Properties

Label 464.2.u.b.257.1
Level $464$
Weight $2$
Character 464.257
Analytic conductor $3.705$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [464,2,Mod(49,464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("464.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(464, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 0, 12])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.u (of order \(7\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 257.1
Root \(0.900969 + 0.433884i\) of defining polynomial
Character \(\chi\) \(=\) 464.257
Dual form 464.2.u.b.65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.240787i) q^{3} +(-0.0440730 + 0.193096i) q^{5} +(0.0990311 - 0.0476909i) q^{7} +(-1.67845 + 2.10471i) q^{9} +(0.832437 + 1.04384i) q^{11} +(2.45593 + 3.07964i) q^{13} +(-0.0244587 - 0.107160i) q^{15} -2.91185 q^{17} +(1.16756 + 0.562269i) q^{19} +(-0.0380322 + 0.0476909i) q^{21} +(1.73341 + 7.59455i) q^{23} +(4.46950 + 2.15240i) q^{25} +(0.702907 - 3.07964i) q^{27} +(-1.39493 - 5.20136i) q^{29} +(-2.07942 + 9.11052i) q^{31} +(-0.667563 - 0.321481i) q^{33} +(0.00484434 + 0.0212244i) q^{35} +(-1.88740 + 2.36672i) q^{37} +(-1.96950 - 0.948461i) q^{39} +3.76271 q^{41} +(-1.48307 - 6.49777i) q^{43} +(-0.332437 - 0.416863i) q^{45} +(-0.500000 - 0.626980i) q^{47} +(-4.35690 + 5.46337i) q^{49} +(1.45593 - 0.701137i) q^{51} +(-1.85474 + 8.12615i) q^{53} +(-0.238250 + 0.114735i) q^{55} -0.719169 q^{57} +5.08815 q^{59} +(9.96346 - 4.79815i) q^{61} +(-0.0658433 + 0.288478i) q^{63} +(-0.702907 + 0.338502i) q^{65} +(6.85839 - 8.60015i) q^{67} +(-2.69537 - 3.37989i) q^{69} +(-6.82640 - 8.56003i) q^{71} +(-1.76875 - 7.74940i) q^{73} -2.75302 q^{75} +(0.132219 + 0.0636733i) q^{77} +(-3.04892 + 3.82322i) q^{79} +(-1.40701 - 6.16451i) q^{81} +(-10.5184 - 5.06540i) q^{83} +(0.128334 - 0.562269i) q^{85} +(1.94989 + 2.26480i) q^{87} +(2.55765 - 11.2058i) q^{89} +(0.390084 + 0.187854i) q^{91} +(-1.15399 - 5.05596i) q^{93} +(-0.160030 + 0.200671i) q^{95} +(9.54288 + 4.59561i) q^{97} -3.59419 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 4 q^{5} + 5 q^{7} - 6 q^{9} + 6 q^{11} + 11 q^{13} + 9 q^{15} - 10 q^{17} + 6 q^{19} + 15 q^{21} + 7 q^{23} + 17 q^{25} - 9 q^{27} + 15 q^{29} - 4 q^{31} - 3 q^{33} - 22 q^{35} - 13 q^{37}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.240787i −0.288675 + 0.139019i −0.572617 0.819823i \(-0.694072\pi\)
0.283942 + 0.958841i \(0.408358\pi\)
\(4\) 0 0
\(5\) −0.0440730 + 0.193096i −0.0197100 + 0.0863553i −0.983826 0.179125i \(-0.942673\pi\)
0.964116 + 0.265480i \(0.0855305\pi\)
\(6\) 0 0
\(7\) 0.0990311 0.0476909i 0.0374302 0.0180255i −0.415075 0.909787i \(-0.636245\pi\)
0.452505 + 0.891762i \(0.350530\pi\)
\(8\) 0 0
\(9\) −1.67845 + 2.10471i −0.559483 + 0.701569i
\(10\) 0 0
\(11\) 0.832437 + 1.04384i 0.250989 + 0.314731i 0.891325 0.453364i \(-0.149776\pi\)
−0.640336 + 0.768095i \(0.721205\pi\)
\(12\) 0 0
\(13\) 2.45593 + 3.07964i 0.681152 + 0.854137i 0.995460 0.0951839i \(-0.0303439\pi\)
−0.314308 + 0.949321i \(0.601772\pi\)
\(14\) 0 0
\(15\) −0.0244587 0.107160i −0.00631520 0.0276687i
\(16\) 0 0
\(17\) −2.91185 −0.706228 −0.353114 0.935580i \(-0.614877\pi\)
−0.353114 + 0.935580i \(0.614877\pi\)
\(18\) 0 0
\(19\) 1.16756 + 0.562269i 0.267857 + 0.128993i 0.562992 0.826462i \(-0.309650\pi\)
−0.295135 + 0.955456i \(0.595365\pi\)
\(20\) 0 0
\(21\) −0.0380322 + 0.0476909i −0.00829931 + 0.0104070i
\(22\) 0 0
\(23\) 1.73341 + 7.59455i 0.361440 + 1.58357i 0.749542 + 0.661956i \(0.230274\pi\)
−0.388102 + 0.921616i \(0.626869\pi\)
\(24\) 0 0
\(25\) 4.46950 + 2.15240i 0.893900 + 0.430480i
\(26\) 0 0
\(27\) 0.702907 3.07964i 0.135274 0.592676i
\(28\) 0 0
\(29\) −1.39493 5.20136i −0.259032 0.965869i
\(30\) 0 0
\(31\) −2.07942 + 9.11052i −0.373474 + 1.63630i 0.343467 + 0.939165i \(0.388399\pi\)
−0.716942 + 0.697133i \(0.754459\pi\)
\(32\) 0 0
\(33\) −0.667563 0.321481i −0.116208 0.0559627i
\(34\) 0 0
\(35\) 0.00484434 + 0.0212244i 0.000818843 + 0.00358758i
\(36\) 0 0
\(37\) −1.88740 + 2.36672i −0.310286 + 0.389086i −0.912384 0.409336i \(-0.865760\pi\)
0.602098 + 0.798422i \(0.294332\pi\)
\(38\) 0 0
\(39\) −1.96950 0.948461i −0.315372 0.151875i
\(40\) 0 0
\(41\) 3.76271 0.587636 0.293818 0.955861i \(-0.405074\pi\)
0.293818 + 0.955861i \(0.405074\pi\)
\(42\) 0 0
\(43\) −1.48307 6.49777i −0.226167 0.990901i −0.952734 0.303806i \(-0.901743\pi\)
0.726567 0.687095i \(-0.241115\pi\)
\(44\) 0 0
\(45\) −0.332437 0.416863i −0.0495568 0.0621423i
\(46\) 0 0
\(47\) −0.500000 0.626980i −0.0729325 0.0914545i 0.744027 0.668150i \(-0.232913\pi\)
−0.816959 + 0.576695i \(0.804342\pi\)
\(48\) 0 0
\(49\) −4.35690 + 5.46337i −0.622414 + 0.780482i
\(50\) 0 0
\(51\) 1.45593 0.701137i 0.203871 0.0981789i
\(52\) 0 0
\(53\) −1.85474 + 8.12615i −0.254768 + 1.11621i 0.671992 + 0.740558i \(0.265439\pi\)
−0.926760 + 0.375654i \(0.877418\pi\)
\(54\) 0 0
\(55\) −0.238250 + 0.114735i −0.0321257 + 0.0154709i
\(56\) 0 0
\(57\) −0.719169 −0.0952562
\(58\) 0 0
\(59\) 5.08815 0.662420 0.331210 0.943557i \(-0.392543\pi\)
0.331210 + 0.943557i \(0.392543\pi\)
\(60\) 0 0
\(61\) 9.96346 4.79815i 1.27569 0.614340i 0.331411 0.943486i \(-0.392475\pi\)
0.944279 + 0.329146i \(0.106761\pi\)
\(62\) 0 0
\(63\) −0.0658433 + 0.288478i −0.00829547 + 0.0363448i
\(64\) 0 0
\(65\) −0.702907 + 0.338502i −0.0871848 + 0.0419860i
\(66\) 0 0
\(67\) 6.85839 8.60015i 0.837885 1.05068i −0.160092 0.987102i \(-0.551179\pi\)
0.997977 0.0635730i \(-0.0202496\pi\)
\(68\) 0 0
\(69\) −2.69537 3.37989i −0.324485 0.406891i
\(70\) 0 0
