Properties

Label 464.2.bl.c.15.3
Level $464$
Weight $2$
Character 464.15
Analytic conductor $3.705$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [464,2,Mod(15,464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("464.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(464, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 0, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.bl (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 15.3
Character \(\chi\) \(=\) 464.15
Dual form 464.2.bl.c.31.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.823357 - 1.31036i) q^{3} +(-2.32413 - 1.85343i) q^{5} +(-2.47691 - 0.565338i) q^{7} +(0.262512 - 0.545111i) q^{9} +(-1.89664 + 5.42028i) q^{11} +(0.674824 + 1.40129i) q^{13} +(-0.515083 + 4.57149i) q^{15} +(5.07675 + 5.07675i) q^{17} +(-0.886325 - 0.556915i) q^{19} +(1.29858 + 3.71113i) q^{21} +(-0.405531 + 0.323400i) q^{23} +(0.853764 + 3.74058i) q^{25} +(-5.54395 + 0.624653i) q^{27} +(-3.18817 - 4.34000i) q^{29} +(-0.207994 - 1.84600i) q^{31} +(8.66415 - 1.97754i) q^{33} +(4.70883 + 5.90469i) q^{35} +(-5.14048 + 1.79873i) q^{37} +(1.28058 - 2.03802i) q^{39} +(-5.15895 + 5.15895i) q^{41} +(-10.1596 - 1.14471i) q^{43} +(-1.62044 + 0.780361i) q^{45} +(3.48702 + 1.22016i) q^{47} +(-0.491326 - 0.236610i) q^{49} +(2.47242 - 10.8324i) q^{51} +(7.51501 - 9.42353i) q^{53} +(14.4541 - 9.08214i) q^{55} +1.61995i q^{57} +8.01950i q^{59} +(-12.4768 + 7.83971i) q^{61} +(-0.958388 + 1.20178i) q^{63} +(1.02881 - 4.50751i) q^{65} +(-2.21191 - 1.06520i) q^{67} +(0.757669 + 0.265120i) q^{69} +(-4.92140 + 2.37002i) q^{71} +(-4.92030 - 0.554385i) q^{73} +(4.19858 - 4.19858i) q^{75} +(7.76208 - 12.3533i) q^{77} +(-6.57935 + 2.30221i) q^{79} +(4.25149 + 5.33120i) q^{81} +(10.2799 - 2.34632i) q^{83} +(-2.38961 - 21.2084i) q^{85} +(-3.06198 + 7.75103i) q^{87} +(-2.88852 + 0.325458i) q^{89} +(-0.879275 - 3.85236i) q^{91} +(-2.24768 + 1.79247i) q^{93} +(1.02773 + 2.93708i) q^{95} +(-0.0192149 - 0.0120735i) q^{97} +(2.45676 + 2.45676i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 4 q^{17} - 40 q^{21} - 28 q^{25} - 52 q^{29} - 84 q^{33} - 8 q^{37} + 4 q^{41} + 40 q^{45} - 28 q^{49} - 48 q^{53} - 4 q^{61} - 40 q^{65} + 24 q^{69} + 76 q^{73} + 156 q^{77} + 116 q^{81} + 152 q^{85}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{27}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.823357 1.31036i −0.475365 0.756540i 0.519849 0.854258i \(-0.325988\pi\)
−0.995214 + 0.0977188i \(0.968845\pi\)
\(4\) 0 0
\(5\) −2.32413 1.85343i −1.03938 0.828879i −0.0538806 0.998547i \(-0.517159\pi\)
−0.985501 + 0.169668i \(0.945730\pi\)
\(6\) 0 0
\(7\) −2.47691 0.565338i −0.936182 0.213678i −0.272896 0.962043i \(-0.587982\pi\)
−0.663286 + 0.748366i \(0.730839\pi\)
\(8\) 0 0
\(9\) 0.262512 0.545111i 0.0875038 0.181704i
\(10\) 0 0
\(11\) −1.89664 + 5.42028i −0.571858 + 1.63428i 0.186513 + 0.982453i \(0.440281\pi\)
−0.758371 + 0.651823i \(0.774004\pi\)
\(12\) 0 0
\(13\) 0.674824 + 1.40129i 0.187162 + 0.388647i 0.973344 0.229348i \(-0.0736594\pi\)
−0.786182 + 0.617995i \(0.787945\pi\)
\(14\) 0 0
\(15\) −0.515083 + 4.57149i −0.132994 + 1.18035i
\(16\) 0 0
\(17\) 5.07675 + 5.07675i 1.23129 + 1.23129i 0.963468 + 0.267824i \(0.0863047\pi\)
0.267824 + 0.963468i \(0.413695\pi\)
\(18\) 0 0
\(19\) −0.886325 0.556915i −0.203337 0.127765i 0.426514 0.904481i \(-0.359741\pi\)
−0.629851 + 0.776716i \(0.716884\pi\)
\(20\) 0 0
\(21\) 1.29858 + 3.71113i 0.283373 + 0.809834i
\(22\) 0 0
\(23\) −0.405531 + 0.323400i −0.0845591 + 0.0674336i −0.664857 0.746971i \(-0.731508\pi\)
0.580298 + 0.814404i \(0.302936\pi\)
\(24\) 0 0
\(25\) 0.853764 + 3.74058i 0.170753 + 0.748117i
\(26\) 0 0
\(27\) −5.54395 + 0.624653i −1.06693 + 0.120215i
\(28\) 0 0
\(29\) −3.18817 4.34000i −0.592028 0.805917i
\(30\) 0 0
\(31\) −0.207994 1.84600i −0.0373569 0.331552i −0.998465 0.0553803i \(-0.982363\pi\)
0.961108 0.276171i \(-0.0890657\pi\)
\(32\) 0 0
\(33\) 8.66415 1.97754i 1.50824 0.344245i
\(34\) 0 0
\(35\) 4.70883 + 5.90469i 0.795938 + 0.998075i
\(36\) 0 0
\(37\) −5.14048 + 1.79873i −0.845090 + 0.295710i −0.717881 0.696166i \(-0.754888\pi\)
−0.127209 + 0.991876i \(0.540602\pi\)
\(38\) 0 0
\(39\) 1.28058 2.03802i 0.205056 0.326345i
\(40\) 0 0
\(41\) −5.15895 + 5.15895i −0.805693 + 0.805693i −0.983979 0.178286i \(-0.942945\pi\)
0.178286 + 0.983979i \(0.442945\pi\)
\(42\) 0 0
\(43\) −10.1596 1.14471i −1.54932 0.174567i −0.704536 0.709668i \(-0.748845\pi\)
−0.844788 + 0.535101i \(0.820274\pi\)
\(44\) 0 0
\(45\) −1.62044 + 0.780361i −0.241560 + 0.116329i
\(46\) 0 0
\(47\) 3.48702 + 1.22016i 0.508634 + 0.177979i 0.572382 0.819987i \(-0.306020\pi\)
−0.0637479 + 0.997966i \(0.520305\pi\)
\(48\) 0 0
\(49\) −0.491326 0.236610i −0.0701895 0.0338015i
\(50\) 0 0
\(51\) 2.47242 10.8324i 0.346208 1.51683i
\(52\) 0 0
\(53\) 7.51501 9.42353i 1.03227 1.29442i 0.0775229 0.996991i \(-0.475299\pi\)
0.954743 0.297431i \(-0.0961297\pi\)
\(54\) 0 0
\(55\) 14.4541 9.08214i 1.94900 1.22464i
\(56\) 0 0
\(57\) 1.61995i 0.214567i
\(58\) 0 0
\(59\) 8.01950i 1.04405i 0.852930 + 0.522025i \(0.174823\pi\)
−0.852930 + 0.522025i \(0.825177\pi\)
\(60\) 0 0
\(61\) −12.4768 + 7.83971i −1.59749 + 1.00377i −0.622201 + 0.782858i \(0.713761\pi\)
−0.975293 + 0.220914i \(0.929096\pi\)
\(62\) 0 0
\(63\) −0.958388 + 1.20178i −0.120746 + 0.151410i
\(64\) 0 0
\(65\) 1.02881 4.50751i 0.127608 0.559088i
\(66\) 0 0
\(67\) −2.21191 1.06520i −0.270228 0.130135i 0.293863 0.955848i \(-0.405059\pi\)
−0.564091 + 0.825713i \(0.690773\pi\)
\(68\) 0 0
