Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [46410,2,Mod(1,46410)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46410, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("46410.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 46410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 46410.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(370.585715781\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( -1 \) |
\(3\) | \( -1 \) |
\(5\) | \( -1 \) |
\(7\) | \( +1 \) |
\(13\) | \( -1 \) |
\(17\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
Twists of this newform have not been computed.