1.90564i
\(428\) 9.47575i 0.458028i
\(429\) 2.06521 0.0997091
\(430\) −16.3129 5.84125i −0.786678 0.281690i
\(431\) 39.6668 1.91068 0.955341 0.295506i \(-0.0954883\pi\)
0.955341 + 0.295506i \(0.0954883\pi\)
\(432\) 8.63147i 0.415282i
\(433\) 12.1560i 0.584181i 0.956391 + 0.292090i \(0.0943508\pi\)
−0.956391 + 0.292090i \(0.905649\pi\)
\(434\) 9.27899 0.445406
\(435\) 5.25310 14.6704i 0.251867 0.703391i
\(436\) −31.5915 −1.51296
\(437\) 18.0208i 0.862050i
\(438\) 8.67973i 0.414734i
\(439\) −10.7469 −0.512923 −0.256462 0.966554i \(-0.582557\pi\)
−0.256462 + 0.966554i \(0.582557\pi\)
\(440\) 4.77168 13.3259i 0.227481 0.635288i
\(441\) 5.86589 0.279328
\(442\) 2.80471i 0.133406i
\(443\) 11.1782i 0.531093i 0.964098 + 0.265547i \(0.0855524\pi\)
−0.964098 + 0.265547i \(0.914448\pi\)
\(444\) −42.2034 −2.00289
\(445\) 10.2218 + 3.66018i 0.484560 + 0.173509i
\(446\) −7.02793 −0.332782
\(447\) 15.2671i 0.722108i
\(448\) 16.0274i 0.757224i
\(449\) 22.4414 1.05908 0.529538 0.848286i \(-0.322365\pi\)
0.529538 + 0.848286i \(0.322365\pi\)
\(450\) −8.21035 + 9.99461i −0.387040 + 0.471150i
\(451\) 0.970317 0.0456904
\(452\) 73.3869i 3.45183i
\(453\) 7.33698i 0.344721i
\(454\) −41.0869 −1.92830
\(455\) −17.1567 6.14337i −0.804316 0.288006i
\(456\) 20.5446 0.962087
\(457\) 2.19944i 0.102885i −0.998676 0.0514427i \(-0.983618\pi\)
0.998676 0.0514427i \(-0.0163819\pi\)
\(458\) 10.8714i 0.507988i
\(459\) 0.477180 0.0222729
\(460\) 21.6060 60.3392i 1.00738 2.81333i
\(461\) −24.0260 −1.11900 −0.559502 0.828829i \(-0.689007\pi\)
−0.559502 + 0.828829i \(0.689007\pi\)
\(462\) 8.43413i 0.392391i
\(463\) 18.5061i 0.860051i −0.902817 0.430026i \(-0.858504\pi\)
0.902817 0.430026i \(-0.141496\pi\)
\(464\) −60.1503 −2.79241
\(465\) 0.753811 2.10518i 0.0349572 0.0976252i
\(466\) −40.8230 −1.89109
\(467\) 0.448198i 0.0207401i 0.999946 + 0.0103701i \(0.00330095\pi\)
−0.999946 + 0.0103701i \(0.996699\pi\)
\(468\) 10.6608i 0.492795i
\(469\) −38.7451 −1.78908
\(470\) 69.4265 + 24.8599i 3.20241 + 1.14670i
\(471\) 1.78946 0.0824540
\(472\) 55.2410i 2.54267i
\(473\) 2.72271i 0.125190i
\(474\) −39.7192 −1.82436
\(475\) 11.3976 + 9.36287i 0.522957 + 0.429598i
\(476\) 8.03097 0.368099
\(477\) 11.2038i 0.512989i
\(478\) 23.0215i 1.05298i
\(479\) 17.1315 0.782759 0.391379 0.920229i \(-0.371998\pi\)
0.391379 + 0.920229i \(0.371998\pi\)
\(480\) 17.6845 + 6.33238i 0.807183 + 0.289032i
\(481\) −20.4365 −0.931823
\(482\) 64.5614i 2.94069i
\(483\) 21.9112i 0.996993i
\(484\) 47.7364 2.16983
\(485\) −8.43618 + 23.5598i −0.383067 + 1.06980i
\(486\) −2.58691 −0.117344
\(487\) 1.81921i 0.0824364i −0.999150 0.0412182i \(-0.986876\pi\)
0.999150 0.0412182i \(-0.0131239\pi\)
\(488\) 76.4546i 3.46094i
\(489\) −15.0336 −0.679841
\(490\) 11.4387 31.9450i 0.516749 1.44313i
\(491\) 14.1569 0.638891 0.319445 0.947605i \(-0.396503\pi\)
0.319445 + 0.947605i \(0.396503\pi\)
\(492\) 5.00887i 0.225817i
\(493\) 3.32533i 0.149765i
\(494\) 17.3393 0.780134
\(495\) 1.91350 + 0.685176i 0.0860053 + 0.0307964i
\(496\) −8.63147 −0.387565
\(497\) 49.9118i 2.23885i
