Properties

Label 4641.2.a.l
Level $4641$
Weight $2$
Character orbit 4641.a
Self dual yes
Analytic conductor $37.059$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4641,2,Mod(1,4641)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4641.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4641, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4641 = 3 \cdot 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4641.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-2,-7,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.0585715781\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: 7.7.97824733.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 7x^{5} + 15x^{4} + 6x^{3} - 22x^{2} + 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{4} + \beta_{3} + \beta_{2} + 1) q^{4} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 1) q^{5} + \beta_1 q^{6} + q^{7} + ( - \beta_{6} - \beta_{5} + \cdots + \beta_{2}) q^{8}+ \cdots + (\beta_{6} - \beta_{5} + \beta_{4} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 7 q^{3} + 4 q^{4} - q^{5} + 2 q^{6} + 7 q^{7} + 3 q^{8} + 7 q^{9} - 9 q^{10} + 2 q^{11} - 4 q^{12} + 7 q^{13} - 2 q^{14} + q^{15} + 2 q^{16} - 7 q^{17} - 2 q^{18} - 12 q^{19} - q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 7x^{5} + 15x^{4} + 6x^{3} - 22x^{2} + 9x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{6} - \nu^{5} - 8\nu^{4} + 7\nu^{3} + 13\nu^{2} - 10\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{6} - 2\nu^{5} - 7\nu^{4} + 15\nu^{3} + 7\nu^{2} - 22\nu + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -2\nu^{6} + 3\nu^{5} + 15\nu^{4} - 22\nu^{3} - 19\nu^{2} + 32\nu - 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -3\nu^{6} + 6\nu^{5} + 22\nu^{4} - 45\nu^{3} - 26\nu^{2} + 66\nu - 14 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 6\nu^{6} - 10\nu^{5} - 45\nu^{4} + 75\nu^{3} + 58\nu^{2} - 112\nu + 22 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{4} - \beta_{2} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 5\beta_{4} + 8\beta_{3} + 5\beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{6} + 9\beta_{5} + 7\beta_{4} + \beta_{3} - 8\beta_{2} + 20\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 10\beta_{5} + 27\beta_{4} + 52\beta_{3} + 27\beta_{2} + 2\beta _1 + 74 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.48067
1.57760
1.25216
0.286902
0.208559
−1.44391
−2.36197
−2.48067 −1.00000 4.15370 2.06438 2.48067 1.00000 −5.34261 1.00000 −5.12103
1.2 −1.57760 −1.00000 0.488818 −3.13008 1.57760 1.00000 2.38404 1.00000 4.93801
1.3 −1.25216 −1.00000 −0.432105 1.65020 1.25216 1.00000 3.04538 1.00000 −2.06631
1.4 −0.286902 −1.00000 −1.91769 1.54274 0.286902 1.00000 1.12399 1.00000 −0.442616
1.5 −0.208559 −1.00000 −1.95650 0.639086 0.208559 1.00000 0.825164 1.00000 −0.133287
1.6 1.44391 −1.00000 0.0848831 −2.96406 −1.44391 1.00000 −2.76526 1.00000 −4.27984
1.7 2.36197 −1.00000 3.57889 −0.802266 −2.36197 1.00000 3.72930 1.00000 −1.89493
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4641.2.a.l 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4641.2.a.l 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4641))\):

\( T_{2}^{7} + 2T_{2}^{6} - 7T_{2}^{5} - 15T_{2}^{4} + 6T_{2}^{3} + 22T_{2}^{2} + 9T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{7} + T_{5}^{6} - 14T_{5}^{5} - T_{5}^{4} + 60T_{5}^{3} - 41T_{5}^{2} - 35T_{5} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{7} \) Copy content Toggle raw display
$5$ \( T^{7} + T^{6} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T - 1)^{7} \) Copy content Toggle raw display
$11$ \( T^{7} - 2 T^{6} + \cdots - 304 \) Copy content Toggle raw display
$13$ \( (T - 1)^{7} \) Copy content Toggle raw display
$17$ \( (T + 1)^{7} \) Copy content Toggle raw display
$19$ \( T^{7} + 12 T^{6} + \cdots - 2069 \) Copy content Toggle raw display
$23$ \( T^{7} - 5 T^{6} + \cdots + 727 \) Copy content Toggle raw display
$29$ \( T^{7} - 12 T^{6} + \cdots + 107623 \) Copy content Toggle raw display
$31$ \( T^{7} + 9 T^{6} + \cdots - 4432 \) Copy content Toggle raw display
$37$ \( T^{7} + 12 T^{6} + \cdots - 3092 \) Copy content Toggle raw display
$41$ \( T^{7} + 16 T^{6} + \cdots - 21053 \) Copy content Toggle raw display
$43$ \( T^{7} + 22 T^{6} + \cdots + 4139 \) Copy content Toggle raw display
$47$ \( T^{7} - 13 T^{6} + \cdots + 6128 \) Copy content Toggle raw display
$53$ \( T^{7} + 3 T^{6} + \cdots - 332032 \) Copy content Toggle raw display
$59$ \( T^{7} + 33 T^{6} + \cdots + 387100 \) Copy content Toggle raw display
$61$ \( T^{7} + 11 T^{6} + \cdots - 10181 \) Copy content Toggle raw display
$67$ \( T^{7} + 5 T^{6} + \cdots + 5392 \) Copy content Toggle raw display
$71$ \( T^{7} + 14 T^{6} + \cdots + 869744 \) Copy content Toggle raw display
$73$ \( T^{7} + 16 T^{6} + \cdots - 113600 \) Copy content Toggle raw display
$79$ \( T^{7} - 121 T^{5} + \cdots + 29948 \) Copy content Toggle raw display
$83$ \( T^{7} + 17 T^{6} + \cdots + 293732 \) Copy content Toggle raw display
$89$ \( T^{7} - 17 T^{6} + \cdots + 2330128 \) Copy content Toggle raw display
$97$ \( T^{7} + 21 T^{6} + \cdots - 78800 \) Copy content Toggle raw display
show more
show less