\(69\) 0.757669 + 0.265120i 0.0912126 + 0.0319167i
\(70\) 0 0
\(71\) −4.92140 + 2.37002i −0.584063 + 0.281270i −0.702491 0.711693i \(-0.747929\pi\)
0.118428 + 0.992963i \(0.462214\pi\)
\(72\) 0 0
\(73\) −4.92030 0.554385i −0.575878 0.0648859i −0.180778 0.983524i \(-0.557862\pi\)
−0.395100 + 0.918638i \(0.629290\pi\)
\(74\) 0 0
\(75\) 4.19858 4.19858i 0.484810 0.484810i
\(76\) 0 0
\(77\) 7.76208 12.3533i 0.884571 1.40779i
\(78\) 0 0
\(79\) −6.57935 + 2.30221i −0.740234 + 0.259019i −0.673945 0.738781i \(-0.735402\pi\)
−0.0662890 + 0.997800i \(0.521116\pi\)
\(80\) 0 0
\(81\) 4.25149 + 5.33120i 0.472388 + 0.592355i
\(82\) 0 0
\(83\) 10.2799 2.34632i 1.12837 0.257542i 0.382707 0.923870i \(-0.374992\pi\)
0.745659 + 0.666328i \(0.232135\pi\)
\(84\) 0 0
\(85\) −2.38961 21.2084i −0.259190 2.30038i
\(86\) 0 0
\(87\) −3.06198 + 7.75103i −0.328278 + 0.830998i
\(88\) 0 0
\(89\) −2.88852 + 0.325458i −0.306183 + 0.0344985i −0.263719 0.964600i \(-0.584949\pi\)
−0.0424636 + 0.999098i \(0.513521\pi\)
\(90\) 0 0
\(91\) −0.879275 3.85236i −0.0921731 0.403837i
\(92\) 0 0
\(93\) −2.24768 + 1.79247i −0.233074 + 0.185870i
\(94\) 0 0
\(95\) 1.02773 + 2.93708i 0.105443 + 0.301338i
\(96\) 0 0
\(97\) −0.0192149 0.0120735i −0.00195098 0.00122588i 0.531056 0.847337i \(-0.321795\pi\)
−0.533007 + 0.846111i \(0.678938\pi\)
\(98\) 0 0
\(99\) 2.45676 + 2.45676i 0.246914 + 0.246914i
\(100\) 0 0
\(101\) −0.418477 + 3.71408i −0.0416400 + 0.369565i 0.955561 + 0.294794i \(0.0952511\pi\)
−0.997201 + 0.0747709i \(0.976177\pi\)
\(102\) 0 0
\(103\) −0.287652 0.597315i −0.0283432 0.0588552i 0.886317 0.463080i \(-0.153256\pi\)
−0.914660 + 0.404225i \(0.867541\pi\)
\(104\) 0 0
\(105\) 3.86025 11.0320i 0.376722 1.07661i
\(106\) 0 0
\(107\) 8.11361 16.8481i 0.784372 1.62877i 0.00679537 0.999977i \(-0.497837\pi\)
0.777577 0.628788i \(-0.216449\pi\)
\(108\) 0 0
\(109\) −0.0679013 0.0154980i −0.00650376 0.00148444i 0.219268 0.975665i \(-0.429633\pi\)
−0.225772 + 0.974180i \(0.572490\pi\)
\(110\) 0 0
\(111\) 6.58945 + 5.25491i 0.625443 + 0.498774i
\(112\) 0 0
\(113\) 0.919112 + 1.46276i 0.0864628 + 0.137605i 0.887156 0.461470i \(-0.152678\pi\)
−0.800693 + 0.599075i \(0.795535\pi\)
\(114\) 0 0
\(115\) 1.54191 0.143784
\(116\) 0 0
\(117\) 0.941005 0.0869960
\(118\) 0 0
\(119\) −9.70455 15.4447i −0.889615 1.41581i
\(120\) 0 0
\(121\) −17.1821 13.7022i −1.56200 1.24566i
\(122\) 0 0
\(123\) 11.0078 + 2.51245i 0.992537 + 0.226540i
\(124\) 0 0
\(125\) −1.50031 + 3.11544i −0.134192 + 0.278653i
\(126\) 0 0
\(127\) 6.15227 17.5822i 0.545926 1.56017i −0.258437 0.966028i \(-0.583207\pi\)
0.804363 0.594138i \(-0.202507\pi\)
\(128\) 0 0
\(129\) 6.86499 + 14.2553i 0.604428 + 1.25511i
\(130\) 0 0
\(131\) −0.841249 + 7.46629i −0.0735003 + 0.652333i 0.901908 + 0.431928i \(0.142167\pi\)
−0.975408 + 0.220405i \(0.929262\pi\)
\(132\) 0 0
\(133\) 1.88050 + 1.88050i 0.163060 + 0.163060i
\(134\) 0 0
\(135\) 14.0426 + 8.82356i 1.20860 + 0.759411i
\(136\) 0 0
\(137\) 5.12448 + 14.6449i 0.437814 + 1.25120i 0.925688 + 0.378287i \(0.123487\pi\)
−0.487874 + 0.872914i \(0.662228\pi\)
\(138\) 0 0
\(139\) 14.8997 11.8821i 1.26378 1.00783i 0.264725 0.964324i \(-0.414719\pi\)
0.999053 0.0435055i \(-0.0138526\pi\)
\(140\) 0 0
\(141\) −1.27220 5.57389i −0.107139 0.469406i
\(142\) 0 0
\(143\) −8.87526 + 1.00000i −0.742187 + 0.0836243i
\(144\) 0 0
\(145\) −0.634163 + 15.9958i −0.0526644 + 1.32838i
\(146\) 0 0
\(147\) 0.0944910 + 0.838631i 0.00779349 + 0.0691691i
\(148\) 0 0
\(149\) −18.8568 + 4.30394i −1.54481 + 0.352593i −0.908181 0.418578i \(-0.862529\pi\)
−0.636628 + 0.771171i \(0.719671\pi\)
\(150\) 0 0
\(151\) −2.25472 2.82733i −0.183486 0.230085i 0.681578 0.731745i \(-0.261294\pi\)
−0.865064 + 0.501661i \(0.832723\pi\)
\(152\) 0 0
\(153\) 4.10009 1.43469i 0.331473 0.115987i
\(154\) 0 0
\(155\) −2.93803 + 4.67585i −0.235988 + 0.375573i
\(156\) 0 0
\(157\) −1.21363 + 1.21363i −0.0968584 + 0.0968584i −0.753876 0.657017i \(-0.771818\pi\)
0.657017 + 0.753876i \(0.271818\pi\)
\(158\) 0 0
\(159\) −18.5358 2.08848i −1.46998 0.165627i
\(160\) 0 0
\(161\) 1.18729 0.571770i 0.0935718 0.0450618i
\(162\) 0 0
\(163\) 18.9617 + 6.63499i 1.48520 + 0.519692i 0.946471 0.322789i \(-0.104621\pi\)
0.538725 + 0.842482i \(0.318906\pi\)
\(164\) 0 0
\(165\) −23.8018 11.4624i −1.85297 0.892344i
\(166\) 0 0
\(167\) 1.96549 8.61137i 0.152094 0.666368i −0.840181 0.542307i \(-0.817551\pi\)
0.992275 0.124061i \(-0.0395918\pi\)
\(168\) 0 0
\(169\) 6.59715 8.27257i 0.507473 0.636351i
\(170\) 0 0
\(171\) −0.536251 + 0.336949i −0.0410081 + 0.0257671i
\(172\) 0 0
\(173\) 8.38655i 0.637617i 0.947819 + 0.318809i \(0.103283\pi\)
−0.947819 + 0.318809i \(0.896717\pi\)
\(174\) 0 0
\(175\) 9.74774i 0.736860i
\(176\) 0 0
\(177\) 10.5085 6.60291i 0.789865 0.496305i
\(178\) 0 0
\(179\) −7.24834 + 9.08913i −0.541766 + 0.679353i −0.975071 0.221894i \(-0.928776\pi\)
0.433305 + 0.901248i \(0.357347\pi\)
\(180\) 0 0
\(181\) −1.77618 + 7.78196i −0.132023 + 0.578429i 0.865031 + 0.501719i \(0.167299\pi\)
−0.997053 + 0.0767100i \(0.975558\pi\)
\(182\) 0 0
\(183\) 20.5458 + 9.89432i 1.51879 + 0.731409i
\(184\) 0 0
\(185\) 15.2810 + 5.34704i 1.12348 + 0.393122i
\(186\) 0 0
\(187\) −37.1461 + 17.8886i −2.71640 + 1.30815i
\(188\) 0 0
\(189\) 14.0850 + 1.58700i 1.02453 + 0.115437i
\(190\) 0 0
\(191\) −11.0701 + 11.0701i −0.801003 + 0.801003i −0.983252 0.182249i \(-0.941662\pi\)
0.182249 + 0.983252i \(0.441662\pi\)
\(192\) 0 0
\(193\) 4.98727 7.93719i 0.358991 0.571331i −0.617585 0.786504i \(-0.711889\pi\)
0.976576 + 0.215173i \(0.0690316\pi\)
\(194\) 0 0
