Properties

Label 464.3.l.c
Level 464
Weight 3
Character orbit 464.l
Analytic conductor 12.643
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 464.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.6430842663\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Defining polynomial: \(x^{8} + 18 x^{6} + 91 x^{4} + 126 x^{2} + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{1} + \beta_{5} ) q^{3} + ( \beta_{3} + \beta_{4} ) q^{5} + ( -\beta_{1} + \beta_{2} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{7} + ( -\beta_{1} - \beta_{2} - 3 \beta_{3} - 6 \beta_{4} - \beta_{5} - \beta_{6} ) q^{9} +O(q^{10})\) \( q + ( \beta_{1} + \beta_{5} ) q^{3} + ( \beta_{3} + \beta_{4} ) q^{5} + ( -\beta_{1} + \beta_{2} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{7} + ( -\beta_{1} - \beta_{2} - 3 \beta_{3} - 6 \beta_{4} - \beta_{5} - \beta_{6} ) q^{9} + ( 1 - 4 \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} ) q^{11} + ( -2 \beta_{1} - 2 \beta_{2} - 5 \beta_{4} + \beta_{5} + \beta_{6} ) q^{13} + ( -2 \beta_{2} - 5 \beta_{6} ) q^{15} + ( -\beta_{1} + 6 \beta_{5} ) q^{17} + ( 1 - \beta_{1} - 4 \beta_{3} - \beta_{4} + 4 \beta_{5} + 4 \beta_{7} ) q^{19} + ( -5 - 3 \beta_{1} - \beta_{3} + 5 \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{21} + ( 2 \beta_{1} - 2 \beta_{2} - 3 \beta_{7} ) q^{23} + ( 14 + \beta_{1} - \beta_{2} - 2 \beta_{5} + 2 \beta_{6} ) q^{25} + ( 15 + 2 \beta_{2} + 3 \beta_{3} + 15 \beta_{4} + 11 \beta_{6} + 3 \beta_{7} ) q^{27} + ( 15 - 2 \beta_{1} + 5 \beta_{2} - 6 \beta_{4} - 3 \beta_{5} - 7 \beta_{6} ) q^{29} + ( -1 - 7 \beta_{1} + 4 \beta_{3} + \beta_{4} + 9 \beta_{5} - 4 \beta_{7} ) q^{31} + ( 3 \beta_{1} + 3 \beta_{2} + 6 \beta_{3} + 45 \beta_{4} + 12 \beta_{5} + 12 \beta_{6} ) q^{33} + ( -\beta_{1} - \beta_{2} + 5 \beta_{3} - 10 \beta_{4} + \beta_{5} + \beta_{6} ) q^{35} + ( -10 + 6 \beta_{2} + 8 \beta_{3} - 10 \beta_{4} + 2 \beta_{6} + 8 \beta_{7} ) q^{37} + ( 15 + 3 \beta_{2} + 15 \beta_{4} + 15 \beta_{6} ) q^{39} + ( 1 - 7 \beta_{2} - 5 \beta_{3} + \beta_{4} - 6 \beta_{6} - 5 \beta_{7} ) q^{41} + ( 25 + 6 \beta_{1} + \beta_{3} - 25 \beta_{4} - 5 \beta_{5} - \beta_{7} ) q^{43} + ( 36 - 5 \beta_{1} + 5 \beta_{2} + \beta_{5} - \beta_{6} + 3 \beta_{7} ) q^{45} + ( -10 + 6 \beta_{2} + 2 \beta_{3} - 10 \beta_{4} - 11 \beta_{6} + 2 \beta_{7} ) q^{47} + ( -9 + 3 \beta_{1} - 3 \beta_{2} - 12 \beta_{7} ) q^{49} + ( -6 \beta_{1} - 6 \beta_{2} - 11 \beta_{3} - 20 \beta_{4} + 8 \beta_{5} + 8 \beta_{6} ) q^{51} + ( 35 - 6 \beta_{1} + 6 \beta_{2} - 7 \beta_{5} + 7 \beta_{6} - 10 \beta_{7} ) q^{53} + ( 11 + 7 \beta_{2} + 3 \beta_{3} + 11 \beta_{4} + 7 \beta_{6} + 3 \beta_{7} ) q^{55} + ( \beta_{1} + \beta_{2} - 7 \beta_{3} - 10 \beta_{4} + 23 \beta_{5} + 23 \beta_{6} ) q^{57} + ( 10 - 4 \beta_{1} + 4 \beta_{2} - 10 \beta_{5} + 10 \beta_{6} - 17 \beta_{7} ) q^{59} + ( -24 - 9 \beta_{1} - 2 \beta_{3} + 24 \beta_{4} - 8 \beta_{5} + 2 \beta_{7} ) q^{61} + ( 3 \beta_{1} + 3 \beta_{2} - 10 \beta_{3} + 20 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} ) q^{63} + ( 5 - \beta_{1} + \beta_{2} - \beta_{5} + \beta_{6} + 11 \beta_{7} ) q^{65} + ( -15 \beta_{1} - 15 \beta_{2} + 6 \beta_{3} + 40 \beta_{4} ) q^{67} + ( 20 - 3 \beta_{1} - 2 \beta_{3} - 20 \beta_{4} - 20 \beta_{5} + 2 \beta_{7} ) q^{69} + ( 3 \beta_{1} + 3 \beta_{2} - 4 \beta_{3} + 62 \beta_{4} - 5 \beta_{5} - 5 \beta_{6} ) q^{71} + ( -20 + 6 \beta_{2} - 4 \beta_{3} - 20 \beta_{4} + 14 \beta_{6} - 4 \beta_{7} ) q^{73} + ( 18 \beta_{1} + 3 \beta_{3} + 6 \beta_{5} - 3 \beta_{7} ) q^{75} + ( 25 + 17 \beta_{1} + 2 \beta_{3} - 25 \beta_{4} - 10 \beta_{5} - 2 \beta_{7} ) q^{77} + ( 46 - 14 \beta_{1} - 6 \beta_{3} - 46 \beta_{4} + 7 \beta_{5} + 6 \beta_{7} ) q^{79} + ( -21 + 20 \beta_{1} - 20 \beta_{2} + 11 \beta_{5} - 11 \beta_{6} + 3 \beta_{7} ) q^{81} + ( -30 - 7 \beta_{1} + 7 \beta_{2} - 10 \beta_{5} + 10 \beta_{6} + 21 \beta_{7} ) q^{83} + ( -5 \beta_{2} + 7 \beta_{3} - 16 \beta_{6} + 7 \beta_{7} ) q^{85} + ( -15 + 11 \beta_{1} + 16 \beta_{2} + 8 \beta_{3} + 35 \beta_{4} + 33 \beta_{5} - 10 \beta_{6} + 9 \beta_{7} ) q^{87} + ( -11 - 31 \beta_{1} + 8 \beta_{3} + 11 \beta_{4} + 12 \beta_{5} - 8 \beta_{7} ) q^{89} + ( 4 \beta_{1} + 4 \beta_{2} + 15 \beta_{3} - 50 \beta_{4} + \beta_{5} + \beta_{6} ) q^{91} + ( -14 \beta_{1} - 14 \beta_{2} - 11 \beta_{3} + 25 \beta_{4} + 6 \beta_{5} + 6 \beta_{6} ) q^{93} + ( 41 + 5 \beta_{2} + 2 \beta_{3} + 41 \beta_{4} - 26 \beta_{6} + 2 \beta_{7} ) q^{95} + ( -5 + 7 \beta_{2} + 16 \beta_{3} - 5 \beta_{4} + 2 \beta_{6} + 16 \beta_{7} ) q^{97} + ( -81 - 39 \beta_{2} - 18 \beta_{3} - 81 \beta_{4} - 48 \beta_{6} - 18 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{3} + 4q^{7} + O(q^{10}) \) \( 8q + 2q^{3} + 4q^{7} + 6q^{11} + 10q^{15} + 12q^{17} + 16q^{19} - 36q^{21} + 104q^{25} + 98q^{27} + 128q^{29} + 10q^{31} - 84q^{37} + 90q^{39} + 20q^{41} + 