Properties

Label 464.2.bl.c.15.10
Level $464$
Weight $2$
Character 464.15
Analytic conductor $3.705$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [464,2,Mod(15,464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("464.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(464, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 0, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.bl (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 15.10
Character \(\chi\) \(=\) 464.15
Dual form 464.2.bl.c.31.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36944 + 2.17945i) q^{3} +(1.55895 + 1.24322i) q^{5} +(-3.46859 - 0.791684i) q^{7} +(-1.57297 + 3.26632i) q^{9} +(0.640096 - 1.82929i) q^{11} +(2.94479 + 6.11492i) q^{13} +(-0.574651 + 5.10017i) q^{15} +(1.39955 + 1.39955i) q^{17} +(2.55350 + 1.60447i) q^{19} +(-3.02459 - 8.64377i) q^{21} +(-6.77410 + 5.40217i) q^{23} +(-0.227874 - 0.998382i) q^{25} +(-1.59948 + 0.180218i) q^{27} +(-2.07755 - 4.96828i) q^{29} +(-0.921536 - 8.17886i) q^{31} +(4.86341 - 1.11004i) q^{33} +(-4.42314 - 5.54644i) q^{35} +(-2.22728 + 0.779360i) q^{37} +(-9.29443 + 14.7920i) q^{39} +(6.38938 - 6.38938i) q^{41} +(3.40107 + 0.383208i) q^{43} +(-6.51296 + 3.13648i) q^{45} +(3.79439 + 1.32771i) q^{47} +(5.09760 + 2.45487i) q^{49} +(-1.13365 + 4.96683i) q^{51} +(0.859764 - 1.07811i) q^{53} +(3.27210 - 2.05599i) q^{55} +7.76242i q^{57} +1.49329i q^{59} +(7.30678 - 4.59116i) q^{61} +(8.04190 - 10.0842i) q^{63} +(-3.01142 + 13.1939i) q^{65} +(-0.261074 - 0.125727i) q^{67} +(-21.0504 - 7.36586i) q^{69} +(6.08147 - 2.92868i) q^{71} +(-4.67861 - 0.527152i) q^{73} +(1.86386 - 1.86386i) q^{75} +(-3.66845 + 5.83831i) q^{77} +(9.84233 - 3.44398i) q^{79} +(4.19792 + 5.26403i) q^{81} +(5.59550 - 1.27714i) q^{83} +(0.441879 + 3.92178i) q^{85} +(7.98301 - 11.3317i) q^{87} +(12.9234 - 1.45612i) q^{89} +(-5.37320 - 23.5415i) q^{91} +(16.5634 - 13.2089i) q^{93} +(1.98607 + 5.67586i) q^{95} +(-10.2431 - 6.43615i) q^{97} +(4.96818 + 4.96818i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 4 q^{17} - 40 q^{21} - 28 q^{25} - 52 q^{29} - 84 q^{33} - 8 q^{37} + 4 q^{41} + 40 q^{45} - 28 q^{49} - 48 q^{53} - 4 q^{61} - 40 q^{65} + 24 q^{69} + 76 q^{73} + 156 q^{77} + 116 q^{81} + 152 q^{85}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{27}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.36944 + 2.17945i 0.790644 + 1.25830i 0.961988 + 0.273092i \(0.0880463\pi\)
−0.171344 + 0.985211i \(0.554811\pi\)
\(4\) 0 0
\(5\) 1.55895 + 1.24322i 0.697185 + 0.555987i 0.906678 0.421824i \(-0.138610\pi\)
−0.209493 + 0.977810i \(0.567181\pi\)
\(6\) 0 0
\(7\) −3.46859 0.791684i −1.31101 0.299228i −0.490787 0.871279i \(-0.663291\pi\)
−0.820218 + 0.572051i \(0.806148\pi\)
\(8\) 0 0
\(9\) −1.57297 + 3.26632i −0.524325 + 1.08877i
\(10\) 0 0
\(11\) 0.640096 1.82929i 0.192996 0.551551i −0.806200 0.591643i \(-0.798479\pi\)
0.999196 + 0.0400920i \(0.0127651\pi\)
\(12\) 0 0
\(13\) 2.94479 + 6.11492i 0.816738 + 1.69597i 0.712776 + 0.701392i \(0.247438\pi\)
0.103962 + 0.994581i \(0.466848\pi\)
\(14\) 0 0
\(15\) −0.574651 + 5.10017i −0.148374 + 1.31686i
\(16\) 0 0
\(17\) 1.39955 + 1.39955i 0.339440 + 0.339440i 0.856157 0.516716i \(-0.172846\pi\)
−0.516716 + 0.856157i \(0.672846\pi\)
\(18\) 0 0
\(19\) 2.55350 + 1.60447i 0.585812 + 0.368090i 0.792091 0.610403i \(-0.208993\pi\)
−0.206279 + 0.978493i \(0.566135\pi\)
\(20\) 0 0
\(21\) −3.02459 8.64377i −0.660019 1.88623i
\(22\) 0 0
\(23\) −6.77410 + 5.40217i −1.41250 + 1.12643i −0.438800 + 0.898585i \(0.644597\pi\)
−0.973697 + 0.227845i \(0.926832\pi\)
\(24\) 0 0
\(25\) −0.227874 0.998382i −0.0455748 0.199676i
\(26\) 0 0
\(27\) −1.59948 + 0.180218i −0.307820 + 0.0346830i
\(28\) 0 0
\(29\) −2.07755 4.96828i −0.385792 0.922586i
\(30\) 0 0
\(31\) −0.921536 8.17886i −0.165513 1.46897i −0.752083 0.659068i \(-0.770951\pi\)
0.586571 0.809898i \(-0.300478\pi\)
\(32\) 0 0
\(33\) 4.86341 1.11004i 0.846610 0.193233i
\(34\) 0 0
\(35\) −4.42314 5.54644i −0.747647 0.937519i
\(36\) 0 0
\(37\) −2.22728 + 0.779360i −0.366163 + 0.128126i −0.507088 0.861894i \(-0.669278\pi\)
0.140925 + 0.990020i \(0.454992\pi\)
\(38\) 0 0
\(39\) −9.29443 + 14.7920i −1.48830 + 2.36862i
\(40\) 0 0
\(41\) 6.38938 6.38938i 0.997854 0.997854i −0.00214390 0.999998i \(-0.500682\pi\)
0.999998 + 0.00214390i \(0.000682425\pi\)
\(42\) 0 0
\(43\) 3.40107 + 0.383208i 0.518658 + 0.0584387i 0.367414 0.930058i \(-0.380243\pi\)
0.151244 + 0.988496i \(0.451672\pi\)
\(44\) 0 0
\(45\) −6.51296 + 3.13648i −0.970894 + 0.467558i
\(46\) 0 0
\(47\) 3.79439 + 1.32771i 0.553468 + 0.193667i 0.592499 0.805571i \(-0.298141\pi\)
−0.0390309 + 0.999238i \(0.512427\pi\)
\(48\) 0 0
\(49\) 5.09760 + 2.45487i 0.728229 + 0.350696i
\(50\) 0 0
\(51\) −1.13365 + 4.96683i −0.158742 + 0.695495i
\(52\) 0 0
\(53\) 0.859764 1.07811i 0.118098 0.148090i −0.719268 0.694732i \(-0.755523\pi\)
0.837366 + 0.546642i \(0.184094\pi\)
\(54\) 0 0
\(55\) 3.27210 2.05599i 0.441209 0.277230i
\(56\) 0 0
\(57\) 7.76242i 1.02816i
\(58\) 0 0
\(59\) 1.49329i 0.194410i 0.995264 + 0.0972050i \(0.0309902\pi\)
−0.995264 + 0.0972050i \(0.969010\pi\)
\(60\) 0 0
\(61\) 7.30678 4.59116i 0.935538 0.587837i 0.0242939 0.999705i \(-0.492266\pi\)
0.911244 + 0.411868i \(0.135123\pi\)
\(62\) 0 0
\(63\) 8.04190 10.0842i 1.01318 1.27049i
\(64\) 0 0
\(65\) −3.01142 + 13.1939i −0.373521 + 1.63650i
\(66\) 0 0
\(67\) −0.261074 0.125727i −0.0318953 0.0153600i 0.417868 0.908508i \(-0.362777\pi\)
−0.449763 + 0.893148i \(0.648492\pi\)
\(68\) 0 0