\(498\) 37.7715i 1.69258i
\(499\) 39.9176 1.78696 0.893479 0.449104i \(-0.148257\pi\)
0.893479 + 0.449104i \(0.148257\pi\)
\(500\) 26.9371 + 45.0150i 1.20466 + 2.01313i
\(501\) 7.26503 0.324578
\(502\) 50.1664i 2.23904i
\(503\) 1.87127i 0.0834359i 0.999129 + 0.0417179i \(0.0132831\pi\)
−0.999129 + 0.0417179i \(0.986717\pi\)
\(504\) −24.9798 −1.11269
\(505\) −0.178737 0.0640014i −0.00795371 0.00284803i
\(506\) −14.3637 −0.638543
\(507\) 7.83764i 0.348082i
\(508\) 9.23105i 0.409561i
\(509\) 10.8226 0.479701 0.239851 0.970810i \(-0.422902\pi\)
0.239851 + 0.970810i \(0.422902\pi\)
\(510\) 0.930520 2.59867i 0.0412041 0.115071i
\(511\) 12.0350 0.532397
\(512\) 47.7135i 2.10866i
\(513\) 2.95004i 0.130247i
\(514\) 7.77542 0.342959
\(515\) −9.16301 + 25.5896i −0.403771 + 1.12761i
\(516\) −14.0549 −0.618733
\(517\) 11.5877i 0.509625i
\(518\) 83.4609i 3.66706i
\(519\) −10.3984 −0.456439
\(520\) 33.3105 + 11.9277i 1.46076 + 0.523063i
\(521\) −33.0540 −1.44812 −0.724060 0.689737i \(-0.757726\pi\)
−0.724060 + 0.689737i \(0.757726\pi\)
\(522\) 18.0274i 0.789038i
\(523\) 22.3790i 0.978564i 0.872126 + 0.489282i \(0.162741\pi\)
−0.872126 + 0.489282i \(0.837259\pi\)
\(524\) −85.4264 −3.73187
\(525\) −13.8581 11.3842i −0.604819 0.496846i
\(526\) 51.2445 2.23437
\(527\) 0.477180i 0.0207863i
\(528\) 7.84557i 0.341435i
\(529\) −14.3157 −0.622420
\(530\) 61.0149 + 21.8479i 2.65032 + 0.949013i
\(531\) 7.93217 0.344227
\(532\) 49.6493i 2.15257i
\(533\) 2.42548i 0.105059i
\(534\) 12.5609 0.543562
\(535\) −1.52234 + 4.25144i −0.0658163 + 0.183806i
\(536\) 75.2256 3.24925
\(537\) 12.6366i 0.545310i
\(538\) 46.9745i 2.02522i
\(539\) −5.33180 −0.229657
\(540\) −3.53695 + 9.87766i −0.152206 + 0.425067i
\(541\) −16.9863 −0.730297 −0.365149 0.930949i \(-0.618982\pi\)
−0.365149 + 0.930949i \(0.618982\pi\)
\(542\) 21.1086i 0.906692i
\(543\) 11.6810i 0.501281i
\(544\) −4.00855 −0.171865
\(545\) −14.1740 5.07537i −0.607149 0.217405i
\(546\) −21.0826 −0.902253
\(547\) 2.98239i 0.127518i −0.997965 0.0637589i \(-0.979691\pi\)
0.997965 0.0637589i \(-0.0203089\pi\)
\(548\) 43.2956i 1.84950i
\(549\) 10.9783 0.468542
\(550\) 7.46279 9.08459i 0.318214 0.387368i
\(551\) −20.5580 −0.875799
\(552\) 42.5417i 1.81069i
\(553\) 55.0732i 2.34195i
\(554\) −19.4525 −0.826459
\(555\) −18.9352 6.78024i −0.803756 0.287805i
\(556\) 7.86536 0.333566
\(557\) 14.9261i 0.632441i 0.948686 + 0.316220i \(0.102414\pi\)
−0.948686 + 0.316220i \(0.897586\pi\)
\(558\) 2.58691i 0.109512i
\(559\) −6.80591 −0.287859
\(560\) −23.3382 + 65.1769i −0.986220 + 2.75423i
\(561\) −0.433733 −0.0183122
\(562\) 44.5525i 1.87933i
\(563\) 30.9852i 1.30587i 0.757414 + 0.652935i \(0.226462\pi\)
−0.757414 + 0.652935i \(0.773538\pi\)
\(564\) 59.8166 2.51873
\(565\) 11.7900 32.9262i 0.496011 1.38521i
\(566\) 49.5689 2.08353
\(567\) 3.58691i 0.150636i
\(568\) 96.9064i 4.06610i
\(569\) −16.4732 −0.690594 −0.345297 0.938493i \(-0.612222\pi\)
−0.345297 + 0.938493i \(0.612222\pi\)
\(570\) 16.0656 + 5.75269i 0.672914 + 0.240954i
\(571\) 21.0082 0.879164 0.439582 0.898202i \(-0.355127\pi\)