190q^{43} + 292q^{45} - 58q^{47} - 72q^{49} + 252q^{53} + 74q^{55} + 40q^{59} - 208q^{61} + 36q^{65} + 120q^{69} - 188q^{73} + 12q^{75} + 180q^{77} + 382q^{79} - 124q^{81} - 280q^{83} + 32q^{85} - 34q^{87} - 64q^{89} + 380q^{95} - 44q^{97} - 552q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 18 x^{6} + 91 x^{4} + 126 x^{2} + 25\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{4} + 9 \nu^{2} + 6 \nu + 5 \)\()/6\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{4} - 9 \nu^{2} + 6 \nu - 5 \)\()/6\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{5} - 15 \nu^{3} - 47 \nu \)\()/6\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} - 18 \nu^{5} - 86 \nu^{3} - 81 \nu \)\()/30\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{7} + 17 \nu^{5} + \nu^{4} + 77 \nu^{3} + 15 \nu^{2} + 82 \nu + 35 \)\()/12\)
\(\beta_{6}\)\(=\)\((\)\( \nu^{7} + 17 \nu^{5} - \nu^{4} + 77 \nu^{3} - 15 \nu^{2} + 82 \nu - 35 \)\()/12\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{6} + 16 \nu^{4} + 62 \nu^{2} + 35 \)\()/6\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(-2 \beta_{6} + 2 \beta_{5} + \beta_{2} - \beta_{1} - 10\)\()/2\)
\(\nu^{3}\)\(=\)\(\beta_{6} + \beta_{5} + 5 \beta_{4} - \beta_{3} - 4 \beta_{2} - 4 \beta_{1}\)
\(\nu^{4}\)\(=\)\((\)\(18 \beta_{6} - 18 \beta_{5} - 15 \beta_{2} + 15 \beta_{1} + 80\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-30 \beta_{6} - 30 \beta_{5} - 150 \beta_{4} + 18 \beta_{3} + 73 \beta_{2} + 73 \beta_{1}\)\()/2\)
\(\nu^{6}\)\(=\)\(6 \beta_{7} - 82 \beta_{6} + 82 \beta_{5} + 89 \beta_{2} - 89 \beta_{1} - 365\)
\(\nu^{7}\)\(=\)\((\)\(368 \beta_{6} + 368 \beta_{5} + 1780 \beta_{4} - 152 \beta_{3} - 707 \beta_{2} - 707 \beta_{1}\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
2.35663i
1.35225i
3.22189i
0.486981i
2.35663i
1.35225i
3.22189i
0.486981i
0 −3.81178 + 3.81178i 0 3.14526i 0 −0.342313 0 20.0593i 0
17.2 0 −0.442660 + 0.442660i 0 4.16447i 0 9.68815 0 8.60810i 0
17.3 0 2.14254 2.14254i 0 0.488689i 0 −8.09117 0 0.180982i 0
17.4 0 3.11190 3.11190i 0 4.53053i 0 0.745339 0 10.3678i 0
273.1 0 −3.81178 3.81178i 0 3.14526i 0 −0.342313 0 20.0593i 0
273.2 0 −0.442660 0.442660i 0 4.16447i 0 9.68815 0 8.60810i 0
273.3 0 2.14254 + 2.14254i 0 0.488689i 0 −8.09117 0 0.180982i 0
273.4 0 3.11190 + 3.11190i 0 4.53053i 0 0.745339 0 10.3678i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 273.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.3.l.c 8