\(69\) −21.0504 7.36586i −2.53417 0.886746i
\(70\) 0 0
\(71\) 6.08147 2.92868i 0.721737 0.347570i −0.0366912 0.999327i \(-0.511682\pi\)
0.758428 + 0.651756i \(0.225967\pi\)
\(72\) 0 0
\(73\) −4.67861 0.527152i −0.547589 0.0616985i −0.166164 0.986098i \(-0.553138\pi\)
−0.381425 + 0.924400i \(0.624567\pi\)
\(74\) 0 0
\(75\) 1.86386 1.86386i 0.215220 0.215220i
\(76\) 0 0
\(77\) −3.66845 + 5.83831i −0.418059 + 0.665337i
\(78\) 0 0
\(79\) 9.84233 3.44398i 1.10735 0.387478i 0.286187 0.958174i \(-0.407612\pi\)
0.821162 + 0.570696i \(0.193326\pi\)
\(80\) 0 0
\(81\) 4.19792 + 5.26403i 0.466436 + 0.584892i
\(82\) 0 0
\(83\) 5.59550 1.27714i 0.614186 0.140184i 0.0958997 0.995391i \(-0.469427\pi\)
0.518287 + 0.855207i \(0.326570\pi\)
\(84\) 0 0
\(85\) 0.441879 + 3.92178i 0.0479285 + 0.425377i
\(86\) 0 0
\(87\) 7.98301 11.3317i 0.855868 1.21488i
\(88\) 0 0
\(89\) 12.9234 1.45612i 1.36988 0.154348i 0.603820 0.797121i \(-0.293644\pi\)
0.766057 + 0.642772i \(0.222216\pi\)
\(90\) 0 0
\(91\) −5.37320 23.5415i −0.563264 2.46782i
\(92\) 0 0
\(93\) 16.5634 13.2089i 1.71754 1.36969i
\(94\) 0 0
\(95\) 1.98607 + 5.67586i 0.203766 + 0.582331i
\(96\) 0 0
\(97\) −10.2431 6.43615i −1.04003 0.653492i −0.100138 0.994974i \(-0.531928\pi\)
−0.939888 + 0.341482i \(0.889071\pi\)
\(98\) 0 0
\(99\) 4.96818 + 4.96818i 0.499321 + 0.499321i
\(100\) 0 0
\(101\) −1.86097 + 16.5166i −0.185174 + 1.64346i 0.466181 + 0.884689i \(0.345629\pi\)
−0.651355 + 0.758773i \(0.725799\pi\)
\(102\) 0 0
\(103\) −1.16337 2.41576i −0.114630 0.238032i 0.835758 0.549097i \(-0.185028\pi\)
−0.950388 + 0.311066i \(0.899314\pi\)
\(104\) 0 0
\(105\) 6.03095 17.2355i 0.588561 1.68201i
\(106\) 0 0
\(107\) −0.457304 + 0.949602i −0.0442093 + 0.0918015i −0.921904 0.387420i \(-0.873366\pi\)
0.877694 + 0.479221i \(0.159081\pi\)
\(108\) 0 0
\(109\) −14.9248 3.40650i −1.42954 0.326283i −0.563441 0.826156i \(-0.690523\pi\)
−0.866099 + 0.499873i \(0.833380\pi\)
\(110\) 0 0
\(111\) −4.74869 3.78696i −0.450726 0.359442i
\(112\) 0 0
\(113\) 0.632855 + 1.00718i 0.0595340 + 0.0947478i 0.875165 0.483825i \(-0.160753\pi\)
−0.815631 + 0.578573i \(0.803610\pi\)
\(114\) 0 0
\(115\) −17.2766 −1.61105
\(116\) 0 0
\(117\) −24.6053 −2.27476
\(118\) 0 0
\(119\) −3.74646 5.96246i −0.343438 0.546578i
\(120\) 0 0
\(121\) 5.66357 + 4.51655i 0.514870 + 0.410595i
\(122\) 0 0
\(123\) 22.6752 + 5.17546i 2.04455 + 0.466655i
\(124\) 0 0
\(125\) 5.21174 10.8223i 0.466152 0.967975i
\(126\) 0 0
\(127\) −0.429269 + 1.22678i −0.0380914 + 0.108859i −0.961358 0.275300i \(-0.911223\pi\)
0.923267 + 0.384159i \(0.125509\pi\)
\(128\) 0 0
\(129\) 3.82236 + 7.93722i 0.336540 + 0.698833i
\(130\) 0 0
\(131\) −1.36028 + 12.0728i −0.118848 + 1.05481i 0.782781 + 0.622298i \(0.213801\pi\)
−0.901629 + 0.432510i \(0.857628\pi\)
\(132\) 0 0
\(133\) −7.58681 7.58681i −0.657860 0.657860i
\(134\) 0 0
\(135\) −2.71757 1.70756i −0.233891 0.146963i
\(136\) 0 0
\(137\) −5.82492 16.6467i −0.497656 1.42222i −0.869504 0.493926i \(-0.835561\pi\)
0.371847 0.928294i \(-0.378724\pi\)
\(138\) 0 0
\(139\) −8.73850 + 6.96872i −0.741190 + 0.591079i −0.919590 0.392879i \(-0.871479\pi\)
0.178400 + 0.983958i \(0.442908\pi\)
\(140\) 0 0
\(141\) 2.30249 + 10.0879i 0.193905 + 0.849552i
\(142\) 0 0
\(143\) 13.0709 1.47274i 1.09304 0.123156i
\(144\) 0 0
\(145\) 2.93787 10.3282i 0.243977 0.857709i
\(146\) 0 0
\(147\) 1.63057 + 14.4717i 0.134487 + 1.19361i
\(148\) 0 0
\(149\) −0.591395 + 0.134982i −0.0484490 + 0.0110582i −0.246677 0.969098i \(-0.579339\pi\)
0.198228 + 0.980156i \(0.436481\pi\)
\(150\) 0 0
\(151\) −8.47637 10.6290i −0.689797 0.864978i 0.306418 0.951897i \(-0.400869\pi\)
−0.996215 + 0.0869189i \(0.972298\pi\)
\(152\) 0 0
\(153\) −6.77282 + 2.36991i −0.547550 + 0.191596i
\(154\) 0 0
\(155\) 8.73152 13.8961i 0.701332 1.11616i
\(156\) 0 0
\(157\) −1.94679 + 1.94679i −0.155371 + 0.155371i −0.780512 0.625141i \(-0.785041\pi\)
0.625141 + 0.780512i \(0.285041\pi\)
\(158\) 0 0
\(159\) 3.52707 + 0.397406i 0.279715 + 0.0315163i
\(160\) 0 0
\(161\) 27.7734 13.3750i 2.18885 1.05410i
\(162\) 0 0
\(163\) −14.4879 5.06954i −1.13478 0.397077i −0.303445 0.952849i \(-0.598137\pi\)
−0.831335 + 0.555772i \(0.812423\pi\)
\(164\) 0 0
\(165\) 8.96185 + 4.31580i 0.697679 + 0.335985i
\(166\) 0 0
\(167\) −2.90516 + 12.7284i −0.224808 + 0.984949i 0.728995 + 0.684519i \(0.239988\pi\)
−0.953804 + 0.300431i \(0.902870\pi\)
\(168\) 0 0
\(169\) −20.6151 + 25.8505i −1.58578 + 1.98850i
\(170\) 0 0
\(171\) −9.25729 + 5.81674i −0.707922 + 0.444817i
\(172\) 0 0
\(173\) 15.8612i 1.20591i −0.797776 0.602953i \(-0.793991\pi\)
0.797776 0.602953i \(-0.206009\pi\)
\(174\) 0 0
\(175\) 3.64339i 0.275414i
\(176\) 0 0
\(177\) −3.25455 + 2.04497i −0.244627 + 0.153709i
\(178\) 0 0
\(179\) 9.96537 12.4962i 0.744847 0.934008i −0.254607 0.967044i \(-0.581946\pi\)
0.999454 + 0.0330363i \(0.0105177\pi\)
\(180\) 0 0
\(181\) 4.87120 21.3421i 0.362074 1.58635i −0.385849 0.922562i \(-0.626092\pi\)
0.747923 0.663786i \(-0.231051\pi\)
\(182\) 0 0
\(183\) 20.0123 + 9.63744i 1.47935 + 0.712420i
\(184\) 0 0
\(185\) −4.44115 1.55402i −0.326520 0.114254i
\(186\) 0 0
\(187\) 3.45602 1.66433i 0.252729 0.121708i
\(188\) 0 0
\(189\) 5.69063 + 0.641179i 0.413932 + 0.0466389i
\(190\) 0 0
\(191\) −16.7253 + 16.7253i −1.21020 + 1.21020i −0.239237 + 0.970961i \(0.576897\pi\)
−0.970961 + 0.239237i \(0.923103\pi\)
\(192\) 0 0
\(193\) −10.4411 + 16.6170i −0.751569 + 1.19612i 0.223606 + 0.974680i \(0.428217\pi\)
−0.975175 + 0.221436i \(0.928926\pi\)
\(194\) 0 0
\(195\) −32.8794 + 11.5050i −2.35454 + 0.823889i