\(71\) −6.82640 8.56003i −0.810144 1.01589i −0.999423 0.0339653i \(-0.989186\pi\)
0.189279 0.981923i \(-0.439385\pi\)
\(72\) 0 0
\(73\) −1.76875 7.74940i −0.207017 0.906999i −0.966539 0.256518i \(-0.917425\pi\)
0.759523 0.650481i \(-0.225432\pi\)
\(74\) 0 0
\(75\) −2.75302 −0.317891
\(76\) 0 0
\(77\) 0.132219 + 0.0636733i 0.0150678 + 0.00725625i
\(78\) 0 0
\(79\) −3.04892 + 3.82322i −0.343030 + 0.430146i −0.923183 0.384362i \(-0.874422\pi\)
0.580153 + 0.814508i \(0.302993\pi\)
\(80\) 0 0
\(81\) −1.40701 6.16451i −0.156334 0.684946i
\(82\) 0 0
\(83\) −10.5184 5.06540i −1.15455 0.556000i −0.244150 0.969737i \(-0.578509\pi\)
−0.910396 + 0.413737i \(0.864223\pi\)
\(84\) 0 0
\(85\) 0.128334 0.562269i 0.0139198 0.0609866i
\(86\) 0 0
\(87\) 1.94989 + 2.26480i 0.209050 + 0.242812i
\(88\) 0 0
\(89\) 2.55765 11.2058i 0.271110 1.18781i −0.637595 0.770372i \(-0.720071\pi\)
0.908705 0.417439i \(-0.137072\pi\)
\(90\) 0 0
\(91\) 0.390084 + 0.187854i 0.0408919 + 0.0196925i
\(92\) 0 0
\(93\) −1.15399 5.05596i −0.119663 0.524278i
\(94\) 0 0
\(95\) −0.160030 + 0.200671i −0.0164187 + 0.0205884i
\(96\) 0 0
\(97\) 9.54288 + 4.59561i 0.968932 + 0.466613i 0.850285 0.526323i \(-0.176430\pi\)
0.118648 + 0.992936i \(0.462144\pi\)
\(98\) 0 0
\(99\) −3.59419 −0.361229
\(100\) 0 0
\(101\) −1.32908 5.82310i −0.132249 0.579420i −0.997012 0.0772410i \(-0.975389\pi\)
0.864764 0.502179i \(-0.167468\pi\)
\(102\) 0 0
\(103\) 8.97434 + 11.2535i 0.884268 + 1.10884i 0.993388 + 0.114809i \(0.0366256\pi\)
−0.109119 + 0.994029i \(0.534803\pi\)
\(104\) 0 0
\(105\) −0.00753275 0.00944576i −0.000735121 0.000921812i
\(106\) 0 0
\(107\) 10.2823 12.8936i 0.994030 1.24647i 0.0249596 0.999688i \(-0.492054\pi\)
0.969070 0.246785i \(-0.0793743\pi\)
\(108\) 0 0
\(109\) −2.55980 + 1.23274i −0.245185 + 0.118075i −0.552441 0.833552i \(-0.686303\pi\)
0.307256 + 0.951627i \(0.400589\pi\)
\(110\) 0 0
\(111\) 0.373822 1.63782i 0.0354816 0.155455i
\(112\) 0 0
\(113\) −14.1223 + 6.80094i −1.32851 + 0.639778i −0.957388 0.288804i \(-0.906742\pi\)
−0.371125 + 0.928583i \(0.621028\pi\)
\(114\) 0 0
\(115\) −1.54288 −0.143874
\(116\) 0 0
\(117\) −10.6039 −0.980329
\(118\) 0 0
\(119\) −0.288364 + 0.138869i −0.0264343 + 0.0127301i
\(120\) 0 0
\(121\) 2.05107 8.98634i 0.186461 0.816940i
\(122\) 0 0
\(123\) −1.88135 + 0.906013i −0.169636 + 0.0816924i
\(124\) 0 0
\(125\) −1.23005 + 1.54244i −0.110019 + 0.137960i
\(126\) 0 0
\(127\) 1.68867 + 2.11752i 0.149845 + 0.187900i 0.851089 0.525022i \(-0.175943\pi\)
−0.701244 + 0.712922i \(0.747371\pi\)
\(128\) 0 0
\(129\) 2.30612 + 2.89178i 0.203042 + 0.254607i
\(130\) 0 0
\(131\) −3.25182 14.2472i −0.284113 1.24478i −0.892466 0.451115i \(-0.851027\pi\)
0.608353 0.793667i \(-0.291831\pi\)
\(132\) 0 0
\(133\) 0.142440 0.0123511
\(134\) 0 0
\(135\) 0.563687 + 0.271458i 0.0485145 + 0.0233633i
\(136\) 0 0
\(137\) −0.993959 + 1.24639i −0.0849197 + 0.106486i −0.822476 0.568799i \(-0.807408\pi\)
0.737557 + 0.675285i \(0.235979\pi\)
\(138\) 0 0
\(139\) 0.287168 + 1.25816i 0.0243573 + 0.106716i 0.985645 0.168829i \(-0.0539987\pi\)
−0.961288 + 0.275545i \(0.911142\pi\)
\(140\) 0 0
\(141\) 0.400969 + 0.193096i 0.0337677 + 0.0162617i
\(142\) 0 0
\(143\) −1.17025 + 5.12721i −0.0978613 + 0.428758i
\(144\) 0 0
\(145\) 1.06584 0.0401160i 0.0885135 0.00333145i
\(146\) 0 0
\(147\) 0.862937 3.78077i 0.0711738 0.311833i
\(148\) 0 0
\(149\) 6.03415 + 2.90589i 0.494337 + 0.238060i 0.664406 0.747372i \(-0.268685\pi\)
−0.170069 + 0.985432i \(0.554399\pi\)
\(150\) 0 0
\(151\) −2.11260 9.25593i −0.171921 0.753237i −0.985207 0.171371i \(-0.945180\pi\)
0.813285 0.581865i \(-0.197677\pi\)
\(152\) 0 0
\(153\) 4.88740 6.12860i 0.395122 0.495468i
\(154\) 0 0
\(155\) −1.66756 0.803056i −0.133942 0.0645030i
\(156\) 0 0
\(157\) 9.39373 0.749701 0.374851 0.927085i \(-0.377694\pi\)
0.374851 + 0.927085i \(0.377694\pi\)
\(158\) 0 0
\(159\) −1.02930 4.50967i −0.0816290 0.357640i
\(160\) 0 0
\(161\) 0.533852 + 0.669429i 0.0420734 + 0.0527584i
\(162\) 0 0
\(163\) 10.1434 + 12.7194i 0.794492 + 0.996262i 0.999846 + 0.0175740i \(0.00559426\pi\)
−0.205353 + 0.978688i \(0.565834\pi\)
\(164\) 0 0
\(165\) 0.0914984 0.114735i 0.00712314 0.00893213i
\(166\) 0 0
\(167\) −12.3998 + 5.97142i −0.959523 + 0.462082i −0.847015 0.531569i \(-0.821603\pi\)
−0.112508 + 0.993651i \(0.535888\pi\)
\(168\) 0 0
\(169\) −0.559802 + 2.45265i −0.0430617 + 0.188666i
\(170\) 0 0
\(171\) −3.14310 + 1.51364i −0.240359 + 0.115751i
\(172\) 0 0
\(173\) −0.119605 −0.00909340 −0.00454670 0.999990i \(-0.501447\pi\)
−0.00454670 + 0.999990i \(0.501447\pi\)
\(174\) 0 0
\(175\) 0.545269 0.0412185
\(176\) 0 0
\(177\) −2.54407 + 1.22516i −0.191224 + 0.0920887i
\(178\) 0 0
\(179\) −2.82155 + 12.3620i −0.210893 + 0.923981i 0.753069 + 0.657941i \(0.228572\pi\)
−0.963962 + 0.266040i \(0.914285\pi\)
\(180\) 0 0
\(181\) −6.42812 + 3.09562i −0.477798 + 0.230095i −0.657252 0.753671i \(-0.728281\pi\)
0.179454 + 0.983766i \(0.442567\pi\)
\(182\) 0 0
\(183\) −3.82640 + 4.79815i −0.282855 + 0.354689i
\(184\) 0 0
\(185\) −0.373822 0.468758i −0.0274839 0.0344638i
\(186\) 0 0
\(187\) −2.42394 3.03952i −0.177256 0.222272i
\(188\) 0 0
\(189\) −0.0772609 0.338502i −0.00561990 0.0246224i
\(190\) 0 0
\(191\) −3.19806 −0.231404 −0.115702 0.993284i \(-0.536912\pi\)
−0.115702 + 0.993284i \(0.536912\pi\)
\(192\) 0 0
\(193\) 13.5782 + 6.53893i 0.977382 + 0.470682i 0.853204 0.521578i \(-0.174656\pi\)
0.124178 + 0.992260i \(0.460371\pi\)
\(194\) 0 0
\(195\) 0.269946 0.338502i 0.0193313 0.0242406i
\(196\) 0 0