4.b odd 2 1 29.3.c.a 8
12.b even 2 1 261.3.f.a 8
29.c odd 4 1 inner 464.3.l.c 8
116.e even 4 1 29.3.c.a 8
348.k odd 4 1 261.3.f.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
29.3.c.a 8 4.b odd 2 1
29.3.c.a 8 116.e even 4 1
261.3.f.a 8 12.b even 2 1
261.3.f.a 8 348.k odd 4 1
464.3.l.c 8 1.a even 1 1 trivial
464.3.l.c 8 29.c odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{8} - \cdots\) acting on \(S_{3}^{\mathrm{new}}(464, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 2 T + 2 T^{2} - 40 T^{3} + 10 T^{4} + 30 T^{5} + 720 T^{6} - 1242 T^{7} + 3483 T^{8} - 11178 T^{9} + 58320 T^{10} + 21870 T^{11} + 65610 T^{12} - 2361960 T^{13} + 1062882 T^{14} - 9565938 T^{15} + 43046721 T^{16} \)
$5$ \( 1 - 152 T^{2} + 11042 T^{4} - 495504 T^{6} + 14942291 T^{8} - 309690000 T^{10} + 4313281250 T^{12} - 37109375000 T^{14} + 152587890625 T^{16} \)
$7$ \( ( 1 - 2 T + 118 T^{2} - 262 T^{3} + 6782 T^{4} - 12838 T^{5} + 283318 T^{6} - 235298 T^{7} + 5764801 T^{8} )^{2} \)
$11$ \( 1 - 6 T + 18 T^{2} + 984 T^{3} + 5458 T^{4} - 25326 T^{5} + 537840 T^{6} + 21947202 T^{7} - 268164717 T^{8} + 2655611442 T^{9} + 7874515440 T^{10} - 44866553886 T^{11} + 1169970772498 T^{12} + 25522425807384 T^{13} + 56491710780978 T^{14} - 2278499001499446 T^{15} + 45949729863572161 T^{16} \)
$13$ \( 1 - 900 T^{2} + 416090 T^{4} - 121830768 T^{6} + 24605646387 T^{8} - 3479608564848 T^{10} + 339417395700890 T^{12} - 20968276610232900 T^{14} + 665416609183179841 T^{16} \)
$17$ \( 1 - 12 T + 72 T^{2} - 156 T^{3} - 11400 T^{4} - 788916 T^{5} + 10299960 T^{6} - 276428772 T^{7} + 7918453918 T^{8} - 79887915108 T^{9} + 860262959160 T^{10} - 19042514385204 T^{11} - 79523634827400 T^{12} - 314495048470044 T^{13} + 41948801080542792 T^{14} - 2020533918712811148 T^{15} + 48661191875666868481 T^{16} \)
$19$ \( 1 - 16 T + 128 T^{2} + 9968 T^{3} - 125288 T^{4} - 124848 T^{5} + 67714944 T^{6} + 106114512 T^{7} + 873564318 T^{8} + 38307338832 T^{9} + 8824679217024 T^{10} - 5873584151088 T^{11} - 2127836646280808 T^{12} + 61114468457760368 T^{13} + 283304309640468608 T^{14} - 12784106972526145936 T^{15} + \)\(28\!\cdots\!81\)\( T^{16} \)
$23$ \( ( 1 + 1798 T^{2} + 204 T^{3} + 1362542 T^{4} + 107916 T^{5} + 503154118 T^{6} + 78310985281 T^{8} )^{2} \)
$29$ \( 1 - 128 T + 7400 T^{2} - 269120 T^{3} + 8004638 T^{4} - 226329920 T^{5} + 5233879400 T^{6} - 76137385088 T^{7} + 500246412961 T^{8} \)
