Newspace parameters
Level: | \( N \) | \(=\) | \( 464 = 2^{4} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 464.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(27.3768862427\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{13}) \) |
Defining polynomial: |
\( x^{2} - x - 3 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 116) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{13}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −3.60555 | 0 | −12.2111 | 0 | 24.4222 | 0 | −14.0000 | 0 | ||||||||||||||||||||||||
1.2 | 0 | 3.60555 | 0 | 2.21110 | 0 | −4.42221 | 0 | −14.0000 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(29\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 464.4.a.d | 2 | |
4.b | odd | 2 | 1 | 116.4.a.a | ✓ | 2 | |
8.b | even | 2 | 1 | 1856.4.a.k | 2 | ||
8.d | odd | 2 | 1 | 1856.4.a.j | 2 | ||
12.b | even | 2 | 1 | 1044.4.a.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
116.4.a.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
464.4.a.d | 2 | 1.a | even | 1 | 1 | trivial | |
1044.4.a.d | 2 | 12.b | even | 2 | 1 | ||
1856.4.a.j | 2 | 8.d | odd | 2 | 1 | ||
1856.4.a.k | 2 | 8.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 13 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(464))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} - 13 \)
$5$
\( T^{2} + 10T - 27 \)
$7$
\( T^{2} - 20T - 108 \)
$11$
\( T^{2} - 32T + 243 \)
$13$
\( T^{2} + 54T + 261 \)
$17$
\( T^{2} + 44T - 5808 \)
$19$
\( T^{2} - 32T - 1616 \)
$23$
\( T^{2} - 36T - 976 \)
$29$
\( (T + 29)^{2} \)
$31$
\( T^{2} + 20T - 17 \)
$37$
\( T^{2} + 144T - 24768 \)
$41$
\( T^{2} - 96T + 2252 \)
$43$
\( T^{2} + 240T + 13347 \)
$47$
\( T^{2} + 596T + 57591 \)
$53$
\( T^{2} + 34T - 37619 \)
$59$
\( T^{2} + 724T + 67344 \)
$61$
\( T^{2} + 612T - 41616 \)
$67$
\( T^{2} + 528T - 471312 \)
$71$
\( T^{2} - 104T - 355524 \)
$73$
\( T^{2} + 872T - 176816 \)
$79$
\( T^{2} - 820T - 185825 \)
$83$
\( T^{2} - 228T - 92304 \)
$89$
\( T^{2} + 32T - 1896756 \)
$97$
\( T^{2} + 1896 T + 875772 \)
show more
show less