\(197\) 3.23072 + 14.1547i 0.230179 + 1.00848i 0.949491 + 0.313794i \(0.101600\pi\)
−0.719312 + 0.694687i \(0.755543\pi\)
\(198\) 0 0
\(199\) 23.9013 + 11.5102i 1.69432 + 0.815939i 0.994860 + 0.101264i \(0.0322886\pi\)
0.699456 + 0.714676i \(0.253426\pi\)
\(200\) 0 0
\(201\) −1.35839 + 5.95149i −0.0958133 + 0.419785i
\(202\) 0 0
\(203\) −0.386199 0.448572i −0.0271058 0.0314835i
\(204\) 0 0
\(205\) −0.165834 + 0.726566i −0.0115823 + 0.0507455i
\(206\) 0 0
\(207\) −18.8937 9.09874i −1.31321 0.632406i
\(208\) 0 0
\(209\) 0.385002 + 1.68681i 0.0266312 + 0.116679i
\(210\) 0 0
\(211\) 10.4743 13.1344i 0.721084 0.904210i −0.277315 0.960779i \(-0.589445\pi\)
0.998399 + 0.0565688i \(0.0180160\pi\)
\(212\) 0 0
\(213\) 5.47434 + 2.63631i 0.375096 + 0.180637i
\(214\) 0 0
\(215\) 1.32006 0.0900274
\(216\) 0 0
\(217\) 0.228562 + 1.00139i 0.0155158 + 0.0679791i
\(218\) 0 0
\(219\) 2.75033 + 3.44881i 0.185850 + 0.233049i
\(220\) 0 0
\(221\) −7.15130 8.96745i −0.481049 0.603216i
\(222\) 0 0
\(223\) 0.893436 1.12033i 0.0598289 0.0750231i −0.751017 0.660283i \(-0.770436\pi\)
0.810846 + 0.585260i \(0.199008\pi\)
\(224\) 0 0
\(225\) −12.0320 + 5.79430i −0.802133 + 0.386287i
\(226\) 0 0
\(227\) −2.98523 + 13.0791i −0.198137 + 0.868093i 0.773908 + 0.633298i \(0.218299\pi\)
−0.972045 + 0.234796i \(0.924558\pi\)
\(228\) 0 0
\(229\) −10.3693 + 4.99358i −0.685221 + 0.329985i −0.743899 0.668292i \(-0.767026\pi\)
0.0586782 + 0.998277i \(0.481311\pi\)
\(230\) 0 0
\(231\) −0.0814412 −0.00535844
\(232\) 0 0
\(233\) −0.735562 −0.0481883 −0.0240941 0.999710i \(-0.507670\pi\)
−0.0240941 + 0.999710i \(0.507670\pi\)
\(234\) 0 0
\(235\) 0.143104 0.0689153i 0.00933508 0.00449554i
\(236\) 0 0
\(237\) 0.603875 2.64575i 0.0392259 0.171860i
\(238\) 0 0
\(239\) 0.0794168 0.0382451i 0.00513705 0.00247387i −0.431313 0.902202i \(-0.641950\pi\)
0.436450 + 0.899728i \(0.356235\pi\)
\(240\) 0 0
\(241\) −3.87382 + 4.85762i −0.249535 + 0.312907i −0.890785 0.454425i \(-0.849845\pi\)
0.641250 + 0.767332i \(0.278416\pi\)
\(242\) 0 0
\(243\) 8.09634 + 10.1525i 0.519381 + 0.651283i
\(244\) 0 0
\(245\) −0.862937 1.08209i −0.0551310 0.0691321i
\(246\) 0 0
\(247\) 1.13587 + 4.97656i 0.0722735 + 0.316651i
\(248\) 0 0
\(249\) 6.47889 0.410583
\(250\) 0 0
\(251\) 13.6869 + 6.59128i 0.863912 + 0.416038i 0.812723 0.582651i \(-0.197984\pi\)
0.0511894 + 0.998689i \(0.483699\pi\)
\(252\) 0 0
\(253\) −6.48457 + 8.13139i −0.407681 + 0.511216i
\(254\) 0 0
\(255\) 0.0712201 + 0.312036i 0.00445997 + 0.0195404i
\(256\) 0 0
\(257\) −4.98307 2.39972i −0.310836 0.149691i 0.271962 0.962308i \(-0.412328\pi\)
−0.582797 + 0.812618i \(0.698042\pi\)
\(258\) 0 0
\(259\) −0.0740400 + 0.324390i −0.00460062 + 0.0201566i
\(260\) 0 0
\(261\) 13.2887 + 5.79430i 0.822547 + 0.358658i
\(262\) 0 0
\(263\) 0.486959 2.13351i 0.0300272 0.131558i −0.957693 0.287793i \(-0.907079\pi\)
0.987720 + 0.156235i \(0.0499357\pi\)
\(264\) 0 0
\(265\) −1.48739 0.716287i −0.0913694 0.0440012i
\(266\) 0 0
\(267\) 1.41939 + 6.21874i 0.0868651 + 0.380581i
\(268\) 0 0
\(269\) 18.9901 23.8128i 1.15785 1.45189i 0.288642 0.957437i \(-0.406796\pi\)
0.869203 0.494455i \(-0.164632\pi\)
\(270\) 0 0
\(271\) 28.4218 + 13.6872i 1.72650 + 0.831440i 0.987477 + 0.157765i \(0.0504287\pi\)
0.739027 + 0.673676i \(0.235286\pi\)
\(272\) 0 0
\(273\) −0.240275 −0.0145421
\(274\) 0 0
\(275\) 1.47381 + 6.45719i 0.0888742 + 0.389383i
\(276\) 0 0
\(277\) 8.85504 + 11.1039i 0.532048 + 0.667166i 0.973118 0.230306i \(-0.0739727\pi\)
−0.441071 + 0.897472i \(0.645401\pi\)
\(278\) 0 0
\(279\) −15.6848 19.6681i −0.939023 1.17750i
\(280\) 0 0
\(281\) 12.9453 16.2329i 0.772254 0.968376i −0.227732 0.973724i \(-0.573131\pi\)
0.999986 + 0.00534795i \(0.00170231\pi\)
\(282\) 0 0
\(283\) −15.6293 + 7.52667i −0.929065 + 0.447414i −0.836299 0.548274i \(-0.815285\pi\)
−0.0927662 + 0.995688i \(0.529571\pi\)
\(284\) 0 0
\(285\) 0.0316959 0.138869i 0.00187750 0.00822588i
\(286\) 0 0
\(287\) 0.372625 0.179447i 0.0219954 0.0105924i
\(288\) 0 0
\(289\) −8.52111 −0.501242
\(290\) 0 0
\(291\) −5.87800 −0.344575
\(292\) 0 0
\(293\) −15.7920 + 7.60503i −0.922579 + 0.444291i −0.833991 0.551778i \(-0.813950\pi\)
−0.0885879 + 0.996068i \(0.528235\pi\)
\(294\) 0 0
\(295\) −0.224250 + 0.982503i −0.0130563 + 0.0572035i
\(296\) 0 0
\(297\) 3.79978 1.82988i 0.220486 0.106180i
\(298\) 0 0
\(299\) −19.1313 + 23.9899i −1.10639 + 1.38737i
\(300\) 0 0
\(301\) −0.456755 0.572753i −0.0263269 0.0330129i
\(302\) 0 0
\(303\) 2.06667 + 2.59152i 0.118727 + 0.148879i
\(304\) 0 0
\(305\) 0.487386 + 2.13538i 0.0279076 + 0.122271i
\(306\) 0 0
\(307\) −30.3618 −1.73284 −0.866420 0.499316i \(-0.833585\pi\)
−0.866420 + 0.499316i \(0.833585\pi\)
\(308\) 0 0
\(309\) −7.19687 3.46583i −0.409415 0.197164i
\(310\) 0 0
\(311\) 14.8312 18.5978i 0.841003 1.05458i −0.156754 0.987638i \(-0.550103\pi\)
0.997757 0.0669461i \(-0.0213256\pi\)
\(312\) 0 0
\(313\) 6.38069 + 27.9556i 0.360658 + 1.58015i 0.751529 + 0.659700i \(0.229317\pi\)
−0.390871 + 0.920446i \(0.627826\pi\)
\(314\) 0 0
\(315\) −0.0528022 0.0254282i −0.00297507 0.00143272i
\(316\) 0 0
\(317\) 1.68180 7.36845i 0.0944593 0.413853i −0.905485 0.424378i \(-0.860493\pi\)
0.999945 + 0.0105243i \(0.00335006\pi\)
\(318\) 0 0
\(319\) 4.26822 5.78589i 0.238974 0.323948i
\(320\) 0 0
\(321\) −2.03654 + 8.92267i −0.113669 + 0.498015i
\(322\) 0 0
\(323\) −3.39977 1.63724i −0.189168 0.0910987i
\(324\) 0 0
\(325\) 4.34817 + 19.0506i 0.241193 + 1.05674i
\(326\) 0 0
\(327\) 0.983074 1.23274i 0.0543641 0.0681705i
\(328\) 0 0
\(329\) −0.0794168 0.0382451i −0.00437839 0.00210852i