\(195\) −6.75356 + 2.36317i −0.483632 + 0.169230i
\(196\) 0 0
\(197\) −4.30109 5.39339i −0.306440 0.384263i 0.604636 0.796502i \(-0.293318\pi\)
−0.911076 + 0.412238i \(0.864747\pi\)
\(198\) 0 0
\(199\) −22.4820 + 5.13136i −1.59370 + 0.363753i −0.925058 0.379827i \(-0.875984\pi\)
−0.668647 + 0.743580i \(0.733126\pi\)
\(200\) 0 0
\(201\) 0.425392 + 3.77545i 0.0300048 + 0.266300i
\(202\) 0 0
\(203\) 5.44324 + 12.5522i 0.382040 + 0.880989i
\(204\) 0 0
\(205\) 21.5518 2.42831i 1.50524 0.169600i
\(206\) 0 0
\(207\) 0.0698324 + 0.305956i 0.00485369 + 0.0212654i
\(208\) 0 0
\(209\) 4.69967 3.74786i 0.325083 0.259245i
\(210\) 0 0
\(211\) −7.85722 22.4546i −0.540913 1.54584i −0.812222 0.583348i \(-0.801742\pi\)
0.271309 0.962492i \(-0.412543\pi\)
\(212\) 0 0
\(213\) 7.15766 + 4.49746i 0.490435 + 0.308161i
\(214\) 0 0
\(215\) 21.4906 + 21.4906i 1.46564 + 1.46564i
\(216\) 0 0
\(217\) −0.528431 + 4.68996i −0.0358723 + 0.318375i
\(218\) 0 0
\(219\) 3.32472 + 6.90385i 0.224664 + 0.466519i
\(220\) 0 0
\(221\) −3.68807 + 10.5399i −0.248086 + 0.708990i
\(222\) 0 0
\(223\) 0.307371 0.638262i 0.0205831 0.0427412i −0.890424 0.455132i \(-0.849592\pi\)
0.911007 + 0.412391i \(0.135306\pi\)
\(224\) 0 0
\(225\) 2.26316 + 0.516550i 0.150877 + 0.0344367i
\(226\) 0 0
\(227\) −15.8089 12.6072i −1.04927 0.836769i −0.0623667 0.998053i \(-0.519865\pi\)
−0.986908 + 0.161285i \(0.948436\pi\)
\(228\) 0 0
\(229\) −2.89574 4.60855i −0.191356 0.304542i 0.737242 0.675629i \(-0.236128\pi\)
−0.928598 + 0.371087i \(0.878985\pi\)
\(230\) 0 0
\(231\) −22.5783 −1.48554
\(232\) 0 0
\(233\) −8.11633 −0.531719 −0.265859 0.964012i \(-0.585656\pi\)
−0.265859 + 0.964012i \(0.585656\pi\)
\(234\) 0 0
\(235\) −5.84279 9.29875i −0.381142 0.606584i
\(236\) 0 0
\(237\) 8.43389 + 6.72580i 0.547840 + 0.436888i
\(238\) 0 0
\(239\) 5.89664 + 1.34587i 0.381422 + 0.0870571i 0.408933 0.912564i \(-0.365901\pi\)
−0.0275110 + 0.999622i \(0.508758\pi\)
\(240\) 0 0
\(241\) −0.630445 + 1.30913i −0.0406105 + 0.0843287i −0.920287 0.391244i \(-0.872045\pi\)
0.879676 + 0.475573i \(0.157759\pi\)
\(242\) 0 0
\(243\) −2.04259 + 5.83738i −0.131032 + 0.374468i
\(244\) 0 0
\(245\) 0.703365 + 1.46055i 0.0449363 + 0.0933112i
\(246\) 0 0
\(247\) 0.182284 1.61781i 0.0115984 0.102939i
\(248\) 0 0
\(249\) −11.5386 11.5386i −0.731227 0.731227i
\(250\) 0 0
\(251\) −2.71367 1.70511i −0.171285 0.107626i 0.443661 0.896195i \(-0.353679\pi\)
−0.614946 + 0.788569i \(0.710822\pi\)
\(252\) 0 0
\(253\) −0.983774 2.81147i −0.0618494 0.176755i
\(254\) 0 0
\(255\) −25.8233 + 20.5934i −1.61712 + 1.28961i
\(256\) 0 0
\(257\) −2.08608 9.13971i −0.130126 0.570120i −0.997386 0.0722632i \(-0.976978\pi\)
0.867260 0.497856i \(-0.165879\pi\)
\(258\) 0 0
\(259\) 13.7494 1.54918i 0.854345 0.0962616i
\(260\) 0 0
\(261\) −3.20271 + 0.598607i −0.198243 + 0.0370529i
\(262\) 0 0
\(263\) 1.21678 + 10.7992i 0.0750299 + 0.665909i 0.973787 + 0.227462i \(0.0730427\pi\)
−0.898757 + 0.438447i \(0.855529\pi\)
\(264\) 0 0
\(265\) −34.9317 + 7.97294i −2.14584 + 0.489774i
\(266\) 0 0
\(267\) 2.80475 + 3.51705i 0.171648 + 0.215240i
\(268\) 0 0
\(269\) 18.9216 6.62095i 1.15367 0.403686i 0.315408 0.948956i \(-0.397859\pi\)
0.838261 + 0.545270i \(0.183573\pi\)
\(270\) 0 0
\(271\) −0.0862405 + 0.137251i −0.00523873 + 0.00833740i −0.849333 0.527857i \(-0.822996\pi\)
0.844095 + 0.536194i \(0.180139\pi\)
\(272\) 0 0
\(273\) −4.32404 + 4.32404i −0.261703 + 0.261703i
\(274\) 0 0
\(275\) −21.8943 2.46689i −1.32028 0.148759i
\(276\) 0 0
\(277\) −14.2634 + 6.86891i −0.857007 + 0.412713i −0.810174 0.586190i \(-0.800627\pi\)
−0.0468332 + 0.998903i \(0.514913\pi\)
\(278\) 0 0
\(279\) −1.06088 0.371217i −0.0635130 0.0222242i
\(280\) 0 0
\(281\) −12.4582 5.99954i −0.743193 0.357903i 0.0236649 0.999720i \(-0.492467\pi\)
−0.766858 + 0.641817i \(0.778181\pi\)
\(282\) 0 0
\(283\) 0.174871 0.766159i 0.0103950 0.0455434i −0.969464 0.245232i \(-0.921136\pi\)
0.979859 + 0.199689i \(0.0639930\pi\)
\(284\) 0 0
\(285\) 3.00246 3.76497i 0.177850 0.223017i
\(286\) 0 0
\(287\) 15.6948 9.86168i 0.926434 0.582117i
\(288\) 0 0
\(289\) 34.5467i 2.03216i
\(290\) 0 0
\(291\) 0.0351194i 0.00205874i
\(292\) 0 0
\(293\) −0.353741 + 0.222270i −0.0206658 + 0.0129852i −0.542325 0.840169i \(-0.682456\pi\)
0.521660 + 0.853154i \(0.325313\pi\)
\(294\) 0 0
\(295\) 14.8636 18.6383i 0.865391 1.08517i
\(296\) 0 0
\(297\) 7.12907 31.2345i 0.413671 1.81241i
\(298\) 0 0
\(299\) −0.726838 0.350027i −0.0420341 0.0202426i
\(300\) 0 0
\(301\) 24.5172 + 8.57895i 1.41315 + 0.494482i
\(302\) 0 0
\(303\) 5.21136 2.50966i 0.299385 0.144176i
\(304\) 0 0
\(305\) 43.5281 + 4.90444i 2.49241 + 0.280827i
\(306\) 0 0
\(307\) −6.78309 + 6.78309i −0.387132 + 0.387132i −0.873663 0.486531i \(-0.838262\pi\)
0.486531 + 0.873663i \(0.338262\pi\)
\(308\) 0 0
\(309\) −0.545861 + 0.868733i −0.0310529 + 0.0494205i
\(310\) 0 0
\(311\) −16.4157 + 5.74410i −0.930849 + 0.325718i −0.752759 0.658296i \(-0.771277\pi\)
−0.178090 + 0.984014i \(0.556992\pi\)
\(312\) 0 0
\(313\) 12.8999 + 16.1759i 0.729144 + 0.914318i 0.998817 0.0486340i \(-0.0154868\pi\)
−0.269672 + 0.962952i \(0.586915\pi\)
\(314\) 0 0
\(315\) 4.45483 1.01679i 0.251001 0.0572894i
\(316\) 0 0
\(317\) 2.64628 + 23.4864i 0.148630 + 1.31913i 0.817578 + 0.575818i \(0.195316\pi\)
−0.668948 + 0.743309i \(0.733255\pi\)
\(318\) 0 0
\(319\) 29.5708 9.04938i 1.65565 0.506668i
\(320\) 0 0
\(321\) −28.7575 + 3.24019i −1.60509 + 0.180850i
\(322\) 0 0
\(323\) −1.67233 7.32696i −0.0930510 0.407683i
\(324\) 0 0
\(325\) −4.66549 + 3.72060i −0.258795 + 0.206382i
