Newspace parameters
Level: | \( N \) | \(=\) | \( 464 = 2^{4} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 464.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(74.4180923932\) |
Analytic rank: | \(1\) |
Dimension: | \(7\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) |
Defining polynomial: |
\( x^{7} - 3x^{6} - 184x^{5} + 584x^{4} + 10145x^{3} - 34491x^{2} - 149754x + 524902 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{13} \) |
Twist minimal: | no (minimal twist has level 29) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{7} - 3x^{6} - 184x^{5} + 584x^{4} + 10145x^{3} - 34491x^{2} - 149754x + 524902 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{6} - 18\nu^{5} - 126\nu^{4} + 2142\nu^{3} + 3339\nu^{2} - 43244\nu + 12946 ) / 960 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} - 8\nu^{5} - 176\nu^{4} + 952\nu^{3} + 9769\nu^{2} - 24904\nu - 146514 ) / 960 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{5} + 5\nu^{4} + 119\nu^{3} - 643\nu^{2} - 3370\nu + 16618 ) / 96 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{6} - 10\nu^{5} + 218\nu^{4} + 1094\nu^{3} - 13231\nu^{2} - 21356\nu + 185766 ) / 960 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 2\nu^{6} - 11\nu^{5} - 257\nu^{4} + 1069\nu^{3} + 8713\nu^{2} - 15198\nu - 90278 ) / 480 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{6} - 20\nu^{5} + 12\nu^{4} + 2316\nu^{3} - 10299\nu^{2} - 52544\nu + 221094 ) / 320 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{3} - \beta_{2} + \beta _1 + 7 ) / 16 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{6} - \beta_{5} + 3\beta_{4} - 7\beta_{3} + 7\beta_{2} - 3\beta _1 + 861 ) / 16 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 13\beta_{6} - 29\beta_{5} - 41\beta_{4} - 75\beta_{3} - 37\beta_{2} + 73\beta _1 - 151 ) / 16 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 143\beta_{6} - 111\beta_{5} + 269\beta_{4} - 757\beta_{3} + 637\beta_{2} - 353\beta _1 + 61287 ) / 16 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 1619\beta_{6} - 3363\beta_{5} - 5463\beta_{4} - 6375\beta_{3} - 2349\beta_{2} + 5481\beta _1 - 22859 ) / 16 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 15975\beta_{6} - 9063\beta_{5} + 13365\beta_{4} - 69353\beta_{3} + 50617\beta_{2} - 33565\beta _1 + 4854835 ) / 16 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −29.3989 | 0 | 64.0801 | 0 | 138.793 | 0 | 621.298 | 0 | |||||||||||||||||||||||||||||||||||||||
1.2 | 0 | −18.3274 | 0 | −84.3249 | 0 | −216.816 | 0 | 92.8952 | 0 | ||||||||||||||||||||||||||||||||||||||||
1.3 | 0 | −15.9679 | 0 | 31.5616 | 0 | −106.304 | 0 | 11.9736 | 0 | ||||||||||||||||||||||||||||||||||||||||
1.4 | 0 | −15.4219 | 0 | −58.0818 | 0 | 210.388 | 0 | −5.16616 | 0 | ||||||||||||||||||||||||||||||||||||||||
1.5 | 0 | 13.2844 | 0 | 69.0035 | 0 | −156.573 | 0 | −66.5241 | 0 | ||||||||||||||||||||||||||||||||||||||||
1.6 | 0 | 15.2661 | 0 | 64.0682 | 0 | −91.1564 | 0 | −9.94539 | 0 | ||||||||||||||||||||||||||||||||||||||||
1.7 | 0 | 24.5656 | 0 | −54.3066 | 0 | 37.6697 | 0 | 360.469 | 0 | ||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(29\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 464.6.a.k | 7 | |
4.b | odd | 2 | 1 | 29.6.a.b | ✓ | 7 | |
12.b | even | 2 | 1 | 261.6.a.e | 7 | ||
20.d | odd | 2 | 1 | 725.6.a.b | 7 | ||
116.d | odd | 2 | 1 | 841.6.a.b | 7 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
29.6.a.b | ✓ | 7 | 4.b | odd | 2 | 1 | |
261.6.a.e | 7 | 12.b | even | 2 | 1 | ||
464.6.a.k | 7 | 1.a | even | 1 | 1 | trivial | |
725.6.a.b | 7 | 20.d | odd | 2 | 1 | ||
841.6.a.b | 7 | 116.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{7} + 26T_{3}^{6} - 1015T_{3}^{5} - 26056T_{3}^{4} + 280279T_{3}^{3} + 7496290T_{3}^{2} - 22844001T_{3} - 661023756 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(464))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{7} \)
$3$
\( T^{7} + 26 T^{6} + \cdots - 661023756 \)
$5$
\( T^{7} - 32 T^{6} + \cdots + 2378174390186 \)
$7$
\( T^{7} + \cdots - 361848785235968 \)
$11$
\( T^{7} + 1106 T^{6} + \cdots - 51\!\cdots\!44 \)
$13$
\( T^{7} - 408 T^{6} + \cdots + 10\!\cdots\!34 \)
$17$
\( T^{7} + 874 T^{6} + \cdots - 17\!\cdots\!28 \)
$19$
\( T^{7} + 4288 T^{6} + \cdots - 15\!\cdots\!92 \)
$23$
\( T^{7} - 4532 T^{6} + \cdots + 15\!\cdots\!56 \)
$29$
\( (T - 841)^{7} \)
$31$
\( T^{7} + 7794 T^{6} + \cdots - 64\!\cdots\!48 \)
$37$
\( T^{7} - 5086 T^{6} + \cdots - 16\!\cdots\!56 \)
$41$
\( T^{7} - 19826 T^{6} + \cdots - 56\!\cdots\!72 \)
$43$
\( T^{7} + 19498 T^{6} + \cdots + 58\!\cdots\!60 \)
$47$
\( T^{7} + 14278 T^{6} + \cdots + 14\!\cdots\!36 \)
$53$
\( T^{7} + 58644 T^{6} + \cdots + 84\!\cdots\!94 \)
$59$
\( T^{7} + 12888 T^{6} + \cdots - 15\!\cdots\!00 \)
$61$
\( T^{7} - 102866 T^{6} + \cdots + 45\!\cdots\!80 \)
$67$
\( T^{7} + 102996 T^{6} + \cdots + 11\!\cdots\!60 \)
$71$
\( T^{7} - 51596 T^{6} + \cdots + 20\!\cdots\!52 \)
$73$
\( T^{7} + 17566 T^{6} + \cdots + 43\!\cdots\!96 \)
$79$
\( T^{7} + 212058 T^{6} + \cdots + 28\!\cdots\!00 \)
$83$
\( T^{7} - 122928 T^{6} + \cdots + 97\!\cdots\!52 \)
$89$
\( T^{7} + 66510 T^{6} + \cdots - 79\!\cdots\!20 \)
$97$
\( T^{7} + 118182 T^{6} + \cdots + 62\!\cdots\!52 \)
show more
show less