\(330\) 0 0
\(331\) 11.1860 0.614837 0.307419 0.951574i \(-0.400535\pi\)
0.307419 + 0.951574i \(0.400535\pi\)
\(332\) 0 0
\(333\) −1.81336 7.94483i −0.0993713 0.435374i
\(334\) 0 0
\(335\) 1.35839 + 1.70336i 0.0742167 + 0.0930647i
\(336\) 0 0
\(337\) −12.9641 16.2565i −0.706201 0.885548i 0.291269 0.956641i \(-0.405923\pi\)
−0.997470 + 0.0710934i \(0.977351\pi\)
\(338\) 0 0
\(339\) 5.42357 6.80094i 0.294568 0.369376i
\(340\) 0 0
\(341\) −11.2409 + 5.41335i −0.608731 + 0.293149i
\(342\) 0 0
\(343\) −0.342126 + 1.49895i −0.0184731 + 0.0809358i
\(344\) 0 0
\(345\) 0.771438 0.371505i 0.0415328 0.0200012i
\(346\) 0 0
\(347\) −0.0193774 −0.00104023 −0.000520116 1.00000i \(-0.500166\pi\)
−0.000520116 1.00000i \(0.500166\pi\)
\(348\) 0 0
\(349\) 29.0315 1.55402 0.777009 0.629489i \(-0.216736\pi\)
0.777009 + 0.629489i \(0.216736\pi\)
\(350\) 0 0
\(351\) 11.2104 5.39866i 0.598369 0.288159i
\(352\) 0 0
\(353\) −4.58761 + 20.0996i −0.244174 + 1.06980i 0.693001 + 0.720937i \(0.256288\pi\)
−0.937175 + 0.348860i \(0.886569\pi\)
\(354\) 0 0
\(355\) 1.95377 0.940887i 0.103695 0.0499371i
\(356\) 0 0
\(357\) 0.110744 0.138869i 0.00586121 0.00734972i
\(358\) 0 0
\(359\) −13.0248 16.3325i −0.687420 0.861998i 0.308594 0.951194i \(-0.400142\pi\)
−0.996014 + 0.0891962i \(0.971570\pi\)
\(360\) 0 0
\(361\) −10.7992 13.5418i −0.568382 0.712728i
\(362\) 0 0
\(363\) 1.13826 + 4.98704i 0.0597431 + 0.261752i
\(364\) 0 0
\(365\) 1.57434 0.0824045
\(366\) 0 0
\(367\) 3.39008 + 1.63258i 0.176961 + 0.0852199i 0.520267 0.854004i \(-0.325832\pi\)
−0.343306 + 0.939224i \(0.611547\pi\)
\(368\) 0 0
\(369\) −6.31551 + 7.91940i −0.328772 + 0.412268i
\(370\) 0 0
\(371\) 0.203866 + 0.893196i 0.0105842 + 0.0463724i
\(372\) 0 0
\(373\) −13.5271 6.51433i −0.700409 0.337299i 0.0495609 0.998771i \(-0.484218\pi\)
−0.749970 + 0.661472i \(0.769932\pi\)
\(374\) 0 0
\(375\) 0.243627 1.06740i 0.0125809 0.0551203i
\(376\) 0 0
\(377\) 12.5925 17.0700i 0.648545 0.879152i
\(378\) 0 0
\(379\) 5.24363 22.9738i 0.269347 1.18009i −0.641428 0.767183i \(-0.721658\pi\)
0.910775 0.412903i \(-0.135485\pi\)
\(380\) 0 0
\(381\) −1.35421 0.652152i −0.0693781 0.0334108i
\(382\) 0 0
\(383\) −5.96830 26.1488i −0.304966 1.33614i −0.862528 0.506009i \(-0.831120\pi\)
0.557562 0.830135i \(-0.311737\pi\)
\(384\) 0 0
\(385\) −0.0181224 + 0.0227247i −0.000923602 + 0.00115816i
\(386\) 0 0
\(387\) 16.1652 + 7.78474i 0.821722 + 0.395720i
\(388\) 0 0
\(389\) −18.4034 −0.933090 −0.466545 0.884497i \(-0.654502\pi\)
−0.466545 + 0.884497i \(0.654502\pi\)
\(390\) 0 0
\(391\) −5.04743 22.1142i −0.255259 1.11836i
\(392\) 0 0
\(393\) 5.05645 + 6.34059i 0.255064 + 0.319840i
\(394\) 0 0
\(395\) −0.603875 0.757236i −0.0303843 0.0381007i
\(396\) 0 0
\(397\) 18.0233 22.6005i 0.904562 1.13428i −0.0858736 0.996306i \(-0.527368\pi\)
0.990435 0.137978i \(-0.0440604\pi\)
\(398\) 0 0
\(399\) −0.0712201 + 0.0342978i −0.00356546 + 0.00171704i
\(400\) 0 0
\(401\) −3.41281 + 14.9525i −0.170428 + 0.746693i 0.815395 + 0.578905i \(0.196520\pi\)
−0.985823 + 0.167788i \(0.946338\pi\)
\(402\) 0 0
\(403\) −33.1640 + 15.9709i −1.65202 + 0.795569i
\(404\) 0 0
\(405\) 1.25236 0.0622301
\(406\) 0 0
\(407\) −4.04162 −0.200336
\(408\) 0 0
\(409\) 31.2913 15.0691i 1.54726 0.745120i 0.551246 0.834343i \(-0.314153\pi\)
0.996012 + 0.0892229i \(0.0284383\pi\)
\(410\) 0 0
\(411\) 0.196866 0.862525i 0.00971067 0.0425452i
\(412\) 0 0
\(413\) 0.503885 0.242658i 0.0247946 0.0119404i
\(414\) 0 0
\(415\) 1.44169 1.80782i 0.0707698 0.0887425i
\(416\) 0 0
\(417\) −0.446534 0.559936i −0.0218669 0.0274202i
\(418\) 0 0
\(419\) 13.6935 + 17.1711i 0.668972 + 0.838864i 0.994287 0.106742i \(-0.0340417\pi\)
−0.325315 + 0.945606i \(0.605470\pi\)
\(420\) 0 0
\(421\) −8.99761 39.4211i −0.438517 1.92127i −0.385596 0.922668i \(-0.626004\pi\)
−0.0529206 0.998599i \(-0.516853\pi\)
\(422\) 0 0
\(423\) 2.15883 0.104966
\(424\) 0 0
\(425\) −13.0145 6.26747i −0.631298 0.304017i
\(426\) 0 0
\(427\) 0.757865 0.950332i 0.0366756 0.0459898i
\(428\) 0 0
\(429\) −0.649440 2.84538i −0.0313553 0.137376i
\(430\) 0 0
\(431\) −19.9121 9.58919i −0.959134 0.461895i −0.112255 0.993679i \(-0.535807\pi\)
−0.846880 + 0.531785i \(0.821522\pi\)
\(432\) 0 0
\(433\) 0.864961 3.78964i 0.0415674 0.182119i −0.949882 0.312607i \(-0.898798\pi\)
0.991450 + 0.130489i \(0.0416547\pi\)
\(434\) 0 0
\(435\) −0.523262 + 0.276700i −0.0250885 + 0.0132667i
\(436\) 0 0
\(437\) −2.24632 + 9.84175i −0.107456 + 0.470795i
\(438\) 0 0
\(439\) 9.15160 + 4.40718i 0.436782 + 0.210343i 0.639335 0.768928i \(-0.279210\pi\)
−0.202553 + 0.979271i \(0.564924\pi\)
\(440\) 0 0
\(441\) −4.18598 18.3400i −0.199332 0.873332i
\(442\) 0 0
\(443\) −12.0312 + 15.0866i −0.571618 + 0.716786i −0.980658 0.195730i \(-0.937292\pi\)
0.409040 + 0.912516i \(0.365864\pi\)
\(444\) 0 0
\(445\) 2.05107 + 0.987745i 0.0972302 + 0.0468236i
\(446\) 0 0
\(447\) −3.71678 −0.175797
\(448\) 0 0
\(449\) −4.81522 21.0968i −0.227244 0.995621i −0.951876 0.306485i \(-0.900847\pi\)
0.724631 0.689137i \(-0.242010\pi\)
\(450\) 0 0
\(451\) 3.13222 + 3.92768i 0.147490 + 0.184947i
\(452\) 0 0
\(453\) 3.28501 + 4.11927i 0.154343 + 0.193540i
\(454\) 0 0
\(455\) −0.0534662 + 0.0670445i −0.00250653 + 0.00314309i
\(456\) 0 0
\(457\) −2.28017 + 1.09807i −0.106662 + 0.0513656i −0.486454 0.873706i \(-0.661710\pi\)
0.379792 + 0.925072i \(0.375996\pi\)
\(458\) 0 0
\(459\) −2.04676 + 8.96745i −0.0955346 + 0.418565i
\(460\) 0 0
\(461\) −9.69687 + 4.66976i −0.451628 + 0.217493i −0.645849 0.763465i \(-0.723496\pi\)
0.194221 + 0.980958i \(0.437782\pi\)