\(326\) 0 0
\(327\) 0.0355989 + 0.101736i 0.00196862 + 0.00562601i
\(328\) 0 0
\(329\) −7.94721 4.99356i −0.438144 0.275304i
\(330\) 0 0
\(331\) −10.9412 10.9412i −0.601380 0.601380i 0.339298 0.940679i \(-0.389810\pi\)
−0.940679 + 0.339298i \(0.889810\pi\)
\(332\) 0 0
\(333\) −0.368927 + 3.27432i −0.0202171 + 0.179432i
\(334\) 0 0
\(335\) 3.16649 + 6.57529i 0.173004 + 0.359247i
\(336\) 0 0
\(337\) 8.14791 23.2854i 0.443845 1.26844i −0.477136 0.878829i \(-0.658325\pi\)
0.920981 0.389607i \(-0.127389\pi\)
\(338\) 0 0
\(339\) 1.15999 2.40874i 0.0630020 0.130825i
\(340\) 0 0
\(341\) 10.4003 + 2.37381i 0.563210 + 0.128549i
\(342\) 0 0
\(343\) 14.9875 + 11.9521i 0.809248 + 0.645353i
\(344\) 0 0
\(345\) −1.26954 2.02046i −0.0683497 0.108778i
\(346\) 0 0
\(347\) 1.38821 0.0745230 0.0372615 0.999306i \(-0.488137\pi\)
0.0372615 + 0.999306i \(0.488137\pi\)
\(348\) 0 0
\(349\) 27.1106 1.45119 0.725597 0.688119i \(-0.241564\pi\)
0.725597 + 0.688119i \(0.241564\pi\)
\(350\) 0 0
\(351\) −4.61651 7.34713i −0.246411 0.392161i
\(352\) 0 0
\(353\) −24.5630 19.5884i −1.30736 1.04258i −0.995724 0.0923808i \(-0.970552\pi\)
−0.311634 0.950202i \(-0.600876\pi\)
\(354\) 0 0
\(355\) 15.8306 + 3.61324i 0.840203 + 0.191771i
\(356\) 0 0
\(357\) −12.2479 + 25.4330i −0.648227 + 1.34606i
\(358\) 0 0
\(359\) 10.2703 29.3509i 0.542048 1.54908i −0.268421 0.963302i \(-0.586502\pi\)
0.810469 0.585782i \(-0.199212\pi\)
\(360\) 0 0
\(361\) −7.76837 16.1312i −0.408862 0.849010i
\(362\) 0 0
\(363\) −3.80796 + 33.7966i −0.199866 + 1.77386i
\(364\) 0 0
\(365\) 10.4079 + 10.4079i 0.544775 + 0.544775i
\(366\) 0 0
\(367\) −13.8633 8.71091i −0.723660 0.454706i 0.119178 0.992873i \(-0.461974\pi\)
−0.842838 + 0.538167i \(0.819117\pi\)
\(368\) 0 0
\(369\) 1.45792 + 4.16648i 0.0758960 + 0.216898i
\(370\) 0 0
\(371\) −23.9415 + 19.0927i −1.24298 + 0.991242i
\(372\) 0 0
\(373\) −2.19756 9.62815i −0.113785 0.498527i −0.999417 0.0341384i \(-0.989131\pi\)
0.885632 0.464388i \(-0.153726\pi\)
\(374\) 0 0
\(375\) 5.31765 0.599156i 0.274602 0.0309403i
\(376\) 0 0
\(377\) 3.93012 7.39627i 0.202412 0.380927i
\(378\) 0 0
\(379\) 3.51508 + 31.1972i 0.180558 + 1.60249i 0.678044 + 0.735022i \(0.262828\pi\)
−0.497486 + 0.867472i \(0.665743\pi\)
\(380\) 0 0
\(381\) −28.1046 + 6.41469i −1.43984 + 0.328634i
\(382\) 0 0
\(383\) 15.7683 + 19.7729i 0.805724 + 1.01035i 0.999570 + 0.0293144i \(0.00933239\pi\)
−0.193846 + 0.981032i \(0.562096\pi\)
\(384\) 0 0
\(385\) −40.9360 + 14.3241i −2.08629 + 0.730026i
\(386\) 0 0
\(387\) −3.29101 + 5.23761i −0.167291 + 0.266243i
\(388\) 0 0
\(389\) 25.6964 25.6964i 1.30286 1.30286i 0.376404 0.926456i \(-0.377160\pi\)
0.926456 0.376404i \(-0.122840\pi\)
\(390\) 0 0
\(391\) −3.70060 0.416958i −0.187147 0.0210864i
\(392\) 0 0
\(393\) 10.4762 5.04508i 0.528455 0.254491i
\(394\) 0 0
\(395\) 19.5582 + 6.84372i 0.984082 + 0.344345i
\(396\) 0 0
\(397\) 25.0854 + 12.0805i 1.25900 + 0.606304i 0.939911 0.341420i \(-0.110908\pi\)
0.319092 + 0.947724i \(0.396622\pi\)
\(398\) 0 0
\(399\) 0.915818 4.01246i 0.0458482 0.200874i
\(400\) 0 0
\(401\) −3.09115 + 3.87618i −0.154365 + 0.193567i −0.853000 0.521910i \(-0.825219\pi\)
0.698636 + 0.715478i \(0.253791\pi\)
\(402\) 0 0
\(403\) 2.44642 1.53719i 0.121865 0.0765727i
\(404\) 0 0
\(405\) 20.2702i 1.00724i
\(406\) 0 0
\(407\) 31.2744i 1.55021i
\(408\) 0 0
\(409\) −8.20860 + 5.15781i −0.405889 + 0.255037i −0.719469 0.694525i \(-0.755615\pi\)
0.313580 + 0.949562i \(0.398472\pi\)
\(410\) 0 0
\(411\) 14.9709 18.7729i 0.738461 0.926001i
\(412\) 0 0
\(413\) 4.53372 19.8635i 0.223090 0.977421i
\(414\) 0 0
\(415\) −28.2406 13.5999i −1.38627 0.667595i
\(416\) 0 0
\(417\) −27.8377 9.74084i −1.36322 0.477011i
\(418\) 0 0
\(419\) 18.8605 9.08272i 0.921394 0.443720i 0.0878253 0.996136i \(-0.472008\pi\)
0.833569 + 0.552416i \(0.186294\pi\)
\(420\) 0 0
\(421\) −6.95615 0.783770i −0.339022 0.0381986i −0.0591876 0.998247i \(-0.518851\pi\)
−0.279834 + 0.960048i \(0.590280\pi\)
\(422\) 0 0
\(423\) 1.58050 1.58050i 0.0768468 0.0768468i
\(424\) 0 0
\(425\) −14.6557 + 23.3243i −0.710904 + 1.13140i
\(426\) 0 0
\(427\) 35.3360 12.3646i 1.71003 0.598365i
\(428\) 0 0
\(429\) 8.61787 + 10.8065i 0.416075 + 0.521741i
\(430\) 0 0
\(431\) 30.9686 7.06837i 1.49170 0.340472i 0.602550 0.798081i \(-0.294151\pi\)
0.889153 + 0.457609i \(0.151294\pi\)
\(432\) 0 0
\(433\) −2.05748 18.2607i −0.0988763 0.877551i −0.941032 0.338317i \(-0.890142\pi\)
0.842156 0.539234i \(-0.181286\pi\)
\(434\) 0 0
\(435\) 21.4824 12.3392i 1.03000 0.591621i
\(436\) 0 0
\(437\) 0.539539 0.0607914i 0.0258096 0.00290805i
\(438\) 0 0
\(439\) −7.66537 33.5842i −0.365848 1.60289i −0.738058 0.674737i \(-0.764257\pi\)
0.372210 0.928148i \(-0.378600\pi\)
\(440\) 0 0
\(441\) −0.257958 + 0.205714i −0.0122837 + 0.00979592i
\(442\) 0 0
\(443\) −7.27895 20.8021i −0.345834 0.988336i −0.977102 0.212771i \(-0.931751\pi\)
0.631269 0.775564i \(-0.282535\pi\)
\(444\) 0 0
\(445\) 7.31651 + 4.59727i 0.346836 + 0.217931i
\(446\) 0 0
\(447\) 21.1656 + 21.1656i 1.00110 + 1.00110i
\(448\) 0 0
\(449\) 1.46602 13.0113i 0.0691858 0.614041i −0.910501 0.413507i \(-0.864304\pi\)
0.979687 0.200534i \(-0.0642677\pi\)
\(450\) 0 0
\(451\) −18.1783 37.7476i −0.855982 1.77747i
\(452\) 0 0
\(453\) −1.84839 + 5.28241i −0.0868451 + 0.248189i
\(454\) 0 0
\(455\) −5.09653 + 10.5831i −0.238929 + 0.496141i
\(456\) 0 0
\(457\) −33.1983 7.57729i −1.55295 0.354451i −0.641914 0.766776i \(-0.721859\pi\)
−0.911037 + 0.412326i \(0.864717\pi\)
\(458\) 0 0
\(459\) −31.3165 24.9740i −1.46173 1.16569i
\(460\) 0 0