\(196\) 0 0
\(197\) 3.96532 + 4.97235i 0.282517 + 0.354265i 0.902760 0.430145i \(-0.141537\pi\)
−0.620243 + 0.784410i \(0.712966\pi\)
\(198\) 0 0
\(199\) −7.97710 + 1.82072i −0.565482 + 0.129068i −0.495699 0.868495i \(-0.665088\pi\)
−0.0697833 + 0.997562i \(0.522231\pi\)
\(200\) 0 0
\(201\) −0.0835100 0.741172i −0.00589034 0.0522782i
\(202\) 0 0
\(203\) 3.27289 + 18.8777i 0.229712 + 1.32495i
\(204\) 0 0
\(205\) 17.9042 2.01732i 1.25048 0.140896i
\(206\) 0 0
\(207\) −6.98969 30.6238i −0.485817 2.12850i
\(208\) 0 0
\(209\) 4.56952 3.64407i 0.316080 0.252066i
\(210\) 0 0
\(211\) −7.64295 21.8423i −0.526162 1.50368i −0.833737 0.552161i \(-0.813803\pi\)
0.307575 0.951524i \(-0.400482\pi\)
\(212\) 0 0
\(213\) 14.7111 + 9.24358i 1.00799 + 0.633360i
\(214\) 0 0
\(215\) 4.82569 + 4.82569i 0.329110 + 0.329110i
\(216\) 0 0
\(217\) −3.27864 + 29.0987i −0.222568 + 1.97535i
\(218\) 0 0
\(219\) −5.25815 10.9187i −0.355313 0.737815i
\(220\) 0 0
\(221\) −4.43675 + 12.6795i −0.298448 + 0.852915i
\(222\) 0 0
\(223\) 11.3190 23.5042i 0.757979 1.57396i −0.0596545 0.998219i \(-0.519000\pi\)
0.817633 0.575740i \(-0.195286\pi\)
\(224\) 0 0
\(225\) 3.61947 + 0.826121i 0.241298 + 0.0550747i
\(226\) 0 0
\(227\) 11.6554 + 9.29487i 0.773596 + 0.616922i 0.928639 0.370986i \(-0.120980\pi\)
−0.155043 + 0.987908i \(0.549551\pi\)
\(228\) 0 0
\(229\) −8.48169 13.4985i −0.560486 0.892008i 0.439495 0.898245i \(-0.355158\pi\)
−0.999981 + 0.00623691i \(0.998015\pi\)
\(230\) 0 0
\(231\) −17.7480 −1.16773
\(232\) 0 0
\(233\) −22.3647 −1.46516 −0.732579 0.680682i \(-0.761684\pi\)
−0.732579 + 0.680682i \(0.761684\pi\)
\(234\) 0 0
\(235\) 4.26463 + 6.78712i 0.278194 + 0.442743i
\(236\) 0 0
\(237\) 20.9844 + 16.7345i 1.36308 + 1.08702i
\(238\) 0 0
\(239\) 25.0994 + 5.72878i 1.62355 + 0.370564i 0.935006 0.354632i \(-0.115394\pi\)
0.688542 + 0.725197i \(0.258251\pi\)
\(240\) 0 0
\(241\) −6.42874 + 13.3494i −0.414112 + 0.859912i 0.584704 + 0.811247i \(0.301211\pi\)
−0.998815 + 0.0486646i \(0.984503\pi\)
\(242\) 0 0
\(243\) −7.31872 + 20.9157i −0.469496 + 1.34174i
\(244\) 0 0
\(245\) 4.89496 + 10.1645i 0.312728 + 0.649386i
\(246\) 0 0
\(247\) −2.29168 + 20.3392i −0.145816 + 1.29416i
\(248\) 0 0
\(249\) 10.4461 + 10.4461i 0.661997 + 0.661997i
\(250\) 0 0
\(251\) 4.88700 + 3.07071i 0.308465 + 0.193821i 0.677364 0.735648i \(-0.263122\pi\)
−0.368899 + 0.929469i \(0.620265\pi\)
\(252\) 0 0
\(253\) 5.54605 + 15.8497i 0.348677 + 0.996462i
\(254\) 0 0
\(255\) −7.94218 + 6.33368i −0.497359 + 0.396630i
\(256\) 0 0
\(257\) 0.833135 + 3.65020i 0.0519696 + 0.227693i 0.994243 0.107152i \(-0.0341731\pi\)
−0.942273 + 0.334845i \(0.891316\pi\)
\(258\) 0 0
\(259\) 8.34254 0.939979i 0.518380 0.0584075i
\(260\) 0 0
\(261\) 19.4959 + 1.02902i 1.20677 + 0.0636950i
\(262\) 0 0
\(263\) 1.70747 + 15.1542i 0.105287 + 0.934449i 0.929664 + 0.368408i \(0.120097\pi\)
−0.824377 + 0.566041i \(0.808474\pi\)
\(264\) 0 0
\(265\) 2.68066 0.611844i 0.164672 0.0375853i
\(266\) 0 0
\(267\) 20.8713 + 26.1718i 1.27730 + 1.60169i
\(268\) 0 0
\(269\) −3.56649 + 1.24797i −0.217453 + 0.0760900i −0.436807 0.899555i \(-0.643891\pi\)
0.219354 + 0.975645i \(0.429605\pi\)
\(270\) 0 0
\(271\) −7.42925 + 11.8236i −0.451295 + 0.718231i −0.992444 0.122695i \(-0.960846\pi\)
0.541150 + 0.840926i \(0.317989\pi\)
\(272\) 0 0
\(273\) 43.9492 43.9492i 2.65993 2.65993i
\(274\) 0 0
\(275\) −1.97219 0.222212i −0.118928 0.0133999i
\(276\) 0 0
\(277\) −15.8898 + 7.65213i −0.954727 + 0.459772i −0.845341 0.534227i \(-0.820603\pi\)
−0.109386 + 0.993999i \(0.534888\pi\)
\(278\) 0 0
\(279\) 28.1643 + 9.85511i 1.68615 + 0.590010i
\(280\) 0 0
\(281\) −14.5745 7.01872i −0.869443 0.418702i −0.0546857 0.998504i \(-0.517416\pi\)
−0.814758 + 0.579802i \(0.803130\pi\)
\(282\) 0 0
\(283\) 0.889996 3.89933i 0.0529048 0.231791i −0.941562 0.336839i \(-0.890642\pi\)
0.994467 + 0.105048i \(0.0334995\pi\)
\(284\) 0 0
\(285\) −9.65043 + 12.1013i −0.571642 + 0.716817i
\(286\) 0 0
\(287\) −27.2205 + 17.1038i −1.60678 + 1.00961i
\(288\) 0 0
\(289\) 13.0825i 0.769561i
\(290\) 0 0
\(291\) 31.1381i 1.82535i
\(292\) 0 0
\(293\) −9.57646 + 6.01729i −0.559463 + 0.351534i −0.781891 0.623415i \(-0.785745\pi\)
0.222428 + 0.974949i \(0.428602\pi\)
\(294\) 0 0
\(295\) −1.85650 + 2.32797i −0.108089 + 0.135540i
\(296\) 0 0
\(297\) −0.694150 + 3.04127i −0.0402787 + 0.176472i
\(298\) 0 0
\(299\) −52.9821 25.5148i −3.06403 1.47556i
\(300\) 0 0
\(301\) −11.4935 4.02177i −0.662477 0.231811i
\(302\) 0 0
\(303\) −38.5455 + 18.5625i −2.21438 + 1.06639i
\(304\) 0 0
\(305\) 17.0988 + 1.92657i 0.979073 + 0.110315i
\(306\) 0 0
\(307\) 13.7560 13.7560i 0.785096 0.785096i −0.195590 0.980686i \(-0.562662\pi\)
0.980686 + 0.195590i \(0.0626620\pi\)
\(308\) 0 0
\(309\) 3.67186 5.84373i 0.208885 0.332438i
\(310\) 0 0
\(311\) −11.4157 + 3.99454i −0.647327 + 0.226510i −0.633918 0.773400i \(-0.718554\pi\)
−0.0134095 + 0.999910i \(0.504269\pi\)
\(312\) 0 0
\(313\) −16.8081 21.0766i −0.950047 1.19132i −0.981431 0.191814i \(-0.938563\pi\)
0.0313841 0.999507i \(-0.490009\pi\)
\(314\) 0 0
\(315\) 25.0739 5.72296i 1.41275 0.322452i
\(316\) 0 0
\(317\) 1.32619 + 11.7703i 0.0744863 + 0.661084i 0.974370 + 0.224953i \(0.0722229\pi\)
−0.899883 + 0.436131i \(0.856349\pi\)
\(318\) 0 0
\(319\) −10.4182 + 0.620274i −0.583310 + 0.0347287i
\(320\) 0 0
\(321\) −2.69585 + 0.303750i −0.150468 + 0.0169537i
\(322\) 0 0
\(323\) 1.32821 + 5.81927i 0.0739036 + 0.323793i
\(324\) 0 0
\(325\) 5.43398 4.33346i 0.301423 0.240377i
\(326\) 0 0