0.439582 + 0.898202i \(0.355127\pi\)
\(572\) 9.69012i 0.405164i
\(573\) 2.43675i 0.101797i
\(574\) −9.90546 −0.413446
\(575\) 19.3877 23.6010i 0.808524 0.984230i
\(576\) 4.46831 0.186180
\(577\) 21.7202i 0.904225i 0.891961 + 0.452113i \(0.149329\pi\)
−0.891961 + 0.452113i \(0.850671\pi\)
\(578\) 43.3884i 1.80472i
\(579\) −11.5074 −0.478233
\(580\) −68.8346 24.6480i −2.85820 1.02345i
\(581\) 52.3725 2.17278
\(582\) 28.9510i 1.20006i
\(583\) 10.1837i 0.421766i
\(584\) −23.3666 −0.966915
\(585\) −1.71272 + 4.78313i −0.0708123 + 0.197758i
\(586\) −37.7164 −1.55805
\(587\) 13.6467i 0.563261i −0.959523 0.281631i \(-0.909125\pi\)
0.959523 0.281631i \(-0.0908753\pi\)
\(588\) 27.5233i 1.13504i
\(589\) −2.95004 −0.121554
\(590\) 15.4680 43.1978i 0.636809 1.77842i
\(591\) −13.5963 −0.559277
\(592\) 77.6367i 3.19085i
\(593\) 43.5050i 1.78654i 0.449525 + 0.893268i \(0.351593\pi\)
−0.449525 + 0.893268i \(0.648407\pi\)
\(594\) 2.35137 0.0964777
\(595\) 3.60322 + 1.29022i 0.147718 + 0.0528940i
\(596\) −71.6344 −2.93426
\(597\) 11.5595i 0.473100i
\(598\) 35.9046i 1.46825i
\(599\) −33.1813 −1.35575 −0.677875 0.735177i \(-0.737099\pi\)
−0.677875 + 0.735177i \(0.737099\pi\)
\(600\) 26.9063 + 22.1029i 1.09845 + 0.902349i
\(601\) −5.25186 −0.214228 −0.107114 0.994247i \(-0.534161\pi\)
−0.107114 + 0.994247i \(0.534161\pi\)
\(602\) 27.7948i 1.13283i
\(603\) 10.8018i 0.439884i
\(604\) 34.4257 1.40076
\(605\) 21.4177 + 7.66913i 0.870752 + 0.311795i
\(606\) −0.219638 −0.00892219
\(607\) 41.0991i 1.66816i −0.551644 0.834080i \(-0.685999\pi\)
0.551644 0.834080i \(-0.314001\pi\)
\(608\) 24.7818i 1.00503i
\(609\) 24.9961 1.01289
\(610\) 21.4081 59.7866i 0.866788 2.42069i
\(611\) 28.9655 1.17182
\(612\) 2.23897i 0.0905050i
\(613\) 23.3829i 0.944425i −0.881485 0.472213i \(-0.843455\pi\)
0.881485 0.472213i \(-0.156545\pi\)
\(614\) 22.9345 0.925561
\(615\) −0.804705 + 2.24731i −0.0324488 + 0.0906202i
\(616\) 22.7054 0.914825
\(617\) 9.23931i 0.371961i 0.982553 + 0.185980i \(0.0595461\pi\)
−0.982553 + 0.185980i \(0.940454\pi\)
\(618\) 31.4453i 1.26492i
\(619\) −33.1051 −1.33061 −0.665303 0.746573i \(-0.731698\pi\)
−0.665303 + 0.746573i \(0.731698\pi\)
\(620\) −9.87766 3.53695i −0.396696 0.142047i
\(621\) 6.10865 0.245132
\(622\) 42.7704i 1.71494i
\(623\) 17.4164i 0.697775i
\(624\) 19.6114 0.785085
\(625\) 4.85384 + 24.5243i 0.194153 + 0.980971i
\(626\) −32.4447 −1.29675
\(627\) 2.68143i 0.107086i
\(628\) 8.39629i 0.335049i
\(629\) 4.29205 0.171135
\(630\) −19.5339 6.99461i −0.778250 0.278672i
\(631\) −21.8256 −0.868865 −0.434433 0.900704i \(-0.643051\pi\)
−0.434433 + 0.900704i \(0.643051\pi\)
\(632\) 106.927i 4.25334i
\(633\) 4.88493i 0.194159i
\(634\) 15.8955 0.631290
\(635\) 1.48302 4.14165i 0.0588520 0.164357i
\(636\) 52.5693 2.08451
\(637\) 13.3278i 0.528066i
\(638\) 16.3860i 0.648728i
\(639\) 13.9150 0.550469
\(640\) −3.95138 + 11.0351i −0.156192 + 0.436199i
\(641\) 4.15493 0.164110 0.0820549 0.996628i \(-0.473852\pi\)
0.0820549 + 0.996628i \(0.473852\pi\)
\(642\) 5.22430i 0.206187i
\(643\) 37.8064i 1.49094i 0.666540 + 0.745469i \(0.267774\pi\)