\(462\) 0 0
\(463\) 6.12392 0.284603 0.142301 0.989823i \(-0.454550\pi\)
0.142301 + 0.989823i \(0.454550\pi\)
\(464\) 0 0
\(465\) 1.02715 0.0476328
\(466\) 0 0
\(467\) 31.5013 15.1702i 1.45770 0.701993i 0.473790 0.880638i \(-0.342885\pi\)
0.983914 + 0.178644i \(0.0571711\pi\)
\(468\) 0 0
\(469\) 0.269045 1.17876i 0.0124234 0.0544303i
\(470\) 0 0
\(471\) −4.69687 + 2.26189i −0.216420 + 0.104222i
\(472\) 0 0
\(473\) 5.54809 6.95708i 0.255101 0.319887i
\(474\) 0 0
\(475\) 4.00820 + 5.02612i 0.183909 + 0.230614i
\(476\) 0 0
\(477\) −13.9901 17.5430i −0.640562 0.803239i
\(478\) 0 0
\(479\) −6.86994 30.0992i −0.313895 1.37527i −0.848067 0.529889i \(-0.822233\pi\)
0.534171 0.845376i \(-0.320624\pi\)
\(480\) 0 0
\(481\) −11.9239 −0.543685
\(482\) 0 0
\(483\) −0.428116 0.206170i −0.0194799 0.00938105i
\(484\) 0 0
\(485\) −1.30798 + 1.64015i −0.0593922 + 0.0744755i
\(486\) 0 0
\(487\) −0.0908344 0.397972i −0.00411610 0.0180338i 0.972828 0.231528i \(-0.0743726\pi\)
−0.976944 + 0.213495i \(0.931515\pi\)
\(488\) 0 0
\(489\) −8.13437 3.91731i −0.367849 0.177147i
\(490\) 0 0
\(491\) 4.48643 19.6563i 0.202470 0.887077i −0.766958 0.641698i \(-0.778230\pi\)
0.969427 0.245379i \(-0.0789125\pi\)
\(492\) 0 0
\(493\) 4.06183 + 15.1456i 0.182935 + 0.682124i
\(494\) 0 0
\(495\) 0.158407 0.694025i 0.00711985 0.0311941i
\(496\) 0 0
\(497\) −1.08426 0.522153i −0.0486358 0.0234217i
\(498\) 0 0
\(499\) −2.30947 10.1185i −0.103386 0.452964i −0.999950 0.0100487i \(-0.996801\pi\)
0.896563 0.442915i \(-0.146056\pi\)
\(500\) 0 0
\(501\) 4.76205 5.97142i 0.212752 0.266783i
\(502\) 0 0
\(503\) 20.7141 + 9.97538i 0.923596 + 0.444780i 0.834353 0.551230i \(-0.185841\pi\)
0.0892420 + 0.996010i \(0.471556\pi\)
\(504\) 0 0
\(505\) 1.18300 0.0526427
\(506\) 0 0
\(507\) −0.310667 1.36112i −0.0137972 0.0604495i
\(508\) 0 0
\(509\) 16.0262 + 20.0963i 0.710351 + 0.890752i 0.997749 0.0670594i \(-0.0213617\pi\)
−0.287398 + 0.957811i \(0.592790\pi\)
\(510\) 0 0
\(511\) −0.544737 0.683079i −0.0240977 0.0302176i
\(512\) 0 0
\(513\) 2.55227 3.20045i 0.112685 0.141303i
\(514\) 0 0
\(515\) −2.56853 + 1.23694i −0.113183 + 0.0545061i
\(516\) 0 0
\(517\) 0.238250 1.04384i 0.0104782 0.0459082i
\(518\) 0 0
\(519\) 0.0598025 0.0287994i 0.00262504 0.00126415i
\(520\) 0 0
\(521\) 17.1535 0.751507 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(522\) 0 0
\(523\) −22.4494 −0.981642 −0.490821 0.871261i \(-0.663303\pi\)
−0.490821 + 0.871261i \(0.663303\pi\)
\(524\) 0 0
\(525\) −0.272635 + 0.131294i −0.0118988 + 0.00573014i
\(526\) 0 0
\(527\) 6.05496 26.5285i 0.263758 1.15560i
\(528\) 0 0
\(529\) −33.9502 + 16.3495i −1.47609 + 0.710850i
\(530\) 0 0
\(531\) −8.54019 + 10.7091i −0.370613 + 0.464733i
\(532\) 0 0
\(533\) 9.24094 + 11.5878i 0.400269 + 0.501922i
\(534\) 0 0
\(535\) 2.03654 + 2.55374i 0.0880473 + 0.110408i
\(536\) 0 0
\(537\) −1.56584 6.86041i −0.0675711 0.296048i
\(538\) 0 0
\(539\) −9.32975 −0.401861
\(540\) 0 0
\(541\) 11.2104 + 5.39866i 0.481974 + 0.232107i 0.659062 0.752088i \(-0.270953\pi\)
−0.177088 + 0.984195i \(0.556668\pi\)
\(542\) 0 0
\(543\) 2.46867 3.09562i 0.105941 0.132846i
\(544\) 0 0
\(545\) −0.125219 0.548619i −0.00536378 0.0235003i
\(546\) 0 0
\(547\) −10.5988 5.10411i −0.453172 0.218236i 0.193353 0.981129i \(-0.438064\pi\)
−0.646524 + 0.762893i \(0.723778\pi\)
\(548\) 0 0
\(549\) −6.62445 + 29.0236i −0.282725 + 1.23870i
\(550\) 0 0
\(551\) 1.29590 6.85724i 0.0552071 0.292128i
\(552\) 0 0
\(553\) −0.119605 + 0.524023i −0.00508612 + 0.0222837i
\(554\) 0 0
\(555\) 0.299782 + 0.144367i 0.0127250 + 0.00612805i
\(556\) 0 0
\(557\) −7.28448 31.9154i −0.308653 1.35230i −0.856685 0.515841i \(-0.827480\pi\)
0.548031 0.836458i \(-0.315377\pi\)
\(558\) 0 0
\(559\) 16.3684 20.5254i 0.692311 0.868131i
\(560\) 0 0
\(561\) 1.94385 + 0.936107i 0.0820692 + 0.0395225i
\(562\) 0 0
\(563\) 30.1105 1.26901 0.634503 0.772920i \(-0.281205\pi\)
0.634503 + 0.772920i \(0.281205\pi\)
\(564\) 0 0
\(565\) −0.690825 3.02670i −0.0290632 0.127334i
\(566\) 0 0
\(567\) −0.433329 0.543377i −0.0181981 0.0228197i
\(568\) 0 0
\(569\) 9.71230 + 12.1788i 0.407161 + 0.510563i 0.942561 0.334035i \(-0.108410\pi\)
−0.535400 + 0.844599i \(0.679839\pi\)
\(570\) 0 0
\(571\) −4.20589 + 5.27402i −0.176011 + 0.220711i −0.862009 0.506892i \(-0.830794\pi\)
0.685998 + 0.727603i \(0.259366\pi\)
\(572\) 0 0
\(573\) 1.59903 0.770053i 0.0668005 0.0321694i
\(574\) 0 0
\(575\) −8.59903 + 37.6748i −0.358604 + 1.57115i
\(576\) 0 0
\(577\) 16.8458 8.11250i 0.701299 0.337728i −0.0490256 0.998798i \(-0.515612\pi\)
0.750324 + 0.661070i \(0.229897\pi\)
\(578\) 0 0
\(579\) −8.36360 −0.347579
\(580\) 0 0
\(581\) −1.28322 −0.0532371
\(582\) 0 0
\(583\) −10.0264 + 4.82845i −0.415250 + 0.199974i
\(584\) 0 0
\(585\) 0.467345 2.04757i 0.0193223 0.0846566i
\(586\) 0 0
\(587\) −14.6407 + 7.05059i −0.604287 + 0.291009i −0.710902 0.703291i \(-0.751713\pi\)
0.106615 + 0.994300i \(0.465999\pi\)
\(588\) 0 0
\(589\) −7.55041 + 9.46791i −0.311109 + 0.390119i
\(590\) 0 0
\(591\) −5.02363 6.29943i −0.206645 0.259124i
\(592\) 0 0
\(593\) 19.4351 + 24.3709i 0.798105 + 1.00079i 0.999772 + 0.0213375i \(0.00679245\pi\)
−0.201668 + 0.979454i \(0.564636\pi\)
\(594\) 0 0
\(595\) −0.0141060 0.0618025i −0.000578290 0.00253365i
\(596\) 0 0
\(597\) −14.7222 −0.602538
\(598\) 0 0
\(599\) 7.05280 + 3.39645i 0.288170 + 0.138775i 0.572384 0.819985i \(-0.306019\pi\)
−0.284215 + 0.958761i \(0.591733\pi\)
\(600\) 0 0
\(601\) 10.9566 13.7391i 0.446929 0.560431i −0.506426 0.862283i \(-0.669034\pi\)
0.953355 + 0.301853i \(0.0976051\pi\)