\(327\) −13.0143 37.1928i −0.719695 2.05677i
\(328\) 0 0
\(329\) −12.1101 7.60925i −0.667649 0.419512i
\(330\) 0 0
\(331\) −1.89043 1.89043i −0.103907 0.103907i 0.653242 0.757149i \(-0.273408\pi\)
−0.757149 + 0.653242i \(0.773408\pi\)
\(332\) 0 0
\(333\) 0.957824 8.50092i 0.0524884 0.465848i
\(334\) 0 0
\(335\) −0.250696 0.520576i −0.0136970 0.0284421i
\(336\) 0 0
\(337\) 0.0622566 0.177919i 0.00339133 0.00969187i −0.942175 0.335121i \(-0.891223\pi\)
0.945567 + 0.325429i \(0.105509\pi\)
\(338\) 0 0
\(339\) −1.32845 + 2.75855i −0.0721512 + 0.149824i
\(340\) 0 0
\(341\) −15.5514 3.54950i −0.842153 0.192216i
\(342\) 0 0
\(343\) 3.73316 + 2.97709i 0.201571 + 0.160748i
\(344\) 0 0
\(345\) −23.6592 37.6534i −1.27377 2.02719i
\(346\) 0 0
\(347\) 10.7333 0.576194 0.288097 0.957601i \(-0.406978\pi\)
0.288097 + 0.957601i \(0.406978\pi\)
\(348\) 0 0
\(349\) 28.9983 1.55225 0.776123 0.630582i \(-0.217184\pi\)
0.776123 + 0.630582i \(0.217184\pi\)
\(350\) 0 0
\(351\) −5.81215 9.24999i −0.310230 0.493728i
\(352\) 0 0
\(353\) −6.21349 4.95509i −0.330711 0.263733i 0.444030 0.896012i \(-0.353548\pi\)
−0.774741 + 0.632279i \(0.782120\pi\)
\(354\) 0 0
\(355\) 13.1217 + 2.99495i 0.696429 + 0.158955i
\(356\) 0 0
\(357\) 7.86432 16.3304i 0.416224 0.864298i
\(358\) 0 0
\(359\) 5.82727 16.6534i 0.307551 0.878931i −0.681560 0.731762i \(-0.738698\pi\)
0.989111 0.147169i \(-0.0470161\pi\)
\(360\) 0 0
\(361\) −4.29777 8.92440i −0.226198 0.469705i
\(362\) 0 0
\(363\) −2.08767 + 18.5286i −0.109574 + 0.972498i
\(364\) 0 0
\(365\) −6.63836 6.63836i −0.347468 0.347468i
\(366\) 0 0
\(367\) 6.11542 + 3.84257i 0.319222 + 0.200581i 0.682105 0.731254i \(-0.261065\pi\)
−0.362883 + 0.931835i \(0.618208\pi\)
\(368\) 0 0
\(369\) 10.8194 + 30.9201i 0.563236 + 1.60963i
\(370\) 0 0
\(371\) −3.83569 + 3.05886i −0.199139 + 0.158808i
\(372\) 0 0
\(373\) −1.80076 7.88966i −0.0932399 0.408511i 0.906671 0.421838i \(-0.138615\pi\)
−0.999911 + 0.0133271i \(0.995758\pi\)
\(374\) 0 0
\(375\) 30.7237 3.46173i 1.58657 0.178763i
\(376\) 0 0
\(377\) 24.2626 27.3346i 1.24959 1.40780i
\(378\) 0 0
\(379\) −0.0234273 0.207923i −0.00120338 0.0106803i 0.993096 0.117303i \(-0.0374249\pi\)
−0.994300 + 0.106623i \(0.965996\pi\)
\(380\) 0 0
\(381\) −3.26155 + 0.744428i −0.167094 + 0.0381382i
\(382\) 0 0
\(383\) −2.48043 3.11037i −0.126744 0.158932i 0.714410 0.699727i \(-0.246695\pi\)
−0.841155 + 0.540795i \(0.818124\pi\)
\(384\) 0 0
\(385\) −12.9773 + 4.54094i −0.661383 + 0.231428i
\(386\) 0 0
\(387\) −6.60147 + 10.5062i −0.335572 + 0.534059i
\(388\) 0 0
\(389\) −2.40354 + 2.40354i −0.121864 + 0.121864i −0.765409 0.643544i \(-0.777463\pi\)
0.643544 + 0.765409i \(0.277463\pi\)
\(390\) 0 0
\(391\) −17.0413 1.92009i −0.861814 0.0971031i
\(392\) 0 0
\(393\) −28.1749 + 13.5683i −1.42124 + 0.684431i
\(394\) 0 0
\(395\) 19.6254 + 6.86722i 0.987460 + 0.345527i
\(396\) 0 0
\(397\) −3.31818 1.59795i −0.166535 0.0801990i 0.348759 0.937212i \(-0.386603\pi\)
−0.515294 + 0.857013i \(0.672317\pi\)
\(398\) 0 0
\(399\) 6.14539 26.9247i 0.307654 1.34792i
\(400\) 0 0
\(401\) −8.10246 + 10.1602i −0.404617 + 0.507374i −0.941838 0.336068i \(-0.890903\pi\)
0.537220 + 0.843442i \(0.319474\pi\)
\(402\) 0 0
\(403\) 47.2993 29.7201i 2.35615 1.48046i
\(404\) 0 0
\(405\) 13.4253i 0.667110i
\(406\) 0 0
\(407\) 4.57321i 0.226685i
\(408\) 0 0
\(409\) −15.9048 + 9.99364i −0.786441 + 0.494154i −0.864401 0.502803i \(-0.832302\pi\)
0.0779601 + 0.996956i \(0.475159\pi\)
\(410\) 0 0
\(411\) 28.3036 35.4916i 1.39612 1.75067i
\(412\) 0 0
\(413\) 1.18221 5.17962i 0.0581730 0.254873i
\(414\) 0 0
\(415\) 10.3109 + 4.96547i 0.506142 + 0.243745i
\(416\) 0 0
\(417\) −27.1548 9.50187i −1.32978 0.465308i
\(418\) 0 0
\(419\) −9.61354 + 4.62964i −0.469652 + 0.226173i −0.653713 0.756742i \(-0.726790\pi\)
0.184061 + 0.982915i \(0.441076\pi\)
\(420\) 0 0
\(421\) 10.7804 + 1.21466i 0.525405 + 0.0591990i 0.370684 0.928759i \(-0.379123\pi\)
0.154722 + 0.987958i \(0.450552\pi\)
\(422\) 0 0
\(423\) −10.3052 + 10.3052i −0.501056 + 0.501056i
\(424\) 0 0
\(425\) 1.07836 1.71620i 0.0523083 0.0832481i
\(426\) 0 0
\(427\) −28.9790 + 10.1402i −1.40239 + 0.490718i
\(428\) 0 0
\(429\) 21.1095 + 26.4705i 1.01918 + 1.27801i
\(430\) 0 0
\(431\) 8.70553 1.98698i 0.419331 0.0957095i −0.00764900 0.999971i \(-0.502435\pi\)
0.426980 + 0.904261i \(0.359578\pi\)
\(432\) 0 0
\(433\) 2.15772 + 19.1503i 0.103694 + 0.920306i 0.932598 + 0.360916i \(0.117536\pi\)
−0.828905 + 0.559390i \(0.811035\pi\)
\(434\) 0 0
\(435\) 26.5329 7.74086i 1.27216 0.371146i
\(436\) 0 0
\(437\) −25.9652 + 2.92558i −1.24209 + 0.139949i
\(438\) 0 0
\(439\) 0.739971 + 3.24202i 0.0353169 + 0.154733i 0.989512 0.144452i \(-0.0461421\pi\)
−0.954195 + 0.299186i \(0.903285\pi\)
\(440\) 0 0
\(441\) −16.0368 + 12.7889i −0.763657 + 0.608996i
\(442\) 0 0
\(443\) 0.844672 + 2.41393i 0.0401316 + 0.114689i 0.962206 0.272324i \(-0.0877923\pi\)
−0.922074 + 0.387014i \(0.873507\pi\)
\(444\) 0 0
\(445\) 21.9573 + 13.7967i 1.04087 + 0.654024i
\(446\) 0 0
\(447\) −1.10406 1.10406i −0.0522204 0.0522204i
\(448\) 0 0
\(449\) −1.77657 + 15.7675i −0.0838416 + 0.744115i 0.879511 + 0.475878i \(0.157870\pi\)
−0.963353 + 0.268237i \(0.913559\pi\)
\(450\) 0 0
\(451\) −7.59821 15.7778i −0.357786 0.742950i
\(452\) 0 0
\(453\) 11.5575 33.0296i 0.543021 1.55186i
\(454\) 0 0
\(455\) 20.8908 43.3802i 0.979376 2.03370i
\(456\) 0 0
\(457\) 14.3026 + 3.26447i 0.669047 + 0.152706i 0.543535 0.839386i \(-0.317085\pi\)
0.125512 + 0.992092i \(0.459943\pi\)
\(458\) 0 0
\(459\) −2.49077 1.98633i −0.116259 0.0927138i
