Properties

Label 46410.2.a.ck
Level $46410$
Weight $2$
Character orbit 46410.a
Self dual yes
Analytic conductor $370.586$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [46410,2,Mod(1,46410)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("46410.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(46410, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 46410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 46410.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,1,1,1,1,-1,1,1,1,-4,1,1,-1,1,1,1,1,4,1,-1,-4,8,1,1,1,1,-1, -2,1,0,1,-4,1,-1,1,6,4,1,1,10,-1,-4,-4,1,8,0,1,1,1,1,1,-10,1,-4,-1,4,-2, -4,1,-2,0,-1,1,1,-4,4,1,8,-1,8,1,10,6,1,4,4,1,-16,1,1,10,-12,-1,1,-4,-2, -4,10,1,-1,8,0,0,4,1,2,1,-4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(370.585715781\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} + q^{13} - q^{14} + q^{15} + q^{16} + q^{17} + q^{18} + 4 q^{19} + q^{20} - q^{21} - 4 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

Twists of this newform have not been computed.