$31$ \( 1 - 10 T + 50 T^{2} + 18752 T^{3} - 59126 T^{4} - 5169114 T^{5} + 230466192 T^{6} + 14955517326 T^{7} - 982612297341 T^{8} + 14372252150286 T^{9} + 212840368102032 T^{10} - 4587607702508634 T^{11} - 50428035479736566 T^{12} + 15369669637463980352 T^{13} + 39383139189427488050 T^{14} - \)\(75\!\cdots\!10\)\( T^{15} + \)\(72\!\cdots\!81\)\( T^{16} \)
$37$ \( 1 + 84 T + 3528 T^{2} + 71652 T^{3} - 2089980 T^{4} - 123205908 T^{5} - 408842280 T^{6} + 218820380604 T^{7} + 13702947378118 T^{8} + 299565101046876 T^{9} - 766236256327080 T^{10} - 316112651900424372 T^{11} - 7341011809105811580 T^{12} + \)\(34\!\cdots\!48\)\( T^{13} + \)\(23\!\cdots\!68\)\( T^{14} + \)\(75\!\cdots\!76\)\( T^{15} + \)\(12\!\cdots\!41\)\( T^{16} \)
$41$ \( 1 - 20 T + 200 T^{2} - 65948 T^{3} + 2077432 T^{4} + 115380012 T^{5} - 548517288 T^{6} + 112249030692 T^{7} - 9153258882402 T^{8} + 188690620593252 T^{9} - 1549978760256168 T^{10} + 548067084327830892 T^{11} + 16588139188583297272 T^{12} - \)\(88\!\cdots\!48\)\( T^{13} + \)\(45\!\cdots\!00\)\( T^{14} - \)\(75\!\cdots\!20\)\( T^{15} + \)\(63\!\cdots\!41\)\( T^{16} \)
$43$ \( 1 - 190 T + 18050 T^{2} - 1310896 T^{3} + 89172690 T^{4} - 5513705486 T^{5} + 297261149248 T^{6} - 14457675945470 T^{7} + 648656884794643 T^{8} - 26732242823174030 T^{9} + 1016276714310211648 T^{10} - 34854134122268986814 T^{11} + \)\(10\!\cdots\!90\)\( T^{12} - \)\(28\!\cdots\!04\)\( T^{13} + \)\(72\!\cdots\!50\)\( T^{14} - \)\(14\!\cdots\!10\)\( T^{15} + \)\(13\!\cdots\!01\)\( T^{16} \)
$47$ \( 1 + 58 T + 1682 T^{2} + 75904 T^{3} + 8447626 T^{4} + 469112154 T^{5} + 15880306608 T^{6} + 750498418338 T^{7} + 30625787988195 T^{8} + 1657851006108642 T^{9} + 77490830429232048 T^{10} + 5056660921417008666 T^{11} + \)\(20\!\cdots\!86\)\( T^{12} + \)\(39\!\cdots\!96\)\( T^{13} + \)\(19\!\cdots\!62\)\( T^{14} + \)\(14\!\cdots\!02\)\( T^{15} + \)\(56\!\cdots\!21\)\( T^{16} \)
$53$ \( ( 1 - 126 T + 12120 T^{2} - 805920 T^{3} + 48326113 T^{4} - 2263829280 T^{5} + 95632629720 T^{6} - 2792709502254 T^{7} + 62259690411361 T^{8} )^{2} \)
$59$ \( ( 1 - 20 T + 4038 T^{2} + 142432 T^{3} + 879134 T^{4} + 495805792 T^{5} + 48929903718 T^{6} - 843610672820 T^{7} + 146830437604321 T^{8} )^{2} \)
$61$ \( 1 + 208 T + 21632 T^{2} + 2017096 T^{3} + 184647288 T^{4} + 13664724728 T^{5} + 882310746016 T^{6} + 58889137003472 T^{7} + 3818097286447198 T^{8} + 219126478789919312 T^{9} + 12216334301928919456 T^{10} + \)\(70\!\cdots\!08\)\( T^{11} + \)\(35\!\cdots\!28\)\( T^{12} + \)\(14\!\cdots\!96\)\( T^{13} + \)\(57\!\cdots\!72\)\( T^{14} + \)\(20\!\cdots\!28\)\( T^{15} + \)\(36\!\cdots\!61\)\( T^{16} \)