−0.666540 + 0.745469i \(0.732226\pi\)
\(644\) 102.809 4.05124
\(645\) −6.30595 2.25800i −0.248297 0.0889089i
\(646\) −3.64159 −0.143276
\(647\) 18.2144i 0.716084i −0.933706 0.358042i \(-0.883445\pi\)
0.933706 0.358042i \(-0.116555\pi\)
\(648\) 6.96416i 0.273578i
\(649\) −7.20994 −0.283015
\(650\) 22.7086 + 18.6546i 0.890703 + 0.731693i
\(651\) 3.58691 0.140582
\(652\) 70.5387i 2.76251i
\(653\) 13.8263i 0.541065i −0.962711 0.270532i \(-0.912800\pi\)
0.962711 0.270532i \(-0.0871997\pi\)
\(654\) −17.4175 −0.681078
\(655\) −38.3279 13.7243i −1.49760 0.536252i
\(656\) 9.21423 0.359755
\(657\) 3.35526i 0.130901i
\(658\) 118.292i 4.61152i
\(659\) −18.5085 −0.720988 −0.360494 0.932762i \(-0.617392\pi\)
−0.360494 + 0.932762i \(0.617392\pi\)
\(660\) 3.21490 8.97829i 0.125140 0.349479i
\(661\) 18.0568 0.702328 0.351164 0.936314i \(-0.385786\pi\)
0.351164 + 0.936314i \(0.385786\pi\)
\(662\) 59.8684i 2.32685i
\(663\) 1.08419i 0.0421066i
\(664\) −101.684 −3.94610
\(665\) −7.97646 + 22.2760i −0.309314 + 0.863824i
\(666\) −23.2682 −0.901625
\(667\) 42.5695i 1.64830i
\(668\) 34.0881i 1.31891i
\(669\) −2.71673 −0.105035
\(670\) 58.8255 + 21.0639i 2.27263 + 0.813771i
\(671\) −9.97870 −0.385224
\(672\) 30.1317i 1.16236i
\(673\) 17.8925i 0.689706i −0.938657 0.344853i \(-0.887929\pi\)
0.938657 0.344853i \(-0.112071\pi\)
\(674\) −84.2937 −3.24687
\(675\) −3.17381 + 3.86354i −0.122160 + 0.148708i
\(676\) −36.7749 −1.41442
\(677\) 28.7140i 1.10357i 0.833986 + 0.551785i \(0.186053\pi\)
−0.833986 + 0.551785i \(0.813947\pi\)
\(678\) 40.4607i 1.55388i
\(679\) −40.1424 −1.54052
\(680\) −6.99584 2.50504i −0.268278 0.0960638i
\(681\) −15.8826 −0.608624
\(682\) 2.35137i 0.0900384i
\(683\) 26.1456i 1.00043i 0.865900 + 0.500217i \(0.166746\pi\)
−0.865900 + 0.500217i \(0.833254\pi\)
\(684\) 13.8418 0.529255
\(685\) −6.95570 + 19.4253i −0.265764 + 0.742201i
\(686\) −10.5234 −0.401783
\(687\) 4.20248i 0.160335i
\(688\) 25.8552i 0.985719i
\(689\) 25.4560 0.969798
\(690\) 11.9121 33.2671i 0.453486 1.26646i
\(691\) 17.8853 0.680391 0.340195 0.940355i \(-0.389507\pi\)
0.340195 + 0.940355i \(0.389507\pi\)
\(692\) 48.7901i 1.85472i
\(693\) 3.26031i 0.123849i
\(694\) 48.6567 1.84698
\(695\) 3.52892 + 1.26362i 0.133860 + 0.0479318i
\(696\) −48.5313 −1.83957
\(697\) 0.509397i 0.0192948i
\(698\) 85.4064i 3.23268i
\(699\) −15.7806 −0.596879
\(700\) −53.4154 + 65.0236i −2.01891 + 2.45766i
\(701\) 31.5651 1.19220 0.596098 0.802912i \(-0.296717\pi\)
0.596098 + 0.802912i \(0.296717\pi\)
\(702\) 5.87766i 0.221838i
\(703\) 26.5344i 1.00077i
\(704\) −4.06146 −0.153072
\(705\) 26.8377 + 9.60990i 1.01077 + 0.361930i
\(706\) −57.7345 −2.17287
\(707\) 0.304542i 0.0114535i
\(708\) 37.2184i 1.39875i
\(709\) 26.3434 0.989349 0.494674 0.869078i \(-0.335287\pi\)
0.494674 + 0.869078i \(0.335287\pi\)
\(710\) 27.1348 75.7797i 1.01835 2.84396i
\(711\) −15.3540 −0.575818
\(712\) 33.8149i 1.26727i
\(713\) 6.10865i 0.228771i
\(714\) 4.42775 0.165704
\(715\) 1.55678 4.34762i 0.0582201 0.162592i
\(716\) −59.2920 −2.21585
\(717\) 8.89923i 0.332348i