\(460\) 0 0
\(461\) 13.4443 + 21.3966i 0.626166 + 0.996537i 0.997678 + 0.0681088i \(0.0216965\pi\)
−0.371512 + 0.928428i \(0.621161\pi\)
\(462\) 0 0
\(463\) −1.15030 −0.0534589 −0.0267294 0.999643i \(-0.508509\pi\)
−0.0267294 + 0.999643i \(0.508509\pi\)
\(464\) 0 0
\(465\) 42.2431 1.95898
\(466\) 0 0
\(467\) −10.0605 16.0112i −0.465544 0.740908i 0.528612 0.848863i \(-0.322713\pi\)
−0.994156 + 0.107955i \(0.965570\pi\)
\(468\) 0 0
\(469\) 0.806025 + 0.642783i 0.0372188 + 0.0296810i
\(470\) 0 0
\(471\) −6.90893 1.57692i −0.318347 0.0726605i
\(472\) 0 0
\(473\) 2.87801 5.97625i 0.132331 0.274788i
\(474\) 0 0
\(475\) 1.02000 2.91498i 0.0468006 0.133749i
\(476\) 0 0
\(477\) 2.16906 + 4.50410i 0.0993144 + 0.206229i
\(478\) 0 0
\(479\) −3.94121 + 34.9792i −0.180079 + 1.59824i 0.500613 + 0.865671i \(0.333108\pi\)
−0.680691 + 0.732570i \(0.738321\pi\)
\(480\) 0 0
\(481\) −11.3246 11.3246i −0.516357 0.516357i
\(482\) 0 0
\(483\) 67.1839 + 42.2145i 3.05698 + 1.92083i
\(484\) 0 0
\(485\) −7.96690 22.7681i −0.361758 1.03385i
\(486\) 0 0
\(487\) −12.6321 + 10.0738i −0.572416 + 0.456486i −0.866419 0.499318i \(-0.833584\pi\)
0.294003 + 0.955805i \(0.405012\pi\)
\(488\) 0 0
\(489\) −8.79148 38.5180i −0.397565 1.74184i
\(490\) 0 0
\(491\) −2.78508 + 0.313803i −0.125689 + 0.0141617i −0.174585 0.984642i \(-0.555858\pi\)
0.0488959 + 0.998804i \(0.484430\pi\)
\(492\) 0 0
\(493\) 4.04570 9.86098i 0.182209 0.444116i
\(494\) 0 0
\(495\) 1.56860 + 13.9217i 0.0705034 + 0.625735i
\(496\) 0 0
\(497\) −23.4127 + 5.34380i −1.05020 + 0.239702i
\(498\) 0 0
\(499\) −5.13016 6.43301i −0.229657 0.287981i 0.653629 0.756815i \(-0.273246\pi\)
−0.883286 + 0.468834i \(0.844674\pi\)
\(500\) 0 0
\(501\) −31.7192 + 11.0990i −1.41711 + 0.495868i
\(502\) 0 0
\(503\) 12.5782 20.0181i 0.560835 0.892563i −0.439148 0.898415i \(-0.644720\pi\)
0.999983 + 0.00585127i \(0.00186253\pi\)
\(504\) 0 0
\(505\) −23.4350 + 23.4350i −1.04284 + 1.04284i
\(506\) 0 0
\(507\) −84.5708 9.52884i −3.75592 0.423191i
\(508\) 0 0
\(509\) 24.4093 11.7549i 1.08192 0.521027i 0.193992 0.981003i \(-0.437856\pi\)
0.887931 + 0.459976i \(0.152142\pi\)
\(510\) 0 0
\(511\) 15.8108 + 5.53246i 0.699431 + 0.244741i
\(512\) 0 0
\(513\) −4.37342 2.10613i −0.193091 0.0929879i
\(514\) 0 0
\(515\) 1.18969 5.21239i 0.0524241 0.229685i
\(516\) 0 0
\(517\) 4.85754 6.09116i 0.213634 0.267889i
\(518\) 0 0
\(519\) 34.5687 21.7209i 1.51740 0.953443i
\(520\) 0 0
\(521\) 24.0335i 1.05293i 0.850197 + 0.526464i \(0.176483\pi\)
−0.850197 + 0.526464i \(0.823517\pi\)
\(522\) 0 0
\(523\) 10.4664i 0.457662i 0.973466 + 0.228831i \(0.0734903\pi\)
−0.973466 + 0.228831i \(0.926510\pi\)
\(524\) 0 0
\(525\) −7.94056 + 4.98939i −0.346554 + 0.217755i
\(526\) 0 0
\(527\) 10.1570 12.7364i 0.442444 0.554808i
\(528\) 0 0
\(529\) 11.5871 50.7663i 0.503786 2.20723i
\(530\) 0 0
\(531\) −4.87756 2.34891i −0.211668 0.101934i
\(532\) 0 0
\(533\) 57.8859 + 20.2552i 2.50732 + 0.877349i
\(534\) 0 0
\(535\) −1.89348 + 0.911854i −0.0818625 + 0.0394229i
\(536\) 0 0
\(537\) 40.8817 + 4.60626i 1.76417 + 0.198775i
\(538\) 0 0
\(539\) 7.75363 7.75363i 0.333972 0.333972i
\(540\) 0 0
\(541\) 9.11443 14.5055i 0.391860 0.623642i −0.591286 0.806462i \(-0.701380\pi\)
0.983146 + 0.182820i \(0.0585226\pi\)
\(542\) 0 0
\(543\) 53.1848 18.6102i 2.28238 0.798639i
\(544\) 0 0
\(545\) −19.0321 23.8655i −0.815245 1.02229i
\(546\) 0 0
\(547\) −15.8083 + 3.60815i −0.675915 + 0.154273i −0.546681 0.837341i \(-0.684109\pi\)
−0.129234 + 0.991614i \(0.541252\pi\)
\(548\) 0 0
\(549\) 3.50278 + 31.0880i 0.149495 + 1.32680i
\(550\) 0 0
\(551\) 2.66641 16.0198i 0.113593 0.682468i
\(552\) 0 0
\(553\) −36.8656 + 4.15375i −1.56768 + 0.176636i
\(554\) 0 0
\(555\) −2.69496 11.8074i −0.114395 0.501195i
\(556\) 0 0
\(557\) −4.10992 + 3.27755i −0.174143 + 0.138874i −0.706683 0.707531i \(-0.749809\pi\)
0.532540 + 0.846405i \(0.321238\pi\)
\(558\) 0 0
\(559\) 7.67214 + 21.9257i 0.324497 + 0.927359i
\(560\) 0 0
\(561\) 8.36012 + 5.25301i 0.352965 + 0.221782i
\(562\) 0 0
\(563\) 6.76498 + 6.76498i 0.285110 + 0.285110i 0.835143 0.550033i \(-0.185385\pi\)
−0.550033 + 0.835143i \(0.685385\pi\)
\(564\) 0 0
\(565\) −0.265562 + 2.35693i −0.0111723 + 0.0991569i
\(566\) 0 0
\(567\) −10.3934 21.5822i −0.436483 0.906367i
\(568\) 0 0
\(569\) −2.33417 + 6.67067i −0.0978535 + 0.279649i −0.982396 0.186810i \(-0.940185\pi\)
0.884543 + 0.466460i \(0.154471\pi\)
\(570\) 0 0
\(571\) −19.8226 + 41.1621i −0.829550 + 1.72258i −0.150340 + 0.988634i \(0.548037\pi\)
−0.679210 + 0.733944i \(0.737677\pi\)
\(572\) 0 0
\(573\) −59.3560 13.5476i −2.47963 0.565960i
\(574\) 0 0
\(575\) 6.93707 + 5.53213i 0.289296 + 0.230706i
\(576\) 0 0
\(577\) 0.557629 + 0.887462i 0.0232144 + 0.0369455i 0.858130 0.513433i \(-0.171626\pi\)
−0.834915 + 0.550378i \(0.814484\pi\)
\(578\) 0 0
\(579\) −50.5142 −2.09930
\(580\) 0 0
\(581\) −20.4196 −0.847149
\(582\) 0 0
\(583\) −1.42184 2.26285i −0.0588867 0.0937176i
\(584\) 0 0
\(585\) −38.3586 30.5899i −1.58593 1.26474i
\(586\) 0 0
\(587\) −28.1947 6.43525i −1.16372 0.265611i −0.403314 0.915061i \(-0.632142\pi\)
−0.760404 + 0.649450i \(0.774999\pi\)
\(588\) 0 0
\(589\) 10.7696 22.3633i 0.443753 0.921462i
\(590\) 0 0
\(591\) −5.40671 + 15.4515i −0.222403 + 0.635590i
\(592\) 0 0
\(593\) 15.4485 + 32.0791i 0.634393 + 1.31733i 0.931936 + 0.362622i \(0.118118\pi\)
−0.297544 + 0.954708i \(0.596167\pi\)
\(594\) 0 0
\(595\) 1.57211 13.9529i 0.0644504 0.572013i
\(596\) 0 0
\(597\) −14.8923 14.8923i −0.609501 0.609501i
\(598\) 0 0
