Properties

Label 464.2.a.f
Level $464$
Weight $2$
Character orbit 464.a
Self dual yes
Analytic conductor $3.705$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3 q^{3} - 3 q^{5} + 2 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - 3 q^{5} + 2 q^{7} + 6 q^{9} + q^{11} + 3 q^{13} - 9 q^{15} - 4 q^{17} + 8 q^{19} + 6 q^{21} + 4 q^{25} + 9 q^{27} - q^{29} - 3 q^{31} + 3 q^{33} - 6 q^{35} - 8 q^{37} + 9 q^{39} - 2 q^{41} - 7 q^{43} - 18 q^{45} - 11 q^{47} - 3 q^{49} - 12 q^{51} + q^{53} - 3 q^{55} + 24 q^{57} + 4 q^{59} + 4 q^{61} + 12 q^{63} - 9 q^{65} + 4 q^{67} + 2 q^{71} - 12 q^{73} + 12 q^{75} + 2 q^{77} + 7 q^{79} + 9 q^{81} + 12 q^{85} - 3 q^{87} - 6 q^{89} + 6 q^{91} - 9 q^{93} - 24 q^{95} - 6 q^{97} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −3.00000 0 2.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(29\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.a.f 1
3.b odd 2 1 4176.2.a.bh 1
4.b odd 2 1 58.2.a.a 1
8.b even 2 1 1856.2.a.b 1
8.d odd 2 1 1856.2.a.p 1
12.b even 2 1 522.2.a.k 1
20.d odd 2 1 1450.2.a.i 1
20.e even 4 2 1450.2.b.f 2
28.d even 2 1 2842.2.a.d 1
44.c even 2 1 7018.2.a.c 1
52.b odd 2 1 9802.2.a.d 1
116.d odd 2 1 1682.2.a.j 1
116.e even 4 2 1682.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.a 1 4.b odd 2 1
464.2.a.f 1 1.a even 1 1 trivial
522.2.a.k 1 12.b even 2 1
1450.2.a.i 1 20.d odd 2 1
1450.2.b.f 2 20.e even 4 2
1682.2.a.j 1 116.d odd 2 1
1682.2.b.e 2 116.e even 4 2
1856.2.a.b 1 8.b even 2 1
1856.2.a.p 1 8.d odd 2 1
2842.2.a.d 1 28.d even 2 1
4176.2.a.bh 1 3.b odd 2 1
7018.2.a.c 1 44.c even 2 1
9802.2.a.d 1 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(464))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 3 \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T - 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T + 3 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 7 \) Copy content Toggle raw display
$47$ \( T + 11 \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 4 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T + 12 \) Copy content Toggle raw display
$79$ \( T - 7 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less