\(602\) 0 0
\(603\) 6.58934 + 28.8698i 0.268339 + 1.17567i
\(604\) 0 0
\(605\) 1.64483 + 0.792110i 0.0668720 + 0.0322038i
\(606\) 0 0
\(607\) −8.75504 + 38.3584i −0.355356 + 1.55692i 0.409251 + 0.912422i \(0.365790\pi\)
−0.764608 + 0.644496i \(0.777067\pi\)
\(608\) 0 0
\(609\) 0.301110 + 0.131294i 0.0122016 + 0.00532030i
\(610\) 0 0
\(611\) 0.702907 3.07964i 0.0284366 0.124589i
\(612\) 0 0
\(613\) −22.6429 10.9042i −0.914537 0.440418i −0.0834193 0.996515i \(-0.526584\pi\)
−0.831118 + 0.556097i \(0.812298\pi\)
\(614\) 0 0
\(615\) −0.0920309 0.403214i −0.00371104 0.0162591i
\(616\) 0 0
\(617\) −7.87047 + 9.86926i −0.316853 + 0.397321i −0.914597 0.404366i \(-0.867492\pi\)
0.597744 + 0.801687i \(0.296064\pi\)
\(618\) 0 0
\(619\) −19.5683 9.42359i −0.786516 0.378766i −0.00288757 0.999996i \(-0.500919\pi\)
−0.783629 + 0.621230i \(0.786633\pi\)
\(620\) 0 0
\(621\) 24.6069 0.987439
\(622\) 0 0
\(623\) −0.281127 1.23170i −0.0112631 0.0493469i
\(624\) 0 0
\(625\) 15.2213 + 19.0869i 0.608853 + 0.763477i
\(626\) 0 0
\(627\) −0.598663 0.750699i −0.0239083 0.0299800i
\(628\) 0 0
\(629\) 5.49582 6.89154i 0.219133 0.274784i
\(630\) 0 0
\(631\) −35.4616 + 17.0774i −1.41170 + 0.679841i −0.975498 0.220006i \(-0.929392\pi\)
−0.436206 + 0.899847i \(0.643678\pi\)
\(632\) 0 0
\(633\) −2.07457 + 9.08930i −0.0824569 + 0.361267i
\(634\) 0 0
\(635\) −0.483311 + 0.232750i −0.0191796 + 0.00923642i
\(636\) 0 0
\(637\) −27.5254 −1.09060
\(638\) 0 0
\(639\) 29.4741 1.16598
\(640\) 0 0
\(641\) 4.44020 2.13829i 0.175377 0.0844572i −0.344135 0.938920i \(-0.611828\pi\)
0.519512 + 0.854463i \(0.326114\pi\)
\(642\) 0 0
\(643\) −1.56004 + 6.83498i −0.0615220 + 0.269545i −0.996329 0.0856119i \(-0.972715\pi\)
0.934807 + 0.355157i \(0.115573\pi\)
\(644\) 0 0
\(645\) −0.660030 + 0.317854i −0.0259887 + 0.0125155i
\(646\) 0 0
\(647\) 9.18329 11.5155i 0.361032 0.452720i −0.567830 0.823146i \(-0.692217\pi\)
0.928862 + 0.370426i \(0.120788\pi\)
\(648\) 0 0
\(649\) 4.23556 + 5.31123i 0.166260 + 0.208484i
\(650\) 0 0
\(651\) −0.355404 0.445662i −0.0139294 0.0174669i
\(652\) 0 0
\(653\) 5.56691 + 24.3902i 0.217850 + 0.954463i 0.959063 + 0.283193i \(0.0913937\pi\)
−0.741213 + 0.671270i \(0.765749\pi\)
\(654\) 0 0
\(655\) 2.89440 0.113093
\(656\) 0 0
\(657\) 19.2790 + 9.28426i 0.752144 + 0.362214i
\(658\) 0 0
\(659\) −30.3384 + 38.0432i −1.18182 + 1.48195i −0.341477 + 0.939890i \(0.610927\pi\)
−0.840339 + 0.542061i \(0.817644\pi\)
\(660\) 0 0
\(661\) 6.40528 + 28.0634i 0.249137 + 1.09154i 0.932417 + 0.361383i \(0.117695\pi\)
−0.683281 + 0.730156i \(0.739448\pi\)
\(662\) 0 0
\(663\) 5.73490 + 2.76178i 0.222725 + 0.107259i
\(664\) 0 0
\(665\) −0.00627776 + 0.0275047i −0.000243441 + 0.00106659i
\(666\) 0 0
\(667\) 37.0840 19.6099i 1.43590 0.759299i
\(668\) 0 0
\(669\) −0.176956 + 0.775295i −0.00684151 + 0.0299746i
\(670\) 0 0
\(671\) 13.3025 + 6.40613i 0.513536 + 0.247306i
\(672\) 0 0
\(673\) −5.14782 22.5541i −0.198434 0.869395i −0.971869 0.235520i \(-0.924321\pi\)
0.773436 0.633875i \(-0.218537\pi\)
\(674\) 0 0
\(675\) 9.77024 12.2515i 0.376057 0.471560i
\(676\) 0 0
\(677\) 16.2690 + 7.83476i 0.625270 + 0.301114i 0.719560 0.694431i \(-0.244344\pi\)
−0.0942895 + 0.995545i \(0.530058\pi\)
\(678\) 0 0
\(679\) 1.16421 0.0446783
\(680\) 0 0
\(681\) −1.65668 7.25838i −0.0634840 0.278142i
\(682\) 0 0
\(683\) 27.5127 + 34.4998i 1.05274 + 1.32010i 0.945413 + 0.325875i \(0.105659\pi\)
0.107330 + 0.994223i \(0.465770\pi\)
\(684\) 0 0
\(685\) −0.196866 0.246862i −0.00752186 0.00943211i
\(686\) 0 0
\(687\) 3.98225 4.99358i 0.151932 0.190517i
\(688\) 0 0
\(689\) −29.5807 + 14.2453i −1.12693 + 0.542703i
\(690\) 0 0
\(691\) 5.30702 23.2516i 0.201889 0.884531i −0.767897 0.640573i \(-0.778697\pi\)
0.969786 0.243958i \(-0.0784460\pi\)
\(692\) 0 0
\(693\) −0.355936 + 0.171410i −0.0135209 + 0.00651132i
\(694\) 0 0
\(695\) −0.255603 −0.00969559
\(696\) 0 0
\(697\) −10.9565 −0.415005
\(698\) 0 0
\(699\) 0.367781 0.177114i 0.0139108 0.00669907i
\(700\) 0 0
\(701\) −0.249668 + 1.09387i −0.00942983 + 0.0413148i −0.979424 0.201814i \(-0.935316\pi\)
0.969994 + 0.243128i \(0.0781736\pi\)
\(702\) 0 0
\(703\) −3.53438 + 1.70207i −0.133302 + 0.0641948i
\(704\) 0 0
\(705\) −0.0549581 + 0.0689153i −0.00206984 + 0.00259550i
\(706\) 0 0
\(707\) −0.409330 0.513283i −0.0153944 0.0193040i
\(708\) 0 0
\(709\) 2.54623 + 3.19287i 0.0956256 + 0.119911i 0.827342 0.561698i \(-0.189852\pi\)
−0.731716 + 0.681609i \(0.761280\pi\)
\(710\) 0 0
\(711\) −2.92931 12.8342i −0.109858 0.481318i
\(712\) 0 0
\(713\) −72.7948 −2.72619
\(714\) 0 0
\(715\) −0.938469 0.451943i −0.0350967 0.0169017i
\(716\) 0 0
\(717\) −0.0304995 + 0.0382451i −0.00113902 + 0.00142829i
\(718\) 0 0
\(719\) 6.48062 + 28.3935i 0.241686 + 1.05890i 0.939481 + 0.342600i \(0.111308\pi\)
−0.697795 + 0.716298i \(0.745835\pi\)
\(720\) 0 0
\(721\) 1.42543 + 0.686450i 0.0530857 + 0.0255647i
\(722\) 0 0
\(723\) 0.767258 3.36158i 0.0285346 0.125018i
\(724\) 0 0
\(725\) 4.96077 26.2499i 0.184238 0.974898i
\(726\) 0 0
\(727\) −3.52888 + 15.4610i −0.130879 + 0.573417i 0.866377 + 0.499390i \(0.166442\pi\)
−0.997256 + 0.0740276i \(0.976415\pi\)
\(728\) 0 0
\(729\) 10.5978 + 5.10365i 0.392512 + 0.189024i
\(730\) 0 0
\(731\) 4.31850 + 18.9206i 0.159725 + 0.699802i
\(732\) 0 0
\(733\) −13.3490 + 16.7391i −0.493056 + 0.618273i −0.964647 0.263544i \(-0.915108\pi\)
0.471591 + 0.881817i \(0.343680\pi\)
\(734\) 0 0
\(735\) 0.692021 + 0.333260i 0.0255256 + 0.0122925i
\(736\) 0 0
\(737\) 14.6864 0.540980
\(738\) 0 0