$67$ \( 1 - 11008 T^{2} + 27285916 T^{4} + 201250654976 T^{6} - 1694675724118778 T^{8} + 4055426299750628096 T^{10} + \)\(11\!\cdots\!56\)\( T^{12} - \)\(90\!\cdots\!88\)\( T^{14} + \)\(16\!\cdots\!81\)\( T^{16} \)
$71$ \( 1 - 21324 T^{2} + 250110380 T^{4} - 1967023408740 T^{6} + 11455271890903830 T^{8} - 49985371382433491940 T^{10} + \)\(16\!\cdots\!80\)\( T^{12} - \)\(34\!\cdots\!84\)\( T^{14} + \)\(41\!\cdots\!21\)\( T^{16} \)
$73$ \( 1 + 188 T + 17672 T^{2} + 1559180 T^{3} + 182719716 T^{4} + 18486242500 T^{5} + 1461911905048 T^{6} + 113727191207188 T^{7} + 8685700663672390 T^{8} + 606052201943104852 T^{9} + 41515726600322220568 T^{10} + \)\(27\!\cdots\!00\)\( T^{11} + \)\(14\!\cdots\!96\)\( T^{12} + \)\(67\!\cdots\!20\)\( T^{13} + \)\(40\!\cdots\!12\)\( T^{14} + \)\(22\!\cdots\!92\)\( T^{15} + \)\(65\!\cdots\!61\)\( T^{16} \)
$79$ \( 1 - 382 T + 72962 T^{2} - 10210992 T^{3} + 1201614634 T^{4} - 122408323406 T^{5} + 11219951427216 T^{6} - 967189248125926 T^{7} + 78871519191926211 T^{8} - 6036228097553904166 T^{9} + \)\(43\!\cdots\!96\)\( T^{10} - \)\(29\!\cdots\!26\)\( T^{11} + \)\(18\!\cdots\!74\)\( T^{12} - \)\(96\!\cdots\!92\)\( T^{13} + \)\(43\!\cdots\!42\)\( T^{14} - \)\(14\!\cdots\!42\)\( T^{15} + \)\(23\!\cdots\!21\)\( T^{16} \)
$83$ \( ( 1 + 140 T + 22718 T^{2} + 2108544 T^{3} + 207732422 T^{4} + 14525759616 T^{5} + 1078158136478 T^{6} + 45771652271660 T^{7} + 2252292232139041 T^{8} )^{2} \)
$89$ \( 1 + 64 T + 2048 T^{2} - 960272 T^{3} - 17872712 T^{4} - 244915632 T^{5} + 481989870720 T^{6} - 41121933793344 T^{7} - 1442843088822882 T^{8} - 325726837577077824 T^{9} + 30241124628273083520 T^{10} - \)\(12\!\cdots\!52\)\( T^{11} - \)\(70\!\cdots\!72\)\( T^{12} - \)\(29\!\cdots\!72\)\( T^{13} + \)\(50\!\cdots\!08\)\( T^{14} + \)\(12\!\cdots\!24\)\( T^{15} + \)\(15\!\cdots\!61\)\( T^{16} \)
$97$ \( 1 + 44 T + 968 T^{2} - 45508 T^{3} + 12434104 T^{4} + 5439303060 T^{5} + 228328611000 T^{6} + 46830606041796 T^{7} + 9294107220541086 T^{8} + 440629172247258564 T^{9} + 20213767763558691000 T^{10} + \)\(45\!\cdots\!40\)\( T^{11} + \)\(97\!\cdots\!44\)\( T^{12} - \)\(33\!\cdots\!92\)\( T^{13} + \)\(67\!\cdots\!88\)\( T^{14} + \)\(28\!\cdots\!36\)\( T^{15} + \)\(61\!\cdots\!21\)\( T^{16} \)
show more
show less