\(718\) 10.1401i 0.378424i
\(719\) −39.6072 −1.47710 −0.738550 0.674199i \(-0.764489\pi\)
−0.738550 + 0.674199i \(0.764489\pi\)
\(720\) 18.1708 + 6.50650i 0.677185 + 0.242483i
\(721\) −43.6009 −1.62378
\(722\) 26.6381i 0.991366i
\(723\) 24.9570i 0.928161i
\(724\) −54.8083 −2.03693
\(725\) −26.9239 22.1174i −0.999928 0.821419i
\(726\) 26.3187 0.976778
\(727\) 2.37556i 0.0881046i −0.999029 0.0440523i \(-0.985973\pi\)
0.999029 0.0440523i \(-0.0140268\pi\)
\(728\) 56.7562i 2.10352i
\(729\) −1.00000 −0.0370370
\(730\) −18.2724 6.54288i −0.676291 0.242163i
\(731\) 1.42937 0.0528672
\(732\) 51.5110i 1.90390i
\(733\) 48.3399i 1.78547i −0.450578 0.892737i \(-0.648782\pi\)
0.450578 0.892737i \(-0.351218\pi\)
\(734\) −3.15277 −0.116371
\(735\) 4.42178 12.3487i 0.163100 0.455490i
\(736\) −51.3156 −1.89152
\(737\) 9.81829i 0.361661i
\(738\) 2.76156i 0.101655i
\(739\) 46.1708 1.69842 0.849210 0.528055i \(-0.177079\pi\)
0.849210 + 0.528055i \(0.177079\pi\)
\(740\) −31.8134 + 88.8457i −1.16948 + 3.26603i
\(741\) 6.70273 0.246231
\(742\) 103.960i 3.81650i
\(743\) 42.9194i 1.57456i −0.616596 0.787279i \(-0.711489\pi\)
0.616596 0.787279i \(-0.288511\pi\)
\(744\) −6.96416 −0.255319
\(745\) −32.1399 11.5085i −1.17751 0.421639i
\(746\) 64.7863 2.37200
\(747\) 14.6010i 0.534224i
\(748\) 2.03511i 0.0744110i
\(749\) −7.24382 −0.264684
\(750\) 14.8514 + 24.8183i 0.542295 + 0.906236i
\(751\) 21.5735 0.787229 0.393614 0.919276i \(-0.371225\pi\)
0.393614 + 0.919276i \(0.371225\pi\)
\(752\) 110.038i 4.01266i
\(753\) 19.3924i 0.706700i
\(754\) −40.9597 −1.49167
\(755\) 15.4456 + 5.53070i 0.562124 + 0.201283i
\(756\) −16.8301 −0.612103
\(757\) 10.9537i 0.398120i 0.979987 + 0.199060i \(0.0637888\pi\)
−0.979987 + 0.199060i \(0.936211\pi\)
\(758\) 55.1504i 2.00315i
\(759\) −5.55245 −0.201541
\(760\) 15.4867 43.2499i 0.561762 1.56884i
\(761\) 36.0005 1.30502 0.652509 0.757781i \(-0.273717\pi\)
0.652509 + 0.757781i \(0.273717\pi\)
\(762\) 5.08939i 0.184369i
\(763\) 24.1504i 0.874305i
\(764\) 11.4334 0.413647
\(765\) 0.359704 1.00455i 0.0130051 0.0363195i
\(766\) 52.3492 1.89145
\(767\) 18.0225i 0.650756i
\(768\) 22.4968i 0.811785i
\(769\) −25.6291 −0.924208 −0.462104 0.886826i \(-0.652905\pi\)
−0.462104 + 0.886826i \(0.652905\pi\)
\(770\) 17.7553 + 6.35774i 0.639857 + 0.229117i
\(771\) 3.00568 0.108247
\(772\) 53.9938i 1.94328i
\(773\) 25.4171i 0.914190i 0.889418 + 0.457095i \(0.151110\pi\)
−0.889418 + 0.457095i \(0.848890\pi\)
\(774\) −7.74895 −0.278530
\(775\) −3.86354 3.17381i −0.138782 0.114007i
\(776\) 77.9385 2.79783
\(777\) 32.2628i 1.15742i
\(778\) 73.6035i 2.63881i
\(779\) 3.14921 0.112832
\(780\) 22.4429 + 8.03623i 0.803583 + 0.287743i
\(781\) −12.6480 −0.452582
\(782\) 7.54065i 0.269653i
\(783\) 6.96871i 0.249042i
\(784\) −50.6313 −1.80826
\(785\) 1.34892 3.76713i 0.0481448 0.134455i
\(786\) −47.0985 −1.67995
\(787\) 35.2155i 1.25530i −0.778498 0.627648i \(-0.784018\pi\)
0.778498 0.627648i \(-0.215982\pi\)
\(788\) 63.7949i 2.27260i
\(789\) 19.8092 0.705226
\(790\) −29.9408 + 83.6160i −1.06525 + 2.97492i