\(461\) −2.05600 3.27211i −0.0957576 0.152397i 0.795410 0.606072i \(-0.207256\pi\)
−0.891167 + 0.453675i \(0.850113\pi\)
\(462\) 0 0
\(463\) −2.38429 −0.110807 −0.0554036 0.998464i \(-0.517645\pi\)
−0.0554036 + 0.998464i \(0.517645\pi\)
\(464\) 0 0
\(465\) 8.54611 0.396317
\(466\) 0 0
\(467\) 2.64301 + 4.20632i 0.122304 + 0.194645i 0.902264 0.431183i \(-0.141904\pi\)
−0.779961 + 0.625829i \(0.784761\pi\)
\(468\) 0 0
\(469\) 4.87650 + 3.88888i 0.225176 + 0.179572i
\(470\) 0 0
\(471\) 2.58955 + 0.591049i 0.119320 + 0.0272341i
\(472\) 0 0
\(473\) 25.4737 52.8968i 1.17128 2.43220i
\(474\) 0 0
\(475\) 1.32647 3.79084i 0.0608628 0.173936i
\(476\) 0 0
\(477\) −3.16409 6.57030i −0.144874 0.300833i
\(478\) 0 0
\(479\) −2.88117 + 25.5711i −0.131644 + 1.16837i 0.738038 + 0.674760i \(0.235753\pi\)
−0.869682 + 0.493613i \(0.835676\pi\)
\(480\) 0 0
\(481\) −5.98946 5.98946i −0.273096 0.273096i
\(482\) 0 0
\(483\) −1.72679 1.08502i −0.0785718 0.0493699i
\(484\) 0 0
\(485\) 0.0222805 + 0.0636740i 0.00101171 + 0.00289129i
\(486\) 0 0
\(487\) −23.1511 + 18.4624i −1.04908 + 0.836610i −0.986880 0.161454i \(-0.948382\pi\)
−0.0621951 + 0.998064i \(0.519810\pi\)
\(488\) 0 0
\(489\) −6.91800 30.3097i −0.312843 1.37065i
\(490\) 0 0
\(491\) 30.7117 3.46038i 1.38600 0.156165i 0.612756 0.790272i \(-0.290061\pi\)
0.773245 + 0.634107i \(0.218632\pi\)
\(492\) 0 0
\(493\) 5.84753 38.2186i 0.263359 1.72128i
\(494\) 0 0
\(495\) −1.15639 10.2633i −0.0519760 0.461300i
\(496\) 0 0
\(497\) 13.5297 3.08807i 0.606890 0.138519i
\(498\) 0 0
\(499\) 22.7692 + 28.5516i 1.01929 + 1.27815i 0.960028 + 0.279904i \(0.0903027\pi\)
0.0592600 + 0.998243i \(0.481126\pi\)
\(500\) 0 0
\(501\) −12.9023 + 4.51472i −0.576434 + 0.201703i
\(502\) 0 0
\(503\) −10.7426 + 17.0968i −0.478989 + 0.762307i −0.995579 0.0939258i \(-0.970058\pi\)
0.516590 + 0.856233i \(0.327201\pi\)
\(504\) 0 0
\(505\) 7.85639 7.85639i 0.349605 0.349605i
\(506\) 0 0
\(507\) −16.2719 1.83340i −0.722660 0.0814242i
\(508\) 0 0
\(509\) −32.8506 + 15.8200i −1.45608 + 0.701211i −0.983639 0.180152i \(-0.942341\pi\)
−0.472440 + 0.881363i \(0.656627\pi\)
\(510\) 0 0
\(511\) 11.8737 + 4.15479i 0.525262 + 0.183797i
\(512\) 0 0
\(513\) 5.26162 + 2.53386i 0.232306 + 0.111873i
\(514\) 0 0
\(515\) −0.438543 + 1.92138i −0.0193245 + 0.0846661i
\(516\) 0 0
\(517\) −13.2272 + 16.5864i −0.581732 + 0.729469i
\(518\) 0 0
\(519\) 10.9894 6.90512i 0.482383 0.303101i
\(520\) 0 0
\(521\) 11.6841i 0.511891i 0.966691 + 0.255946i \(0.0823868\pi\)
−0.966691 + 0.255946i \(0.917613\pi\)
\(522\) 0 0
\(523\) 25.8163i 1.12887i −0.825478 0.564434i \(-0.809095\pi\)
0.825478 0.564434i \(-0.190905\pi\)
\(524\) 0 0
\(525\) −12.7731 + 8.02587i −0.557463 + 0.350278i
\(526\) 0 0
\(527\) 8.31575 10.4276i 0.362240 0.454234i
\(528\) 0 0
\(529\) −5.05811 + 22.1610i −0.219918 + 0.963524i
\(530\) 0 0
\(531\) 4.37152 + 2.10521i 0.189708 + 0.0913584i
\(532\) 0 0
\(533\) −10.7105 3.74778i −0.463925 0.162334i
\(534\) 0 0
\(535\) −50.0838 + 24.1191i −2.16531 + 1.04276i
\(536\) 0 0
\(537\) 17.8780 + 2.01437i 0.771494 + 0.0869265i
\(538\) 0 0
\(539\) 2.21436 2.21436i 0.0953793 0.0953793i
\(540\) 0 0
\(541\) 14.7829 23.5268i 0.635566 1.01150i −0.361305 0.932448i \(-0.617669\pi\)
0.996871 0.0790496i \(-0.0251885\pi\)
\(542\) 0 0
\(543\) 11.6596 4.07988i 0.500363 0.175085i
\(544\) 0 0
\(545\) 0.129087 + 0.161870i 0.00552947 + 0.00693374i
\(546\) 0 0
\(547\) −18.0555 + 4.12105i −0.771997 + 0.176203i −0.590336 0.807158i \(-0.701005\pi\)
−0.181661 + 0.983361i \(0.558147\pi\)
\(548\) 0 0
\(549\) 0.998200 + 8.85927i 0.0426021 + 0.378104i
\(550\) 0 0
\(551\) 0.408747 + 5.62218i 0.0174132 + 0.239513i
\(552\) 0 0
\(553\) 17.5979 1.98281i 0.748341 0.0843178i
\(554\) 0 0
\(555\) −5.57511 24.4262i −0.236650 1.03683i
\(556\) 0 0
\(557\) −20.2320 + 16.1344i −0.857255 + 0.683638i −0.950067 0.312045i \(-0.898986\pi\)
0.0928118 + 0.995684i \(0.470415\pi\)
\(558\) 0 0
\(559\) −5.25187 15.0090i −0.222131 0.634813i
\(560\) 0 0
\(561\) 54.0252 + 33.9463i 2.28094 + 1.43321i
\(562\) 0 0
\(563\) 20.4641 + 20.4641i 0.862460 + 0.862460i 0.991623 0.129163i \(-0.0412292\pi\)
−0.129163 + 0.991623i \(0.541229\pi\)
\(564\) 0 0
\(565\) 0.574987 5.10315i 0.0241899 0.214691i
\(566\) 0 0
\(567\) −7.51661 15.6084i −0.315668 0.655491i
\(568\) 0 0
\(569\) −9.14639 + 26.1389i −0.383436 + 1.09580i 0.576866 + 0.816839i \(0.304275\pi\)
−0.960303 + 0.278960i \(0.910010\pi\)
\(570\) 0 0
\(571\) 7.90904 16.4233i 0.330983 0.687294i −0.667366 0.744730i \(-0.732578\pi\)
0.998349 + 0.0574362i \(0.0182926\pi\)
\(572\) 0 0
\(573\) 23.6205 + 5.39122i 0.986760 + 0.225221i
\(574\) 0 0
\(575\) −1.55593 1.24082i −0.0648869 0.0517456i
\(576\) 0 0
\(577\) 2.77911 + 4.42292i 0.115696 + 0.184129i 0.899552 0.436814i \(-0.143893\pi\)
−0.783856 + 0.620942i \(0.786750\pi\)
\(578\) 0 0
\(579\) −14.5069 −0.602887
\(580\) 0 0
\(581\) −26.7888 −1.11139
\(582\) 0 0
\(583\) 36.8249 + 58.6065i 1.52513 + 2.42723i
\(584\) 0 0
\(585\) −2.18702 1.74409i −0.0904220 0.0721092i
\(586\) 0 0
\(587\) 29.6874 + 6.77594i 1.22533 + 0.279673i 0.785757 0.618535i \(-0.212273\pi\)
0.439571 + 0.898208i \(0.355131\pi\)
\(588\) 0 0
\(589\) −0.843715 + 1.75199i −0.0347647 + 0.0721896i
\(590\) 0 0
\(591\) −3.52598 + 10.0767i −0.145040 + 0.414499i
\(592\) 0 0
\(593\) 3.40712 + 7.07495i 0.139913 + 0.290533i 0.959138 0.282940i \(-0.0913098\pi\)
−0.819224 + 0.573474i \(0.805596\pi\)
\(594\) 0 0
\(595\) −6.07106 + 53.8822i −0.248889 + 2.20895i
\(596\) 0 0
\(597\) 25.2346 + 25.2346i 1.03279 + 1.03279i
\(598\) 0 0