\(599\) −35.4111 22.2503i −1.44686 0.909122i −0.999894 0.0145706i \(-0.995362\pi\)
−0.446965 0.894551i \(-0.647495\pi\)
\(600\) 0 0
\(601\) −5.13240 14.6676i −0.209355 0.598302i 0.790546 0.612403i \(-0.209797\pi\)
−0.999901 + 0.0141010i \(0.995511\pi\)
\(602\) 0 0
\(603\) 0.821326 0.654986i 0.0334470 0.0266731i
\(604\) 0 0
\(605\) 3.21416 + 14.0822i 0.130674 + 0.572522i
\(606\) 0 0
\(607\) −10.5002 + 1.18308i −0.426189 + 0.0480199i −0.322454 0.946585i \(-0.604508\pi\)
−0.103735 + 0.994605i \(0.533079\pi\)
\(608\) 0 0
\(609\) −36.6609 + 32.9849i −1.48557 + 1.33662i
\(610\) 0 0
\(611\) 3.05481 + 27.1122i 0.123584 + 1.09684i
\(612\) 0 0
\(613\) −6.52626 + 1.48958i −0.263593 + 0.0601634i −0.352275 0.935897i \(-0.614592\pi\)
0.0886816 + 0.996060i \(0.471735\pi\)
\(614\) 0 0
\(615\) 28.9153 + 36.2586i 1.16598 + 1.46209i
\(616\) 0 0
\(617\) 26.1172 9.13881i 1.05144 0.367915i 0.251413 0.967880i \(-0.419105\pi\)
0.800026 + 0.599965i \(0.204819\pi\)
\(618\) 0 0
\(619\) −18.6559 + 29.6906i −0.749843 + 1.19337i 0.225837 + 0.974165i \(0.427488\pi\)
−0.975679 + 0.219203i \(0.929654\pi\)
\(620\) 0 0
\(621\) 9.86148 9.86148i 0.395727 0.395727i
\(622\) 0 0
\(623\) −45.9788 5.18057i −1.84210 0.207555i
\(624\) 0 0
\(625\) 16.9662 8.17047i 0.678647 0.326819i
\(626\) 0 0
\(627\) 14.1997 + 4.96869i 0.567082 + 0.198431i
\(628\) 0 0
\(629\) −4.20794 2.02644i −0.167782 0.0807993i
\(630\) 0 0
\(631\) 5.74363 25.1645i 0.228650 1.00178i −0.722091 0.691798i \(-0.756819\pi\)
0.950742 0.309985i \(-0.100324\pi\)
\(632\) 0 0
\(633\) 37.1375 46.5690i 1.47608 1.85095i
\(634\) 0 0
\(635\) −2.19437 + 1.37881i −0.0870810 + 0.0547166i
\(636\) 0 0
\(637\) 38.4005i 1.52148i
\(638\) 0 0
\(639\) 24.4707i 0.968047i
\(640\) 0 0
\(641\) 2.42283 1.52236i 0.0956959 0.0601297i −0.483334 0.875436i \(-0.660574\pi\)
0.579030 + 0.815306i \(0.303431\pi\)
\(642\) 0 0
\(643\) 10.3425 12.9691i 0.407869 0.511451i −0.534892 0.844920i \(-0.679648\pi\)
0.942761 + 0.333469i \(0.108219\pi\)
\(644\) 0 0
\(645\) −3.90886 + 17.1258i −0.153911 + 0.674328i
\(646\) 0 0
\(647\) 38.6773 + 18.6260i 1.52056 + 0.732264i 0.993095 0.117313i \(-0.0374280\pi\)
0.527466 + 0.849576i \(0.323142\pi\)
\(648\) 0 0
\(649\) 2.73166 + 0.955850i 0.107227 + 0.0375204i
\(650\) 0 0
\(651\) −67.9089 + 32.7032i −2.66156 + 1.28174i
\(652\) 0 0
\(653\) 10.5116 + 1.18437i 0.411350 + 0.0463480i 0.315215 0.949020i \(-0.397923\pi\)
0.0961352 + 0.995368i \(0.469352\pi\)
\(654\) 0 0
\(655\) −17.1299 + 17.1299i −0.669319 + 0.669319i
\(656\) 0 0
\(657\) 9.08118 14.4526i 0.354290 0.563850i
\(658\) 0 0
\(659\) −22.3892 + 7.83432i −0.872160 + 0.305182i −0.728997 0.684517i \(-0.760013\pi\)
−0.143163 + 0.989699i \(0.545727\pi\)
\(660\) 0 0
\(661\) 26.4825 + 33.2080i 1.03005 + 1.29164i 0.955679 + 0.294410i \(0.0951230\pi\)
0.0743694 + 0.997231i \(0.476306\pi\)
\(662\) 0 0
\(663\) −33.7101 + 7.69411i −1.30919 + 0.298815i
\(664\) 0 0
\(665\) −2.39538 21.2596i −0.0928889 0.824412i
\(666\) 0 0
\(667\) 40.9130 + 22.4323i 1.58416 + 0.868583i
\(668\) 0 0
\(669\) 66.7268 7.51831i 2.57981 0.290675i
\(670\) 0 0
\(671\) −3.72151 16.3050i −0.143667 0.629447i
\(672\) 0 0
\(673\) 8.08596 6.44834i 0.311691 0.248565i −0.455132 0.890424i \(-0.650408\pi\)
0.766823 + 0.641859i \(0.221837\pi\)
\(674\) 0 0
\(675\) 0.544407 + 1.55583i 0.0209542 + 0.0598838i
\(676\) 0 0
\(677\) −10.4383 6.55879i −0.401175 0.252075i 0.316300 0.948659i \(-0.397559\pi\)
−0.717475 + 0.696584i \(0.754702\pi\)
\(678\) 0 0
\(679\) 30.4336 + 30.4336i 1.16794 + 1.16794i
\(680\) 0 0
\(681\) −4.29634 + 38.1310i −0.164636 + 1.46118i
\(682\) 0 0
\(683\) 19.3819 + 40.2469i 0.741627 + 1.54000i 0.838619 + 0.544719i \(0.183364\pi\)
−0.0969922 + 0.995285i \(0.530922\pi\)
\(684\) 0 0
\(685\) 11.6148 33.1930i 0.443777 1.26824i
\(686\) 0 0
\(687\) 17.8042 36.9708i 0.679272 1.41052i
\(688\) 0 0
\(689\) 9.12438 + 2.08258i 0.347611 + 0.0793399i
\(690\) 0 0
\(691\) −11.0409 8.80479i −0.420014 0.334950i 0.390569 0.920574i \(-0.372278\pi\)
−0.810583 + 0.585624i \(0.800850\pi\)
\(692\) 0 0
\(693\) −13.2994 21.1658i −0.505201 0.804023i
\(694\) 0 0
\(695\) −22.2866 −0.845379
\(696\) 0 0
\(697\) 17.8845 0.677423
\(698\) 0 0
\(699\) −30.6270 48.7426i −1.15842 1.84361i
\(700\) 0 0
\(701\) −31.6858 25.2686i −1.19676 0.954381i −0.197093 0.980385i \(-0.563150\pi\)
−0.999662 + 0.0260042i \(0.991722\pi\)
\(702\) 0 0
\(703\) −6.93781 1.58351i −0.261665 0.0597232i
\(704\) 0 0
\(705\) −8.95201 + 18.5890i −0.337152 + 0.700104i
\(706\) 0 0
\(707\) 19.5309 55.8160i 0.734534 2.09918i
\(708\) 0 0
\(709\) −8.41729 17.4787i −0.316118 0.656426i 0.681001 0.732283i \(-0.261545\pi\)
−0.997119 + 0.0758571i \(0.975831\pi\)
\(710\) 0 0
\(711\) −4.23261 + 37.5655i −0.158735 + 1.40881i
\(712\) 0 0
\(713\) 50.4261 + 50.4261i 1.88847 + 1.88847i
\(714\) 0 0
\(715\) 22.2079 + 13.9541i 0.830527 + 0.521855i
\(716\) 0 0
\(717\) 21.8865 + 62.5481i 0.817367 + 2.33590i
\(718\) 0 0
\(719\) −9.48290 + 7.56236i −0.353653 + 0.282028i −0.784160 0.620558i \(-0.786906\pi\)
0.430508 + 0.902587i \(0.358335\pi\)
\(720\) 0 0
\(721\) 2.12274 + 9.30031i 0.0790548 + 0.346362i
\(722\) 0 0
\(723\) −37.8981 + 4.27009i −1.40944 + 0.158806i
\(724\) 0 0
\(725\) −4.48682 + 3.20633i −0.166636 + 0.119080i
\(726\) 0 0
\(727\) −3.22080 28.5854i −0.119453 1.06017i −0.900245 0.435383i \(-0.856613\pi\)
0.780792 0.624790i \(-0.214816\pi\)
\(728\) 0 0
\(729\) −35.9148 + 8.19731i −1.33018 + 0.303604i
\(730\) 0 0
\(731\) 4.22364 + 5.29628i 0.156217 + 0.195890i
\(732\) 0 0
\(733\) 32.8287 11.4873i 1.21256 0.424292i 0.353141 0.935570i \(-0.385114\pi\)