\(791\) 56.1013 1.99473
\(792\) 6.33007i 0.224929i
\(793\) 24.9436i 0.885772i
\(794\) −1.35815 −0.0481991
\(795\) 23.5861 + 8.44558i 0.836511 + 0.299534i
\(796\) −54.2383 −1.92242
\(797\) 7.28674i 0.258110i −0.991637 0.129055i \(-0.958806\pi\)
0.991637 0.129055i \(-0.0411943\pi\)
\(798\) 27.3734i 0.969007i
\(799\) −6.08330 −0.215212
\(800\) 26.6616 32.4556i 0.942628 1.14748i
\(801\) 4.85556 0.171563
\(802\) 47.5656i 1.67960i
\(803\) 3.04976i 0.107624i
\(804\) 50.6830 1.78745
\(805\) 46.1269 + 16.5169i 1.62576 + 0.582144i
\(806\) −5.87766 −0.207032
\(807\) 18.1586i 0.639212i
\(808\) 0.591284i 0.0208013i
\(809\) −18.0220 −0.633621 −0.316811 0.948489i \(-0.602612\pi\)
−0.316811 + 0.948489i \(0.602612\pi\)
\(810\) −1.95004 + 5.44589i −0.0685174 + 0.191349i
\(811\) 6.05154 0.212498 0.106249 0.994340i \(-0.466116\pi\)
0.106249 + 0.994340i \(0.466116\pi\)
\(812\) 117.284i 4.11586i
\(813\) 8.15979i 0.286176i
\(814\) 21.1496 0.741293
\(815\) −11.3325 + 31.6483i −0.396959 + 1.10859i
\(816\) −4.11877 −0.144186
\(817\) 8.83670i 0.309157i
\(818\) 3.58523i 0.125355i
\(819\) −8.14974 −0.284775
\(820\) 10.5446 + 3.77574i 0.368232 + 0.131855i
\(821\) −0.839710 −0.0293061 −0.0146530 0.999893i \(-0.504664\pi\)
−0.0146530 + 0.999893i \(0.504664\pi\)
\(822\) 23.8704i 0.832574i
\(823\) 45.4617i 1.58469i −0.610071 0.792347i \(-0.708859\pi\)
0.610071 0.792347i \(-0.291141\pi\)
\(824\) 84.6535 2.94904
\(825\) 2.88483 3.51176i 0.100437 0.122264i
\(826\) 73.6025 2.56096
\(827\) 23.2824i 0.809607i −0.914404 0.404804i \(-0.867340\pi\)
0.914404 0.404804i \(-0.132660\pi\)
\(828\) 28.6623i 0.996084i
\(829\) 48.4844 1.68393 0.841967 0.539530i \(-0.181398\pi\)
0.841967 + 0.539530i \(0.181398\pi\)
\(830\) −79.5157 28.4726i −2.76003 0.988298i
\(831\) −7.51962 −0.260853
\(832\) 10.1524i 0.351970i
\(833\) 2.79909i 0.0969827i
\(834\) 4.33644 0.150159
\(835\) 5.47646 15.2942i 0.189521 0.529277i
\(836\) −12.5815 −0.435141
\(837\) 1.00000i 0.0345651i
\(838\) 58.5194i 2.02152i
\(839\) 11.3096 0.390450 0.195225 0.980758i \(-0.437456\pi\)
0.195225 + 0.980758i \(0.437456\pi\)
\(840\) −18.8301 + 52.5869i −0.649699 + 1.81442i
\(841\) 19.5630 0.674585
\(842\) 37.6397i 1.29715i
\(843\) 17.2223i 0.593167i
\(844\) −22.9205 −0.788956
\(845\) −16.4996 5.90810i −0.567604 0.203245i
\(846\) 32.9790 1.13384
\(847\) 36.4925i 1.25390i
\(848\) 96.7057i 3.32089i
\(849\) 19.1614 0.657619
\(850\) −4.76923 3.91782i −0.163583 0.134380i
\(851\) 54.9449 1.88349
\(852\) 65.2904i 2.23681i
\(853\) 37.0550i 1.26874i −0.773030 0.634369i \(-0.781260\pi\)
0.773030 0.634369i \(-0.218740\pi\)
\(854\) 101.867 3.48583
\(855\) 6.21035 + 2.22377i 0.212390 + 0.0760514i
\(856\) 14.0643 0.480707
\(857\) 20.5514i 0.702023i −0.936371 0.351011i \(-0.885838\pi\)
0.936371 0.351011i \(-0.114162\pi\)
\(858\) 5.34249i 0.182390i
\(859\) −25.4920 −0.869776 −0.434888 0.900485i \(-0.643212\pi\)
−0.434888 + 0.900485i \(0.643212\pi\)
\(860\) −10.5947 + 29.5881i −0.361278 + 1.00894i
\(861\) −3.82908 −0.130495
\(862\) 102.614i 3.49505i
\(863\) 4.87914i 0.166088i 0.996546 + 0.0830439i \(0.0264642\pi\)