\(599\) 7.68929 + 4.83150i 0.314176 + 0.197410i 0.679884 0.733320i \(-0.262030\pi\)
−0.365708 + 0.930730i \(0.619173\pi\)
\(600\) 0 0
\(601\) 3.68520 + 10.5317i 0.150323 + 0.429597i 0.994279 0.106815i \(-0.0340651\pi\)
−0.843956 + 0.536412i \(0.819779\pi\)
\(602\) 0 0
\(603\) −1.16131 + 0.926110i −0.0472920 + 0.0377141i
\(604\) 0 0
\(605\) 14.5372 + 63.6915i 0.591020 + 2.58943i
\(606\) 0 0
\(607\) −5.38884 + 0.607176i −0.218726 + 0.0246445i −0.220647 0.975354i \(-0.570817\pi\)
0.00192130 + 0.999998i \(0.499388\pi\)
\(608\) 0 0
\(609\) 11.9662 17.4675i 0.484894 0.707820i
\(610\) 0 0
\(611\) 0.643329 + 5.70970i 0.0260263 + 0.230990i
\(612\) 0 0
\(613\) 5.78133 1.31955i 0.233506 0.0532961i −0.104167 0.994560i \(-0.533218\pi\)
0.337672 + 0.941264i \(0.390360\pi\)
\(614\) 0 0
\(615\) −20.9268 26.2414i −0.843850 1.05815i
\(616\) 0 0
\(617\) −22.4307 + 7.84886i −0.903028 + 0.315983i −0.741553 0.670894i \(-0.765911\pi\)
−0.161474 + 0.986877i \(0.551625\pi\)
\(618\) 0 0
\(619\) −12.4673 + 19.8416i −0.501103 + 0.797501i −0.997505 0.0705919i \(-0.977511\pi\)
0.496402 + 0.868093i \(0.334654\pi\)
\(620\) 0 0
\(621\) 2.04623 2.04623i 0.0821125 0.0821125i
\(622\) 0 0
\(623\) 7.33859 + 0.826861i 0.294014 + 0.0331275i
\(624\) 0 0
\(625\) 26.5453 12.7835i 1.06181 0.511341i
\(626\) 0 0
\(627\) −8.78057 3.07246i −0.350662 0.122702i
\(628\) 0 0
\(629\) −35.2286 16.9652i −1.40466 0.676448i
\(630\) 0 0
\(631\) −5.50703 + 24.1279i −0.219232 + 0.960516i 0.738816 + 0.673907i \(0.235385\pi\)
−0.958048 + 0.286609i \(0.907472\pi\)
\(632\) 0 0
\(633\) −22.9545 + 28.7840i −0.912358 + 1.14406i
\(634\) 0 0
\(635\) −46.8860 + 29.4604i −1.86062 + 1.16910i
\(636\) 0 0
\(637\) 0.848159i 0.0336053i
\(638\) 0 0
\(639\) 3.30487i 0.130738i
\(640\) 0 0
\(641\) 7.86143 4.93966i 0.310508 0.195105i −0.367758 0.929921i \(-0.619875\pi\)
0.678266 + 0.734817i \(0.262732\pi\)
\(642\) 0 0
\(643\) 11.8012 14.7982i 0.465392 0.583583i −0.492644 0.870231i \(-0.663969\pi\)
0.958036 + 0.286648i \(0.0925409\pi\)
\(644\) 0 0
\(645\) 10.4661 45.8549i 0.412102 1.80554i
\(646\) 0 0
\(647\) −16.2507 7.82595i −0.638883 0.307670i 0.0862555 0.996273i \(-0.472510\pi\)
−0.725138 + 0.688603i \(0.758224\pi\)
\(648\) 0 0
\(649\) −43.4679 15.2101i −1.70627 0.597048i
\(650\) 0 0
\(651\) 6.58064 3.16907i 0.257916 0.124206i
\(652\) 0 0
\(653\) 8.82155 + 0.993950i 0.345214 + 0.0388963i 0.282869 0.959158i \(-0.408714\pi\)
0.0623445 + 0.998055i \(0.480142\pi\)
\(654\) 0 0
\(655\) 15.7934 15.7934i 0.617100 0.617100i
\(656\) 0 0
\(657\) −1.59384 + 2.53658i −0.0621815 + 0.0989614i
\(658\) 0 0
\(659\) −28.8086 + 10.0806i −1.12222 + 0.392683i −0.826694 0.562651i \(-0.809781\pi\)
−0.295528 + 0.955334i \(0.595496\pi\)
\(660\) 0 0
\(661\) 27.6060 + 34.6169i 1.07375 + 1.34644i 0.934412 + 0.356195i \(0.115926\pi\)
0.139338 + 0.990245i \(0.455503\pi\)
\(662\) 0 0
\(663\) 16.8477 3.84538i 0.654310 0.149342i
\(664\) 0 0
\(665\) −0.885146 7.85589i −0.0343245 0.304638i
\(666\) 0 0
\(667\) 2.69646 + 0.728948i 0.104407 + 0.0282250i
\(668\) 0 0
\(669\) −1.08943 + 0.122749i −0.0421198 + 0.00474577i
\(670\) 0 0
\(671\) −18.8294 82.4970i −0.726901 3.18476i
\(672\) 0 0
\(673\) 4.45437 3.55224i 0.171703 0.136929i −0.533868 0.845568i \(-0.679262\pi\)
0.705571 + 0.708639i \(0.250691\pi\)
\(674\) 0 0
\(675\) −7.06979 20.2043i −0.272116 0.777664i
\(676\) 0 0
\(677\) −6.07180 3.81516i −0.233358 0.146629i 0.410277 0.911961i \(-0.365432\pi\)
−0.643636 + 0.765332i \(0.722575\pi\)
\(678\) 0 0
\(679\) 0.0407680 + 0.0407680i 0.00156453 + 0.00156453i
\(680\) 0 0
\(681\) −3.50364 + 31.0957i −0.134260 + 1.19159i
\(682\) 0 0
\(683\) 3.52631 + 7.32246i 0.134930 + 0.280186i 0.957476 0.288514i \(-0.0931610\pi\)
−0.822545 + 0.568700i \(0.807447\pi\)
\(684\) 0 0
\(685\) 15.2334 43.5346i 0.582039 1.66337i
\(686\) 0 0
\(687\) −3.65465 + 7.58896i −0.139434 + 0.289537i
\(688\) 0 0
\(689\) 18.2764 + 4.17146i 0.696274 + 0.158920i
\(690\) 0 0
\(691\) 7.90778 + 6.30625i 0.300826 + 0.239901i 0.762256 0.647276i \(-0.224092\pi\)
−0.461429 + 0.887177i \(0.652663\pi\)
\(692\) 0 0
\(693\) −4.69627 7.47407i −0.178397 0.283917i
\(694\) 0 0
\(695\) −56.6516 −2.14892
\(696\) 0 0
\(697\) −52.3814 −1.98409
\(698\) 0 0
\(699\) 6.68264 + 10.6354i 0.252761 + 0.402266i
\(700\) 0 0
\(701\) −12.9112 10.2964i −0.487651 0.388889i 0.348569 0.937283i \(-0.386668\pi\)
−0.836220 + 0.548395i \(0.815239\pi\)
\(702\) 0 0
\(703\) 5.55788 + 1.26855i 0.209619 + 0.0478442i
\(704\) 0 0
\(705\) −7.37405 + 15.3124i −0.277723 + 0.576698i
\(706\) 0 0
\(707\) 3.13624 8.96286i 0.117950 0.337083i
\(708\) 0 0
\(709\) 12.7491 + 26.4738i 0.478802 + 0.994243i 0.990810 + 0.135262i \(0.0431876\pi\)
−0.512008 + 0.858981i \(0.671098\pi\)
\(710\) 0 0
\(711\) −0.472193 + 4.19083i −0.0177086 + 0.157168i
\(712\) 0 0
\(713\) 0.681345 + 0.681345i 0.0255166 + 0.0255166i
\(714\) 0 0
\(715\) 22.4807 + 14.1255i 0.840730 + 0.528266i
\(716\) 0 0
\(717\) −3.09146 8.83488i −0.115453 0.329945i
\(718\) 0 0
\(719\) −17.0617 + 13.6062i −0.636293 + 0.507426i −0.887680 0.460460i \(-0.847684\pi\)
0.251388 + 0.967886i \(0.419113\pi\)
\(720\) 0 0
\(721\) 0.374802 + 1.64211i 0.0139584 + 0.0611555i
\(722\) 0 0
\(723\) 2.23452 0.251770i 0.0831028 0.00936344i
\(724\) 0 0
\(725\) 13.5122 15.6310i 0.501829 0.580519i
\(726\) 0 0
\(727\) 6.02755 + 53.4960i 0.223550 + 1.98406i 0.169595 + 0.985514i \(0.445754\pi\)
0.0539544 + 0.998543i \(0.482817\pi\)
\(728\) 0 0
\(729\) 29.2746 6.68173i 1.08424 0.247471i
\(730\) 0 0
\(731\) −45.7663 57.3891i −1.69273 2.12261i
\(732\) 0 0
\(733\) 29.5458 10.3385i 1.09130 0.381862i 0.276151 0.961114i \(-0.410941\pi\)