0.859415 + 0.511279i \(0.170828\pi\)
\(734\) 0 0
\(735\) −15.4496 + 24.5879i −0.569868 + 0.906940i
\(736\) 0 0
\(737\) −0.397103 + 0.397103i −0.0146275 + 0.0146275i
\(738\) 0 0
\(739\) 21.4351 + 2.41516i 0.788503 + 0.0888430i 0.497027 0.867735i \(-0.334425\pi\)
0.291476 + 0.956578i \(0.405854\pi\)
\(740\) 0 0
\(741\) −47.4666 + 22.8587i −1.74373 + 0.839735i
\(742\) 0 0
\(743\) 30.7659 + 10.7654i 1.12869 + 0.394946i 0.829088 0.559119i \(-0.188860\pi\)
0.299602 + 0.954064i \(0.403146\pi\)
\(744\) 0 0
\(745\) −1.08977 0.524806i −0.0399261 0.0192274i
\(746\) 0 0
\(747\) −4.63005 + 20.2856i −0.169405 + 0.742211i
\(748\) 0 0
\(749\) 2.33799 2.93174i 0.0854282 0.107124i
\(750\) 0 0
\(751\) 3.66629 2.30368i 0.133785 0.0840626i −0.463477 0.886109i \(-0.653398\pi\)
0.597262 + 0.802046i \(0.296255\pi\)
\(752\) 0 0
\(753\) 14.8561i 0.541386i
\(754\) 0 0
\(755\) 27.1082i 0.986568i
\(756\) 0 0
\(757\) −15.4006 + 9.67683i −0.559744 + 0.351710i −0.782001 0.623278i \(-0.785801\pi\)
0.222257 + 0.974988i \(0.428658\pi\)
\(758\) 0 0
\(759\) −26.9486 + 33.7925i −0.978172 + 1.22659i
\(760\) 0 0
\(761\) −3.18930 + 13.9732i −0.115612 + 0.506530i 0.883651 + 0.468146i \(0.155078\pi\)
−0.999263 + 0.0383834i \(0.987779\pi\)
\(762\) 0 0
\(763\) 49.0713 + 23.6315i 1.77650 + 0.855518i
\(764\) 0 0
\(765\) −13.5048 4.72555i −0.488269 0.170853i
\(766\) 0 0
\(767\) −9.13136 + 4.39743i −0.329714 + 0.158782i
\(768\) 0 0
\(769\) 12.6937 + 1.43024i 0.457746 + 0.0515756i 0.337827 0.941208i \(-0.390308\pi\)
0.119919 + 0.992784i \(0.461737\pi\)
\(770\) 0 0
\(771\) −6.81450 + 6.81450i −0.245418 + 0.245418i
\(772\) 0 0
\(773\) 22.5207 35.8415i 0.810014 1.28913i −0.144063 0.989569i \(-0.546017\pi\)
0.954077 0.299561i \(-0.0968404\pi\)
\(774\) 0 0
\(775\) −7.95563 + 2.78379i −0.285775 + 0.0999969i
\(776\) 0 0
\(777\) 13.4732 + 16.8949i 0.483349 + 0.606100i
\(778\) 0 0
\(779\) 26.5668 6.06370i 0.951855 0.217255i
\(780\) 0 0
\(781\) −1.46468 12.9994i −0.0524104 0.465155i
\(782\) 0 0
\(783\) 4.21838 + 7.57225i 0.150753 + 0.270610i
\(784\) 0 0
\(785\) −5.45525 + 0.614659i −0.194706 + 0.0219381i
\(786\) 0 0
\(787\) −2.11042 9.24636i −0.0752284 0.329597i 0.923284 0.384117i \(-0.125494\pi\)
−0.998513 + 0.0545202i \(0.982637\pi\)
\(788\) 0 0
\(789\) −30.6895 + 24.4741i −1.09258 + 0.871300i
\(790\) 0 0
\(791\) −1.39775 3.99453i −0.0496981 0.142029i
\(792\) 0 0
\(793\) 49.5915 + 31.1604i 1.76105 + 1.10654i
\(794\) 0 0
\(795\) 5.00448 + 5.00448i 0.177491 + 0.177491i
\(796\) 0 0
\(797\) 5.30503 47.0835i 0.187914 1.66778i −0.446497 0.894785i \(-0.647329\pi\)
0.634411 0.772996i \(-0.281243\pi\)
\(798\) 0 0
\(799\) 3.45223 + 7.16862i 0.122131 + 0.253608i
\(800\) 0 0
\(801\) −15.5720 + 44.5023i −0.550211 + 1.57241i
\(802\) 0 0
\(803\) −3.95907 + 8.22109i −0.139713 + 0.290116i
\(804\) 0 0
\(805\) 59.9256 + 13.6776i 2.11210 + 0.482073i
\(806\) 0 0
\(807\) −7.60396 6.06395i −0.267672 0.213461i
\(808\) 0 0
\(809\) 6.90821 + 10.9944i 0.242880 + 0.386541i 0.945811 0.324716i \(-0.105269\pi\)
−0.702932 + 0.711257i \(0.748126\pi\)
\(810\) 0 0
\(811\) 13.0844 0.459456 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(812\) 0 0
\(813\) −35.9427 −1.26057
\(814\) 0 0
\(815\) −16.2834 25.9149i −0.570383 0.907759i
\(816\) 0 0
\(817\) 8.06977 + 6.43543i 0.282325 + 0.225147i
\(818\) 0 0
\(819\) 85.3459 + 19.4797i 2.98223 + 0.680674i
\(820\) 0 0
\(821\) −17.0075 + 35.3164i −0.593565 + 1.23255i 0.360447 + 0.932780i \(0.382624\pi\)
−0.954012 + 0.299770i \(0.903090\pi\)
\(822\) 0 0
\(823\) −1.60541 + 4.58801i −0.0559612 + 0.159928i −0.968471 0.249128i \(-0.919856\pi\)
0.912509 + 0.409056i \(0.134142\pi\)
\(824\) 0 0
\(825\) −2.21649 4.60259i −0.0771682 0.160242i
\(826\) 0 0
\(827\) 3.98337 35.3534i 0.138515 1.22936i −0.711533 0.702653i \(-0.751999\pi\)
0.850048 0.526705i \(-0.176573\pi\)
\(828\) 0 0
\(829\) 8.08293 + 8.08293i 0.280732 + 0.280732i 0.833401 0.552669i \(-0.186391\pi\)
−0.552669 + 0.833401i \(0.686391\pi\)
\(830\) 0 0
\(831\) −38.4375 24.1519i −1.33338 0.837819i
\(832\) 0 0
\(833\) 3.69862 + 10.5701i 0.128150 + 0.366231i
\(834\) 0 0
\(835\) −20.3532 + 16.2311i −0.704352 + 0.561702i
\(836\) 0 0
\(837\) 2.94796 + 12.9158i 0.101896 + 0.446437i
\(838\) 0 0
\(839\) 5.82134 0.655908i 0.200975 0.0226445i −0.0109030 0.999941i \(-0.503471\pi\)
0.211878 + 0.977296i \(0.432042\pi\)
\(840\) 0 0
\(841\) −20.3675 + 20.6437i −0.702329 + 0.711853i
\(842\) 0 0
\(843\) −4.66196 41.3761i −0.160567 1.42507i
\(844\) 0 0
\(845\) −64.2759 + 14.6706i −2.21116 + 0.504683i
\(846\) 0 0
\(847\) −16.0690 20.1498i −0.552136 0.692356i
\(848\) 0 0
\(849\) 9.71716 3.40018i 0.333492 0.116694i
\(850\) 0 0
\(851\) 10.8776 17.3116i 0.372879 0.593434i
\(852\) 0 0
\(853\) −11.7703 + 11.7703i −0.403007 + 0.403007i −0.879291 0.476284i \(-0.841983\pi\)
0.476284 + 0.879291i \(0.341983\pi\)
\(854\) 0 0
\(855\) −21.6632 2.44086i −0.740865 0.0834755i
\(856\) 0 0
\(857\) −1.68201 + 0.810012i −0.0574563 + 0.0276695i −0.462391 0.886676i \(-0.653008\pi\)
0.404935 + 0.914345i \(0.367294\pi\)
\(858\) 0 0
\(859\) 0.559837 + 0.195896i 0.0191014 + 0.00668387i 0.339813 0.940493i \(-0.389636\pi\)
−0.320711 + 0.947177i \(0.603922\pi\)
\(860\) 0 0
\(861\) −74.5536 35.9031i −2.54078 1.22358i
\(862\) 0 0
\(863\) 8.26596 36.2155i 0.281376 1.23279i −0.614653 0.788797i \(-0.710704\pi\)
0.896030 0.443994i \(-0.146439\pi\)
\(864\) 0 0
\(865\) 19.7191 24.7269i 0.670468 0.840740i
\(866\) 0 0
\(867\) 28.5127 17.9157i 0.968341 0.608449i
\(868\) 0 0
\(869\) 20.2089i 0.685541i