−0.996546 + 0.0830439i \(0.973536\pi\)
\(864\) 8.40048 0.285790
\(865\) −7.83843 + 21.8905i −0.266514 + 0.744298i
\(866\) 31.4465 1.06859
\(867\) 16.7723i 0.569617i
\(868\) 16.8301i 0.571249i
\(869\) 13.9560 0.473423
\(870\) −37.9509 13.5893i −1.28666 0.460719i
\(871\) 24.5426 0.831594
\(872\) 46.8893i 1.58787i
\(873\) 11.1914i 0.378770i
\(874\) −46.6180 −1.57688
\(875\) −34.4121 + 20.5923i −1.16334 + 0.696148i
\(876\) −15.7431 −0.531911
\(877\) 6.98895i 0.236000i −0.993014 0.118000i \(-0.962352\pi\)
0.993014 0.118000i \(-0.0376483\pi\)
\(878\) 27.8013i 0.938249i
\(879\) −14.5797 −0.491762
\(880\) −16.5163 5.91408i −0.556765 0.199364i
\(881\) 26.1553 0.881195 0.440597 0.897705i \(-0.354767\pi\)
0.440597 + 0.897705i \(0.354767\pi\)
\(882\) 15.1745i 0.510953i
\(883\) 29.3315i 0.987084i 0.869722 + 0.493542i \(0.164298\pi\)
−0.869722 + 0.493542i \(0.835702\pi\)
\(884\) −5.08712 −0.171098
\(885\) 5.97936 16.6986i 0.200994 0.561318i
\(886\) 28.9170 0.971486
\(887\) 12.2360i 0.410845i −0.978673 0.205422i \(-0.934143\pi\)
0.978673 0.205422i \(-0.0658568\pi\)
\(888\) 62.6399i 2.10206i
\(889\) 7.05676 0.236676
\(890\) 9.46853 26.4429i 0.317386 0.886367i
\(891\) 0.908949 0.0304509
\(892\) 12.7471i 0.426805i
\(893\) 37.6083i 1.25851i
\(894\) −39.4945 −1.32089
\(895\) −26.6023 9.52561i −0.889216 0.318406i
\(896\) −18.8021 −0.628134
\(897\) 13.8794i 0.463418i
\(898\) 58.0539i 1.93728i
\(899\) 6.96871 0.232420
\(900\) 18.1280 + 14.8918i 0.604268 + 0.496393i
\(901\) −5.34625 −0.178110
\(902\) 2.51012i 0.0835778i
\(903\) 10.7444i 0.357551i
\(904\) −108.924 −3.62274
\(905\) −24.5906 8.80529i −0.817420 0.292698i
\(906\) 18.9801 0.630570
\(907\) 54.0458i 1.79456i −0.441459 0.897281i \(-0.645539\pi\)
0.441459 0.897281i \(-0.354461\pi\)
\(908\) 74.5227i 2.47312i
\(909\) −0.0849038 −0.00281608
\(910\) −15.8923 + 44.3826i −0.526825 + 1.47127i
\(911\) 44.1506 1.46278 0.731388 0.681962i \(-0.238873\pi\)
0.731388 + 0.681962i \(0.238873\pi\)
\(912\) 25.4632i 0.843170i
\(913\) 13.2716i 0.439226i
\(914\) −5.68974 −0.188200
\(915\) 8.27556 23.1112i 0.273582 0.764034i
\(916\) −19.7184 −0.651513
\(917\) 65.3050i 2.15656i
\(918\) 1.23442i 0.0407420i
\(919\) 40.5340 1.33709 0.668547 0.743670i \(-0.266917\pi\)
0.668547 + 0.743670i \(0.266917\pi\)
\(920\) −89.5577 32.0684i −2.95263 1.05726i
\(921\) 8.86561 0.292132
\(922\) 62.1531i 2.04690i
\(923\) 31.6160i 1.04065i
\(924\) 15.2977 0.503256
\(925\) −28.5472 + 34.7510i −0.938626 + 1.14261i
\(926\) −47.8735 −1.57322
\(927\) 12.1556i 0.399242i
\(928\) 58.5406i 1.92169i
\(929\) −6.35147 −0.208385 −0.104192 0.994557i \(-0.533226\pi\)
−0.104192 + 0.994557i \(0.533226\pi\)
\(930\) −5.44589 1.95004i −0.178578 0.0639443i
\(931\) −17.3046 −0.567136
\(932\) 74.0441i 2.42539i
\(933\) 16.5334i 0.541280i
\(934\) 1.15945 0.0379382
\(935\) −0.326953 + 0.913084i −0.0106925 + 0.0298610i
\(936\) 15.8232 0.517196
\(937\) 16.3665i 0.534670i −0.963604 0.267335i \(-0.913857\pi\)
0.963604 0.267335i \(-0.0861430\pi\)
\(938\) 100.230i 3.27262i
\(939\) −12.5419 −0.409290
\(940\) 45.0905 125.925i 1.47069 4.10721i