\(739\) −7.48547 32.7960i −0.275357 1.20642i −0.903592 0.428395i \(-0.859079\pi\)
0.628234 0.778024i \(-0.283778\pi\)
\(740\) 0 0
\(741\) −1.76623 2.21478i −0.0648839 0.0813619i
\(742\) 0 0
\(743\) −3.38972 4.25057i −0.124357 0.155938i 0.715756 0.698351i \(-0.246082\pi\)
−0.840112 + 0.542413i \(0.817511\pi\)
\(744\) 0 0
\(745\) −0.827060 + 1.03710i −0.0303011 + 0.0379964i
\(746\) 0 0
\(747\) 28.3158 13.6362i 1.03602 0.498922i
\(748\) 0 0
\(749\) 0.403362 1.76724i 0.0147385 0.0645737i
\(750\) 0 0
\(751\) −15.1341 + 7.28822i −0.552253 + 0.265951i −0.689131 0.724637i \(-0.742007\pi\)
0.136878 + 0.990588i \(0.456293\pi\)
\(752\) 0 0
\(753\) −8.43057 −0.307227
\(754\) 0 0
\(755\) 1.88040 0.0684346
\(756\) 0 0
\(757\) −2.26271 + 1.08966i −0.0822396 + 0.0396045i −0.474551 0.880228i \(-0.657390\pi\)
0.392312 + 0.919832i \(0.371675\pi\)
\(758\) 0 0
\(759\) 1.28435 5.62710i 0.0466189 0.204251i
\(760\) 0 0
\(761\) 48.2367 23.2296i 1.74858 0.842071i 0.769484 0.638666i \(-0.220514\pi\)
0.979095 0.203405i \(-0.0652007\pi\)
\(762\) 0 0
\(763\) −0.194710 + 0.244158i −0.00704897 + 0.00883913i
\(764\) 0 0
\(765\) 0.968009 + 1.21384i 0.0349984 + 0.0438866i
\(766\) 0 0
\(767\) 12.4961 + 15.6696i 0.451209 + 0.565798i
\(768\) 0 0
\(769\) −2.05658 9.01047i −0.0741622 0.324926i 0.924215 0.381873i \(-0.124721\pi\)
−0.998377 + 0.0569466i \(0.981864\pi\)
\(770\) 0 0
\(771\) 3.06936 0.110540
\(772\) 0 0
\(773\) 33.7298 + 16.2434i 1.21318 + 0.584235i 0.927404 0.374062i \(-0.122035\pi\)
0.285773 + 0.958297i \(0.407750\pi\)
\(774\) 0 0
\(775\) −28.9034 + 36.2437i −1.03824 + 1.30191i
\(776\) 0 0
\(777\) −0.0410891 0.180023i −0.00147406 0.00645829i
\(778\) 0 0
\(779\) 4.39320 + 2.11565i 0.157403 + 0.0758011i
\(780\) 0 0
\(781\) 3.25278 14.2514i 0.116394 0.509954i
\(782\) 0 0
\(783\) −16.9988 + 0.639797i −0.607488 + 0.0228645i
\(784\) 0 0
\(785\) −0.414010 + 1.81390i −0.0147766 + 0.0647407i
\(786\) 0 0
\(787\) 23.3686 + 11.2537i 0.833001 + 0.401152i 0.801240 0.598343i \(-0.204174\pi\)
0.0317612 + 0.999495i \(0.489888\pi\)
\(788\) 0 0
\(789\) 0.270242 + 1.18401i 0.00962086 + 0.0421518i
\(790\) 0 0
\(791\) −1.07420 + 1.34701i −0.0381943 + 0.0478941i
\(792\) 0 0
\(793\) 39.2461 + 18.8999i 1.39367 + 0.671156i
\(794\) 0 0
\(795\) 0.916166 0.0324931
\(796\) 0 0
\(797\) −4.49300 19.6851i −0.159150 0.697283i −0.990033 0.140835i \(-0.955021\pi\)
0.830883 0.556447i \(-0.187836\pi\)
\(798\) 0 0
\(799\) 1.45593 + 1.82567i 0.0515070 + 0.0645877i
\(800\) 0 0
\(801\) 19.2920 + 24.1914i 0.681650 + 0.854762i
\(802\) 0 0
\(803\) 6.61679 8.29719i 0.233501 0.292801i
\(804\) 0 0
\(805\) −0.152793 + 0.0735811i −0.00538524 + 0.00259339i
\(806\) 0 0
\(807\) −3.76122 + 16.4790i −0.132401 + 0.580087i
\(808\) 0 0
\(809\) −31.0306 + 14.9435i −1.09098 + 0.525387i −0.890810 0.454375i \(-0.849862\pi\)
−0.200166 + 0.979762i \(0.564148\pi\)
\(810\) 0 0
\(811\) −32.7536 −1.15013 −0.575067 0.818106i \(-0.695024\pi\)
−0.575067 + 0.818106i \(0.695024\pi\)
\(812\) 0 0
\(813\) −17.5066 −0.613984
\(814\) 0 0
\(815\) −2.90312 + 1.39807i −0.101692 + 0.0489723i
\(816\) 0 0
\(817\) 1.92191 8.42044i 0.0672392 0.294594i
\(818\) 0 0
\(819\) −1.05011 + 0.505708i −0.0366939 + 0.0176709i
\(820\) 0 0
\(821\) 2.70978 3.39795i 0.0945718 0.118589i −0.732294 0.680989i \(-0.761550\pi\)
0.826866 + 0.562399i \(0.190122\pi\)
\(822\) 0 0
\(823\) −8.36108 10.4845i −0.291449 0.365465i 0.614453 0.788954i \(-0.289377\pi\)
−0.905902 + 0.423488i \(0.860805\pi\)
\(824\) 0 0
\(825\) −2.29172 2.87372i −0.0797873 0.100050i
\(826\) 0 0
\(827\) −5.86174 25.6820i −0.203833 0.893049i −0.968577 0.248715i \(-0.919992\pi\)
0.764744 0.644334i \(-0.222865\pi\)
\(828\) 0 0
\(829\) −10.3618 −0.359880 −0.179940 0.983678i \(-0.557590\pi\)
−0.179940 + 0.983678i \(0.557590\pi\)
\(830\) 0 0
\(831\) −7.10119 3.41975i −0.246337 0.118630i
\(832\) 0 0
\(833\) 12.6866 15.9085i 0.439566 0.551199i
\(834\) 0 0
\(835\) −0.606564 2.65753i −0.0209910 0.0919676i
\(836\) 0 0
\(837\) 26.5954 + 12.8077i 0.919273 + 0.442699i
\(838\) 0 0
\(839\) −5.93578 + 26.0064i −0.204926 + 0.897839i 0.762959 + 0.646446i \(0.223746\pi\)
−0.967885 + 0.251393i \(0.919112\pi\)
\(840\) 0 0
\(841\) −25.1084 + 14.5111i −0.865805 + 0.500381i
\(842\) 0 0
\(843\) −2.56398 + 11.2335i −0.0883083 + 0.386904i
\(844\) 0 0
\(845\) −0.448927 0.216192i −0.0154435 0.00743722i
\(846\) 0 0
\(847\) −0.225446 0.987745i −0.00774643 0.0339393i
\(848\) 0 0
\(849\) 6.00232 7.52667i 0.205999 0.258315i
\(850\) 0 0
\(851\) −21.2458 10.2314i −0.728296 0.350729i
\(852\) 0 0
\(853\) −19.7071 −0.674758 −0.337379 0.941369i \(-0.609540\pi\)
−0.337379 + 0.941369i \(0.609540\pi\)
\(854\) 0 0
\(855\) −0.153752 0.673633i −0.00525822 0.0230378i
\(856\) 0 0
\(857\) 1.34481 + 1.68634i 0.0459380 + 0.0576044i 0.804270 0.594264i \(-0.202557\pi\)
−0.758332 + 0.651869i \(0.773985\pi\)
\(858\) 0 0
\(859\) −21.4799 26.9349i −0.732883 0.919006i 0.266107 0.963944i \(-0.414263\pi\)
−0.998990 + 0.0449372i \(0.985691\pi\)
\(860\) 0 0
\(861\) −0.143104 + 0.179447i −0.00487698 + 0.00611553i
\(862\) 0 0
\(863\) −8.63922 + 4.16043i −0.294082 + 0.141623i −0.575108 0.818078i \(-0.695040\pi\)
0.281025 + 0.959700i \(0.409326\pi\)
\(864\) 0 0
\(865\) 0.00527135 0.0230953i 0.000179231 0.000785263i
\(866\) 0 0
\(867\) 4.26055 2.05177i 0.144696 0.0696819i
\(868\) 0 0
\(869\) −6.52888 −0.221477
\(870\) 0 0
\(871\) 43.3290 1.46815
\(872\) 0 0
\(873\) −25.6896 + 12.3715i −0.869462 + 0.418711i
\(874\) 0 0
\(875\) −0.0482534 + 0.211412i −0.00163126 + 0.00714702i
\(876\) 0 0
\(877\) 0.758824 0.365430i 0.0256237 0.0123397i −0.421028 0.907048i \(-0.638331\pi\)