0.815149 + 0.579252i \(0.196655\pi\)
\(734\) 0 0
\(735\) 1.33474 2.12422i 0.0492325 0.0783530i
\(736\) 0 0
\(737\) 9.96889 9.96889i 0.367209 0.367209i
\(738\) 0 0
\(739\) −18.1132 2.04087i −0.666305 0.0750745i −0.227668 0.973739i \(-0.573110\pi\)
−0.438637 + 0.898664i \(0.644539\pi\)
\(740\) 0 0
\(741\) −2.27001 + 1.09318i −0.0833909 + 0.0401590i
\(742\) 0 0
\(743\) 4.09112 + 1.43154i 0.150089 + 0.0525183i 0.404278 0.914636i \(-0.367523\pi\)
−0.254189 + 0.967155i \(0.581809\pi\)
\(744\) 0 0
\(745\) 51.8027 + 24.9469i 1.89790 + 0.913982i
\(746\) 0 0
\(747\) 1.41959 6.21962i 0.0519400 0.227564i
\(748\) 0 0
\(749\) −29.6215 + 37.1442i −1.08235 + 1.35722i
\(750\) 0 0
\(751\) −32.7647 + 20.5874i −1.19560 + 0.751246i −0.974584 0.224024i \(-0.928081\pi\)
−0.221017 + 0.975270i \(0.570938\pi\)
\(752\) 0 0
\(753\) 4.95981i 0.180746i
\(754\) 0 0
\(755\) 10.7500i 0.391234i
\(756\) 0 0
\(757\) −0.480142 + 0.301693i −0.0174511 + 0.0109652i −0.540729 0.841197i \(-0.681852\pi\)
0.523278 + 0.852162i \(0.324709\pi\)
\(758\) 0 0
\(759\) −2.87405 + 3.60394i −0.104321 + 0.130815i
\(760\) 0 0
\(761\) 3.41051 14.9424i 0.123631 0.541663i −0.874739 0.484594i \(-0.838967\pi\)
0.998370 0.0570689i \(-0.0181755\pi\)
\(762\) 0 0
\(763\) 0.159423 + 0.0767743i 0.00577152 + 0.00277942i
\(764\) 0 0
\(765\) −12.1882 4.26485i −0.440667 0.154196i
\(766\) 0 0
\(767\) −11.2376 + 5.41175i −0.405767 + 0.195407i
\(768\) 0 0
\(769\) 1.79498 + 0.202245i 0.0647285 + 0.00729315i 0.144269 0.989538i \(-0.453917\pi\)
−0.0795408 + 0.996832i \(0.525345\pi\)
\(770\) 0 0
\(771\) −10.2588 + 10.2588i −0.369461 + 0.369461i
\(772\) 0 0
\(773\) 1.85455 2.95150i 0.0667036 0.106158i −0.811707 0.584065i \(-0.801461\pi\)
0.878411 + 0.477907i \(0.158604\pi\)
\(774\) 0 0
\(775\) 6.72754 2.35407i 0.241660 0.0845607i
\(776\) 0 0
\(777\) −13.3506 16.7412i −0.478952 0.600586i
\(778\) 0 0
\(779\) 7.44560 1.69941i 0.266766 0.0608877i
\(780\) 0 0
\(781\) −3.51206 31.1704i −0.125672 1.11537i
\(782\) 0 0
\(783\) 20.3861 + 22.0692i 0.728538 + 0.788690i
\(784\) 0 0
\(785\) 5.07002 0.571254i 0.180957 0.0203889i
\(786\) 0 0
\(787\) 5.81947 + 25.4968i 0.207442 + 0.908861i 0.966262 + 0.257561i \(0.0829189\pi\)
−0.758820 + 0.651300i \(0.774224\pi\)
\(788\) 0 0
\(789\) 13.1491 10.4860i 0.468120 0.373313i
\(790\) 0 0
\(791\) −1.44960 4.14272i −0.0515419 0.147298i
\(792\) 0 0
\(793\) −19.4053 12.1932i −0.689104 0.432993i
\(794\) 0 0
\(795\) 39.2087 + 39.2087i 1.39059 + 1.39059i
\(796\) 0 0
\(797\) −4.85465 + 43.0862i −0.171960 + 1.52619i 0.550533 + 0.834814i \(0.314425\pi\)
−0.722493 + 0.691378i \(0.757004\pi\)
\(798\) 0 0
\(799\) 11.5083 + 23.8971i 0.407133 + 0.845420i
\(800\) 0 0
\(801\) −0.580859 + 1.66000i −0.0205237 + 0.0586533i
\(802\) 0 0
\(803\) 12.3370 25.6180i 0.435362 0.904038i
\(804\) 0 0
\(805\) −3.81916 0.871698i −0.134608 0.0307233i
\(806\) 0 0
\(807\) −24.2551 19.3428i −0.853819 0.680898i
\(808\) 0 0
\(809\) −3.67496 5.84867i −0.129205 0.205628i 0.775856 0.630910i \(-0.217318\pi\)
−0.905061 + 0.425281i \(0.860175\pi\)
\(810\) 0 0
\(811\) −47.2942 −1.66072 −0.830362 0.557225i \(-0.811866\pi\)
−0.830362 + 0.557225i \(0.811866\pi\)
\(812\) 0 0
\(813\) 0.250855 0.00879788
\(814\) 0 0
\(815\) −31.7720 50.5648i −1.11292 1.77121i
\(816\) 0 0
\(817\) 8.36720 + 6.67262i 0.292731 + 0.233445i
\(818\) 0 0
\(819\) −2.33078 0.531986i −0.0814441 0.0185891i
\(820\) 0 0
\(821\) −1.53479 + 3.18703i −0.0535646 + 0.111228i −0.926033 0.377442i \(-0.876804\pi\)
0.872468 + 0.488670i \(0.162518\pi\)
\(822\) 0 0
\(823\) 2.19926 6.28513i 0.0766615 0.219086i −0.899174 0.437590i \(-0.855832\pi\)
0.975836 + 0.218504i \(0.0701178\pi\)
\(824\) 0 0
\(825\) 14.7943 + 30.7206i 0.515071 + 1.06956i
\(826\) 0 0
\(827\) 0.00607682 0.0539332i 0.000211312 0.00187544i −0.993606 0.112902i \(-0.963985\pi\)
0.993817 + 0.111027i \(0.0354139\pi\)
\(828\) 0 0
\(829\) −23.5838 23.5838i −0.819098 0.819098i 0.166879 0.985977i \(-0.446631\pi\)
−0.985977 + 0.166879i \(0.946631\pi\)
\(830\) 0 0
\(831\) 20.7447 + 13.0347i 0.719625 + 0.452170i
\(832\) 0 0
\(833\) −1.29313 3.69555i −0.0448042 0.128043i
\(834\) 0 0
\(835\) −20.5286 + 16.3710i −0.710422 + 0.566543i
\(836\) 0 0
\(837\) 2.30622 + 10.1042i 0.0797147 + 0.349253i
\(838\) 0 0
\(839\) −24.5036 + 2.76089i −0.845958 + 0.0953166i −0.524294 0.851537i \(-0.675671\pi\)
−0.321664 + 0.946854i \(0.604242\pi\)
\(840\) 0 0
\(841\) −8.67113 + 27.6733i −0.299005 + 0.954252i
\(842\) 0 0
\(843\) 2.39594 + 21.2645i 0.0825204 + 0.732389i
\(844\) 0 0
\(845\) −30.6653 + 6.99914i −1.05492 + 0.240778i
\(846\) 0 0
\(847\) 34.8119 + 43.6528i 1.19615 + 1.49993i
\(848\) 0 0
\(849\) −1.14793 + 0.401678i −0.0393968 + 0.0137855i
\(850\) 0 0
\(851\) 1.50291 2.39187i 0.0515192 0.0819924i
\(852\) 0 0
\(853\) 24.4332 24.4332i 0.836576 0.836576i −0.151830 0.988407i \(-0.548517\pi\)
0.988407 + 0.151830i \(0.0485167\pi\)
\(854\) 0 0
\(855\) 1.87083 + 0.210792i 0.0639809 + 0.00720892i
\(856\) 0 0
\(857\) 43.5668 20.9807i 1.48821 0.716686i 0.499473 0.866329i \(-0.333527\pi\)
0.988740 + 0.149644i \(0.0478127\pi\)
\(858\) 0 0
\(859\) 35.2264 + 12.3262i 1.20191 + 0.420566i 0.855641 0.517570i \(-0.173163\pi\)
0.346267 + 0.938136i \(0.387449\pi\)
\(860\) 0 0
\(861\) −25.8448 12.4462i −0.880789 0.424166i
\(862\) 0 0
\(863\) −5.67979 + 24.8848i −0.193342 + 0.847087i 0.781449 + 0.623969i \(0.214481\pi\)
−0.974791 + 0.223119i \(0.928376\pi\)
\(864\) 0 0
\(865\) 15.5439 19.4914i 0.528508 0.662728i
\(866\) 0 0
\(867\) 45.2688 28.4443i 1.53741 0.966019i
\(868\) 0 0
\(869\) 40.0284i 1.35787i