\(870\) 0 0
\(871\) 1.96669i 0.0666386i
\(872\) 0 0
\(873\) 37.1346 23.3332i 1.25681 0.789709i
\(874\) 0 0
\(875\) −26.6452 + 33.4121i −0.900773 + 1.12953i
\(876\) 0 0
\(877\) −0.669295 + 2.93237i −0.0226005 + 0.0990193i −0.984970 0.172724i \(-0.944743\pi\)
0.962370 + 0.271743i \(0.0876002\pi\)
\(878\) 0 0
\(879\) −26.2287 12.6311i −0.884672 0.426036i
\(880\) 0 0
\(881\) 30.7861 + 10.7725i 1.03721 + 0.362935i 0.794564 0.607180i \(-0.207699\pi\)
0.242645 + 0.970115i \(0.421985\pi\)
\(882\) 0 0
\(883\) −18.6301 + 8.97179i −0.626953 + 0.301925i −0.720251 0.693714i \(-0.755973\pi\)
0.0932979 + 0.995638i \(0.470259\pi\)
\(884\) 0 0
\(885\) −7.61604 0.858122i −0.256010 0.0288454i
\(886\) 0 0
\(887\) −2.73746 + 2.73746i −0.0919148 + 0.0919148i −0.751569 0.659654i \(-0.770703\pi\)
0.659654 + 0.751569i \(0.270703\pi\)
\(888\) 0 0
\(889\) 2.46018 3.91535i 0.0825118 0.131317i
\(890\) 0 0
\(891\) 12.3165 4.30973i 0.412618 0.144381i
\(892\) 0 0
\(893\) 7.55868 + 9.47828i 0.252942 + 0.317179i
\(894\) 0 0
\(895\) 31.0711 7.09178i 1.03859 0.237052i
\(896\) 0 0
\(897\) −16.9474 150.413i −0.565858 5.02213i
\(898\) 0 0
\(899\) −38.7203 + 21.5705i −1.29139 + 0.719415i
\(900\) 0 0
\(901\) 2.71215 0.305585i 0.0903547 0.0101805i
\(902\) 0 0
\(903\) −6.97446 30.5571i −0.232095 1.01688i
\(904\) 0 0
\(905\) 34.1270 27.2154i 1.13442 0.904670i
\(906\) 0 0
\(907\) −13.2052 37.7382i −0.438471 1.25308i −0.925185 0.379516i \(-0.876091\pi\)
0.486715 0.873561i \(-0.338195\pi\)
\(908\) 0 0
\(909\) −51.0211 32.0587i −1.69226 1.06332i
\(910\) 0 0
\(911\) 27.5161 + 27.5161i 0.911649 + 0.911649i 0.996402 0.0847531i \(-0.0270101\pi\)
−0.0847531 + 0.996402i \(0.527010\pi\)
\(912\) 0 0
\(913\) 1.24541 11.0533i 0.0412169 0.365810i
\(914\) 0 0
\(915\) 19.2168 + 39.9041i 0.635289 + 1.31919i
\(916\) 0 0
\(917\) 14.2761 40.7988i 0.471439 1.34730i
\(918\) 0 0
\(919\) 11.7957 24.4940i 0.389103 0.807981i −0.610766 0.791811i \(-0.709138\pi\)
0.999869 0.0161700i \(-0.00514731\pi\)
\(920\) 0 0
\(921\) 48.8184 + 11.1425i 1.60862 + 0.367157i
\(922\) 0 0
\(923\) 35.8173 + 28.5633i 1.17894 + 0.940173i
\(924\) 0 0
\(925\) 1.28564 + 2.04608i 0.0422715 + 0.0672748i
\(926\) 0 0
\(927\) 9.72059 0.319266
\(928\) 0 0
\(929\) −20.6867 −0.678707 −0.339354 0.940659i \(-0.610208\pi\)
−0.339354 + 0.940659i \(0.610208\pi\)
\(930\) 0 0
\(931\) 9.07793 + 14.4474i 0.297517 + 0.473496i
\(932\) 0 0
\(933\) −24.3390 19.4097i −0.796823 0.635445i
\(934\) 0 0
\(935\) 7.45692 + 1.70199i 0.243867 + 0.0556611i
\(936\) 0 0
\(937\) −2.43514 + 5.05661i −0.0795524 + 0.165192i −0.936951 0.349461i \(-0.886365\pi\)
0.857399 + 0.514653i \(0.172079\pi\)
\(938\) 0 0
\(939\) 22.9178 65.4953i 0.747894 2.13736i
\(940\) 0 0
\(941\) 14.2254 + 29.5393i 0.463734 + 0.962953i 0.993395 + 0.114744i \(0.0366048\pi\)
−0.529661 + 0.848209i \(0.677681\pi\)
\(942\) 0 0
\(943\) −8.76582 + 77.7988i −0.285454 + 2.53348i
\(944\) 0 0
\(945\) 8.07429 + 8.07429i 0.262657 + 0.262657i
\(946\) 0 0
\(947\) −47.1964 29.6554i −1.53368 0.963673i −0.992430 0.122808i \(-0.960810\pi\)
−0.541246 0.840864i \(-0.682047\pi\)
\(948\) 0 0
\(949\) −10.5540 30.1617i −0.342598 0.979089i
\(950\) 0 0
\(951\) −23.8365 + 19.0090i −0.772952 + 0.616409i
\(952\) 0 0
\(953\) −5.65872 24.7925i −0.183304 0.803107i −0.980043 0.198784i \(-0.936301\pi\)
0.796739 0.604323i \(-0.206556\pi\)
\(954\) 0 0
\(955\) −46.8672 + 5.28066i −1.51659 + 0.170878i
\(956\) 0 0
\(957\) −15.6190 21.8566i −0.504890 0.706523i
\(958\) 0 0
\(959\) 7.02538 + 62.3520i 0.226861 + 2.01345i
\(960\) 0 0
\(961\) −35.8217 + 8.17607i −1.15554 + 0.263744i
\(962\) 0 0
\(963\) −2.38237 2.98740i −0.0767709 0.0962676i
\(964\) 0 0
\(965\) −36.9359 + 12.9244i −1.18901 + 0.416052i
\(966\) 0 0
\(967\) 8.13225 12.9424i 0.261516 0.416200i −0.689996 0.723813i \(-0.742388\pi\)
0.951511 + 0.307614i \(0.0995305\pi\)
\(968\) 0 0
\(969\) −10.8639 + 10.8639i −0.348998 + 0.348998i
\(970\) 0 0
\(971\) 54.0050 + 6.08491i 1.73310 + 0.195274i 0.921352 0.388729i \(-0.127086\pi\)
0.811752 + 0.584003i \(0.198514\pi\)
\(972\) 0 0
\(973\) 35.8273 17.2535i 1.14857 0.553123i
\(974\) 0 0
\(975\) 16.8860 + 5.90868i 0.540786 + 0.189229i
\(976\) 0 0
\(977\) −18.5350 8.92599i −0.592987 0.285568i 0.113223 0.993570i \(-0.463883\pi\)
−0.706211 + 0.708002i \(0.749597\pi\)
\(978\) 0 0
\(979\) 5.60855 24.5727i 0.179250 0.785346i
\(980\) 0 0
\(981\) 34.6031 43.3909i 1.10479 1.38536i
\(982\) 0 0
\(983\) 20.1986 12.6916i 0.644235 0.404799i −0.169912 0.985459i \(-0.554348\pi\)
0.814146 + 0.580660i \(0.197205\pi\)
\(984\) 0 0
\(985\) 12.6814i 0.404064i
\(986\) 0 0
\(987\) 36.8136i 1.17179i
\(988\) 0 0
\(989\) −25.1093 + 15.7772i −0.798430 + 0.501687i
\(990\) 0 0
\(991\) −6.97839 + 8.75062i −0.221676 + 0.277973i −0.880216 0.474573i \(-0.842603\pi\)
0.658541 + 0.752545i \(0.271174\pi\)
\(992\) 0 0
\(993\) 1.53126 6.70891i 0.0485932 0.212901i
\(994\) 0 0
\(995\) −14.6995 7.07891i −0.466005 0.224416i
\(996\) 0 0
\(997\) 31.5573 + 11.0424i 0.999429 + 0.349715i 0.779909 0.625893i \(-0.215265\pi\)
0.219520 + 0.975608i \(0.429551\pi\)
\(998\) 0 0
\(999\) 3.42204 1.64797i 0.108269 0.0521394i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.bl.c.15.10 yes 120
4.3 odd 2 inner 464.2.bl.c.15.1 120
29.2 odd 28 inner 464.2.bl.c.31.1 yes 120
116.31 even 28 inner 464.2.bl.c.31.10 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.2.bl.c.15.1 120 4.3 odd 2 inner
464.2.bl.c.15.10 yes 120 1.1 even 1 trivial
464.2.bl.c.31.1 yes 120 29.2 odd 28 inner
464.2.bl.c.31.10 yes 120 116.31 even 28 inner