0.446652 + 0.894708i \(0.352616\pi\)
\(878\) 0 0
\(879\) 6.06481 7.60503i 0.204561 0.256511i
\(880\) 0 0
\(881\) −5.13019 6.43306i −0.172841 0.216735i 0.687864 0.725839i \(-0.258548\pi\)
−0.860705 + 0.509104i \(0.829977\pi\)
\(882\) 0 0
\(883\) −33.8568 42.4551i −1.13937 1.42873i −0.887404 0.460993i \(-0.847493\pi\)
−0.251969 0.967735i \(-0.581078\pi\)
\(884\) 0 0
\(885\) −0.124449 0.545248i −0.00418332 0.0183283i
\(886\) 0 0
\(887\) 13.5013 0.453328 0.226664 0.973973i \(-0.427218\pi\)
0.226664 + 0.973973i \(0.427218\pi\)
\(888\) 0 0
\(889\) 0.268217 + 0.129167i 0.00899572 + 0.00433211i
\(890\) 0 0
\(891\) 5.26354 6.60027i 0.176335 0.221117i
\(892\) 0 0
\(893\) −0.231250 1.01317i −0.00773849 0.0339045i
\(894\) 0 0
\(895\) −2.26271 1.08966i −0.0756340 0.0364234i
\(896\) 0 0
\(897\) 3.78919 16.6015i 0.126517 0.554309i
\(898\) 0 0
\(899\) 50.2878 1.89272i 1.67719 0.0631257i
\(900\) 0 0
\(901\) 5.40073 23.6622i 0.179924 0.788301i
\(902\) 0 0
\(903\) 0.366289 + 0.176396i 0.0121893 + 0.00587007i
\(904\) 0 0
\(905\) −0.314446 1.37768i −0.0104525 0.0457956i
\(906\) 0 0
\(907\) 28.9795 36.3391i 0.962248 1.20662i −0.0161456 0.999870i \(-0.505140\pi\)
0.978394 0.206751i \(-0.0662891\pi\)
\(908\) 0 0
\(909\) 14.4867 + 6.97644i 0.480494 + 0.231394i
\(910\) 0 0
\(911\) −21.1685 −0.701344 −0.350672 0.936498i \(-0.614047\pi\)
−0.350672 + 0.936498i \(0.614047\pi\)
\(912\) 0 0
\(913\) −3.46844 15.1962i −0.114788 0.502921i
\(914\) 0 0
\(915\) −0.757865 0.950332i −0.0250542 0.0314170i
\(916\) 0 0
\(917\) −1.00149 1.25583i −0.0330722 0.0414712i
\(918\) 0 0
\(919\) 12.5699 15.7621i 0.414641 0.519944i −0.530023 0.847984i \(-0.677817\pi\)
0.944664 + 0.328040i \(0.106388\pi\)
\(920\) 0 0
\(921\) 15.1809 7.31074i 0.500228 0.240897i
\(922\) 0 0
\(923\) 9.59664 42.0456i 0.315877 1.38395i
\(924\) 0 0
\(925\) −13.5298 + 6.51563i −0.444858 + 0.214232i
\(926\) 0 0
\(927\) −38.7482 −1.27266
\(928\) 0 0
\(929\) 19.7952 0.649461 0.324730 0.945807i \(-0.394726\pi\)
0.324730 + 0.945807i \(0.394726\pi\)
\(930\) 0 0
\(931\) −8.15883 + 3.92909i −0.267395 + 0.128771i
\(932\) 0 0
\(933\) −2.93751 + 12.8701i −0.0961697 + 0.421347i
\(934\) 0 0
\(935\) 0.693750 0.334093i 0.0226881 0.0109260i
\(936\) 0 0
\(937\) −34.9705 + 43.8516i −1.14244 + 1.43257i −0.257853 + 0.966184i \(0.583015\pi\)
−0.884582 + 0.466384i \(0.845556\pi\)
\(938\) 0 0
\(939\) −9.92171 12.4414i −0.323783 0.406011i
\(940\) 0 0
\(941\) −1.50066 1.88177i −0.0489202 0.0613441i 0.756769 0.653682i \(-0.226777\pi\)
−0.805690 + 0.592338i \(0.798205\pi\)
\(942\) 0 0
\(943\) 6.52230 + 28.5761i 0.212395 + 0.930565i
\(944\) 0 0
\(945\) 0.0687686 0.00223704
\(946\) 0 0
\(947\) 2.16003 + 1.04022i 0.0701915 + 0.0338025i 0.468650 0.883384i \(-0.344740\pi\)
−0.398459 + 0.917186i \(0.630455\pi\)
\(948\) 0 0
\(949\) 19.5214 24.4791i 0.633692 0.794624i
\(950\) 0 0
\(951\) 0.933329 + 4.08918i 0.0302653 + 0.132601i
\(952\) 0 0
\(953\) 30.1634 + 14.5259i 0.977090 + 0.470542i 0.853103 0.521742i \(-0.174718\pi\)
0.123987 + 0.992284i \(0.460432\pi\)
\(954\) 0 0
\(955\) 0.140948 0.617534i 0.00456098 0.0199829i
\(956\) 0 0
\(957\) −0.740939 + 3.92068i −0.0239512 + 0.126738i
\(958\) 0 0
\(959\) −0.0389917 + 0.170834i −0.00125911 + 0.00551651i
\(960\) 0 0
\(961\) −50.7476 24.4387i −1.63702 0.788347i
\(962\) 0 0
\(963\) 9.87896 + 43.2826i 0.318345 + 1.39476i
\(964\) 0 0
\(965\) −1.86108 + 2.33372i −0.0599102 + 0.0751250i
\(966\) 0 0
\(967\) 31.6906 + 15.2614i 1.01910 + 0.490773i 0.867378 0.497650i \(-0.165804\pi\)
0.151723 + 0.988423i \(0.451518\pi\)
\(968\) 0 0
\(969\) 2.09411 0.0672726
\(970\) 0 0
\(971\) −6.12671 26.8429i −0.196616 0.861429i −0.972933 0.231087i \(-0.925772\pi\)
0.776318 0.630342i \(-0.217085\pi\)
\(972\) 0 0
\(973\) 0.0884415 + 0.110902i 0.00283530 + 0.00355536i
\(974\) 0 0
\(975\) −6.76122 8.47830i −0.216532 0.271523i
\(976\) 0 0
\(977\) −7.08240 + 8.88105i −0.226586 + 0.284130i −0.882109 0.471045i \(-0.843877\pi\)
0.655523 + 0.755175i \(0.272448\pi\)
\(978\) 0 0
\(979\) 13.8262 6.65833i 0.441886 0.212801i
\(980\) 0 0
\(981\) 1.70195 7.45672i 0.0543390 0.238075i
\(982\) 0 0
\(983\) −29.6589 + 14.2830i −0.945972 + 0.455556i −0.842272 0.539053i \(-0.818782\pi\)
−0.103700 + 0.994609i \(0.533068\pi\)
\(984\) 0 0
\(985\) −2.87561 −0.0916245
\(986\) 0 0
\(987\) 0.0489173 0.00155706
\(988\) 0 0
\(989\) 46.7769 22.5266i 1.48742 0.716303i
\(990\) 0 0
\(991\) 5.00258 21.9177i 0.158912 0.696240i −0.831201 0.555972i \(-0.812346\pi\)
0.990114 0.140269i \(-0.0447966\pi\)
\(992\) 0 0
\(993\) −5.59299 + 2.69344i −0.177488 + 0.0854738i
\(994\) 0 0
\(995\) −3.27599 + 4.10796i −0.103856 + 0.130231i
\(996\) 0 0
\(997\) −13.7943 17.2975i −0.436871 0.547819i 0.513845 0.857883i \(-0.328221\pi\)
−0.950716 + 0.310065i \(0.899649\pi\)
\(998\) 0 0
\(999\) 5.96197 + 7.47607i 0.188628 + 0.236532i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.u.b.257.1 6
4.3 odd 2 58.2.d.a.25.1 yes 6
12.11 even 2 522.2.k.c.199.1 6
29.7 even 7 inner 464.2.u.b.65.1 6
116.7 odd 14 58.2.d.a.7.1 6
116.15 even 28 1682.2.b.g.1681.2 6
116.23 odd 14 1682.2.a.m.1.2 3
116.35 odd 14 1682.2.a.n.1.2 3
116.43 even 28 1682.2.b.g.1681.5 6
348.239 even 14 522.2.k.c.181.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.a.7.1 6 116.7 odd 14
58.2.d.a.25.1 yes 6 4.3 odd 2
464.2.u.b.65.1 6 29.7 even 7 inner
464.2.u.b.257.1 6 1.1 even 1 trivial
522.2.k.c.181.1 6 348.239 even 14
522.2.k.c.199.1 6 12.11 even 2
1682.2.a.m.1.2 3 116.23 odd 14
1682.2.a.n.1.2 3 116.35 odd 14
1682.2.b.g.1681.2 6 116.15 even 28
1682.2.b.g.1681.5 6 116.43 even 28