\(941\) 3.42680 0.111710 0.0558552 0.998439i \(-0.482211\pi\)
0.0558552 + 0.998439i \(0.482211\pi\)
\(942\) 4.62916i 0.150826i
\(943\) 6.52108i 0.212356i
\(944\) −68.4663 −2.22839
\(945\) −7.55107 2.70385i −0.245636 0.0879563i
\(946\) 7.04340 0.229001
\(947\) 29.6868i 0.964693i −0.875981 0.482346i \(-0.839785\pi\)
0.875981 0.482346i \(-0.160215\pi\)
\(948\) 72.0420i 2.33982i
\(949\) −7.62342 −0.247467
\(950\) 24.2209 29.4845i 0.785829 0.956603i
\(951\) 6.14459 0.199252
\(952\) 11.9199i 0.386325i
\(953\) 5.17355i 0.167588i 0.996483 + 0.0837939i \(0.0267037\pi\)
−0.996483 + 0.0837939i \(0.973296\pi\)
\(954\) 28.9833 0.938368
\(955\) 5.12978 + 1.83685i 0.165996 + 0.0594390i
\(956\) −41.7559 −1.35048
\(957\) 6.33420i 0.204756i
\(958\) 44.3176i 1.43184i
\(959\) −33.0977 −1.06878
\(960\) 3.36826 9.40658i 0.108710 0.303596i
\(961\) 1.00000 0.0322581
\(962\) 52.8673i 1.70451i
\(963\) 2.01952i 0.0650781i
\(964\) 117.100 3.77155
\(965\) −8.67444 + 24.2252i −0.279240 + 0.779836i
\(966\) 56.6821 1.82372
\(967\) 8.04994i 0.258869i 0.991588 + 0.129434i \(0.0413161\pi\)
−0.991588 + 0.129434i \(0.958684\pi\)
\(968\) 70.8521i 2.27727i
\(969\) −1.40770 −0.0452219
\(970\) 60.9470 + 21.8236i 1.95689 + 0.700714i
\(971\) −48.0753 −1.54281 −0.771405 0.636344i \(-0.780446\pi\)
−0.771405 + 0.636344i \(0.780446\pi\)
\(972\) 4.69208i 0.150499i
\(973\) 6.01275i 0.192760i
\(974\) −4.70613 −0.150794
\(975\) 8.77827 + 7.21116i 0.281130 + 0.230942i
\(976\) −94.7588 −3.03316
\(977\) 32.6999i 1.04616i 0.852283 + 0.523081i \(0.175217\pi\)
−0.852283 + 0.523081i \(0.824783\pi\)
\(978\) 38.8904i 1.24358i
\(979\) −4.41345 −0.141055
\(980\) −57.9413 20.7473i −1.85087 0.662750i
\(981\) −6.73295 −0.214966
\(982\) 36.6225i 1.16867i
\(983\) 33.0834i 1.05520i 0.849494 + 0.527599i \(0.176908\pi\)
−0.849494 + 0.527599i \(0.823092\pi\)
\(984\) 7.43435 0.236999
\(985\) −10.2490 + 28.6226i −0.326562 + 0.911992i
\(986\) 8.60233 0.273954
\(987\) 45.7274i 1.45552i
\(988\) 31.4498i 1.00055i
\(989\) 18.2982 0.581848
\(990\) 1.77249 4.95004i 0.0563333 0.157323i
\(991\) 46.9987 1.49296 0.746481 0.665406i \(-0.231742\pi\)
0.746481 + 0.665406i \(0.231742\pi\)
\(992\) 8.40048i 0.266716i
\(993\) 23.1429i 0.734417i
\(994\) 129.117 4.09535
\(995\) −24.3348 8.71370i −0.771466 0.276243i
\(996\) −68.5092 −2.17080
\(997\) 10.0371i 0.317879i 0.987288 + 0.158939i \(0.0508074\pi\)
−0.987288 + 0.158939i \(0.949193\pi\)
\(998\) 103.263i 3.26874i
\(999\) −8.99461 −0.284577
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 465.2.c.a.94.1 10
3.2 odd 2 1395.2.c.f.559.10 10
5.2 odd 4 2325.2.a.x.1.5 5
5.3 odd 4 2325.2.a.w.1.1 5
5.4 even 2 inner 465.2.c.a.94.10 yes 10
15.2 even 4 6975.2.a.bs.1.1 5
15.8 even 4 6975.2.a.bv.1.5 5
15.14 odd 2 1395.2.c.f.559.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.c.a.94.1 10 1.1 even 1 trivial
465.2.c.a.94.10 yes 10 5.4 even 2 inner
1395.2.c.f.559.1 10 15.14 odd 2
1395.2.c.f.559.10 10 3.2 odd 2
2325.2.a.w.1.1 5 5.3 odd 4
2325.2.a.x.1.5 5 5.2 odd 4
6975.2.a.bs.1.1 5 15.2 even 4
6975.2.a.bv.1.5 5 15.8 even 4