\(870\) 0 0
\(871\) 3.81835i 0.129380i
\(872\) 0 0
\(873\) −0.0116256 + 0.00730483i −0.000393466 + 0.000247231i
\(874\) 0 0
\(875\) 5.47741 6.86846i 0.185170 0.232196i
\(876\) 0 0
\(877\) −8.48578 + 37.1786i −0.286545 + 1.25543i 0.602688 + 0.797977i \(0.294097\pi\)
−0.889232 + 0.457456i \(0.848761\pi\)
\(878\) 0 0
\(879\) 0.582510 + 0.280522i 0.0196476 + 0.00946177i
\(880\) 0 0
\(881\) −15.0794 5.27650i −0.508037 0.177770i 0.0640754 0.997945i \(-0.479590\pi\)
−0.572112 + 0.820175i \(0.693876\pi\)
\(882\) 0 0
\(883\) 4.44862 2.14234i 0.149708 0.0720956i −0.357530 0.933902i \(-0.616381\pi\)
0.507238 + 0.861806i \(0.330667\pi\)
\(884\) 0 0
\(885\) −36.6611 4.13071i −1.23235 0.138852i
\(886\) 0 0
\(887\) 17.5805 17.5805i 0.590294 0.590294i −0.347417 0.937711i \(-0.612941\pi\)
0.937711 + 0.347417i \(0.112941\pi\)
\(888\) 0 0
\(889\) −25.1785 + 40.0713i −0.844459 + 1.34395i
\(890\) 0 0
\(891\) −36.9601 + 12.9329i −1.23821 + 0.433269i
\(892\) 0 0
\(893\) −2.41110 3.02343i −0.0806845 0.101175i
\(894\) 0 0
\(895\) 33.6921 7.69001i 1.12620 0.257049i
\(896\) 0 0
\(897\) 0.139784 + 1.24062i 0.00466726 + 0.0414231i
\(898\) 0 0
\(899\) −7.34852 + 6.78806i −0.245087 + 0.226395i
\(900\) 0 0
\(901\) 85.9927 9.68905i 2.86483 0.322789i
\(902\) 0 0
\(903\) −8.94487 39.1900i −0.297667 1.30416i
\(904\) 0 0
\(905\) 18.5514 14.7942i 0.616669 0.491777i
\(906\) 0 0
\(907\) 2.74154 + 7.83488i 0.0910315 + 0.260153i 0.980393 0.197051i \(-0.0631365\pi\)
−0.889362 + 0.457204i \(0.848851\pi\)
\(908\) 0 0
\(909\) 1.91473 + 1.20311i 0.0635077 + 0.0399045i
\(910\) 0 0
\(911\) −27.2620 27.2620i −0.903232 0.903232i 0.0924825 0.995714i \(-0.470520\pi\)
−0.995714 + 0.0924825i \(0.970520\pi\)
\(912\) 0 0
\(913\) −6.77954 + 60.1701i −0.224370 + 1.99134i
\(914\) 0 0
\(915\) −29.4126 61.0758i −0.972349 2.01910i
\(916\) 0 0
\(917\) 6.30467 18.0177i 0.208199 0.594997i
\(918\) 0 0
\(919\) 1.91567 3.97792i 0.0631920 0.131220i −0.866981 0.498342i \(-0.833943\pi\)
0.930173 + 0.367122i \(0.119657\pi\)
\(920\) 0 0
\(921\) 14.4732 + 3.30342i 0.476909 + 0.108851i
\(922\) 0 0
\(923\) −6.64216 5.29694i −0.218629 0.174351i
\(924\) 0 0
\(925\) −11.1171 17.6927i −0.365527 0.581733i
\(926\) 0 0
\(927\) −0.401115 −0.0131743
\(928\) 0 0
\(929\) −31.8119 −1.04372 −0.521858 0.853032i \(-0.674761\pi\)
−0.521858 + 0.853032i \(0.674761\pi\)
\(930\) 0 0
\(931\) 0.303703 + 0.483340i 0.00995346 + 0.0158408i
\(932\) 0 0
\(933\) 21.0428 + 16.7811i 0.688912 + 0.549389i
\(934\) 0 0
\(935\) 119.488 + 27.2723i 3.90767 + 0.891900i
\(936\) 0 0
\(937\) 3.77449 7.83780i 0.123307 0.256050i −0.830173 0.557506i \(-0.811758\pi\)
0.953480 + 0.301456i \(0.0974727\pi\)
\(938\) 0 0
\(939\) 10.5752 30.2221i 0.345108 0.986262i
\(940\) 0 0
\(941\) 0.0173255 + 0.0359768i 0.000564796 + 0.00117281i 0.901251 0.433297i \(-0.142650\pi\)
−0.900686 + 0.434470i \(0.856936\pi\)
\(942\) 0 0
\(943\) 0.423709 3.76052i 0.0137979 0.122459i
\(944\) 0 0
\(945\) −29.7939 29.7939i −0.969197 0.969197i
\(946\) 0 0
\(947\) −48.1894 30.2794i −1.56594 0.983948i −0.985505 0.169644i \(-0.945738\pi\)
−0.580439 0.814304i \(-0.697119\pi\)
\(948\) 0 0
\(949\) −2.54349 7.26887i −0.0825651 0.235957i
\(950\) 0 0
\(951\) 28.5969 22.8053i 0.927319 0.739512i
\(952\) 0 0
\(953\) −1.60808 7.04544i −0.0520907 0.228224i 0.942181 0.335104i \(-0.108771\pi\)
−0.994272 + 0.106879i \(0.965914\pi\)
\(954\) 0 0
\(955\) 46.2459 5.21067i 1.49648 0.168613i
\(956\) 0 0
\(957\) −36.2053 31.2977i −1.17035 1.01171i
\(958\) 0 0
\(959\) −4.41353 39.1712i −0.142520 1.26490i
\(960\) 0 0
\(961\) 26.8583 6.13023i 0.866397 0.197749i
\(962\) 0 0
\(963\) −7.05415 8.84563i −0.227317 0.285046i
\(964\) 0 0
\(965\) −26.3021 + 9.20350i −0.846694 + 0.296271i
\(966\) 0 0
\(967\) −2.18729 + 3.48105i −0.0703384 + 0.111943i −0.880041 0.474897i \(-0.842485\pi\)
0.809703 + 0.586840i \(0.199628\pi\)
\(968\) 0 0
\(969\) −8.22407 + 8.22407i −0.264195 + 0.264195i
\(970\) 0 0
\(971\) 27.6572 + 3.11622i 0.887562 + 0.100004i 0.543960 0.839111i \(-0.316924\pi\)
0.343602 + 0.939115i \(0.388353\pi\)
\(972\) 0 0
\(973\) −43.6226 + 21.0076i −1.39848 + 0.673471i
\(974\) 0 0
\(975\) 8.71671 + 3.05011i 0.279158 + 0.0976816i
\(976\) 0 0
\(977\) 8.69828 + 4.18887i 0.278283 + 0.134014i 0.567820 0.823153i \(-0.307787\pi\)
−0.289537 + 0.957167i \(0.593501\pi\)
\(978\) 0 0
\(979\) 3.71441 16.2739i 0.118713 0.520115i
\(980\) 0 0
\(981\) −0.0262730 + 0.0329453i −0.000838833 + 0.00105186i
\(982\) 0 0
\(983\) 26.9625 16.9417i 0.859972 0.540356i −0.0283393 0.999598i \(-0.509022\pi\)
0.888311 + 0.459242i \(0.151879\pi\)
\(984\) 0 0
\(985\) 20.5067i 0.653398i
\(986\) 0 0
\(987\) 14.5252i 0.462343i
\(988\) 0 0
\(989\) 4.49023 2.82140i 0.142781 0.0897153i
\(990\) 0 0
\(991\) 31.0578 38.9453i 0.986584 1.23714i 0.0151358 0.999885i \(-0.495182\pi\)
0.971448 0.237252i \(-0.0762466\pi\)
\(992\) 0 0
\(993\) −5.32843 + 23.3454i −0.169093 + 0.740843i
\(994\) 0 0
\(995\) 61.7616 + 29.7428i 1.95798 + 0.942911i
\(996\) 0 0
\(997\) −10.2181 3.57547i −0.323611 0.113236i 0.163585 0.986529i \(-0.447694\pi\)
−0.487195 + 0.873293i \(0.661980\pi\)
\(998\) 0 0
\(999\) 27.3750 13.1831i 0.866107 0.417095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.bl.c.15.3 120
4.3 odd 2 inner 464.2.bl.c.15.8 yes 120
29.2 odd 28 inner 464.2.bl.c.31.8 yes 120
116.31 even 28 inner 464.2.bl.c.31.3 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.2.bl.c.15.3 120 1.1 even 1 trivial
464.2.bl.c.15.8 yes 120 4.3 odd 2 inner
464.2.bl.c.31.3 yes 120 116.31 even 28 inner
464.2.bl.c.31.8 yes 120 29.2 odd 28 inner