Properties

Label 464.2.a.e
Level $464$
Weight $2$
Character orbit 464.a
Self dual yes
Analytic conductor $3.705$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + 2 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + q^{5} + 2 q^{7} - 2 q^{9} + 3 q^{11} - q^{13} + q^{15} + 8 q^{17} + 2 q^{21} - 4 q^{23} - 4 q^{25} - 5 q^{27} - q^{29} + 3 q^{31} + 3 q^{33} + 2 q^{35} + 8 q^{37} - q^{39} + 2 q^{41} + 11 q^{43} - 2 q^{45} - 13 q^{47} - 3 q^{49} + 8 q^{51} - 11 q^{53} + 3 q^{55} - 8 q^{61} - 4 q^{63} - q^{65} + 12 q^{67} - 4 q^{69} - 2 q^{71} + 4 q^{73} - 4 q^{75} + 6 q^{77} - 15 q^{79} + q^{81} - 4 q^{83} + 8 q^{85} - q^{87} - 10 q^{89} - 2 q^{91} + 3 q^{93} - 2 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 1.00000 0 2.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(29\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.a.e 1
3.b odd 2 1 4176.2.a.n 1
4.b odd 2 1 58.2.a.b 1
8.b even 2 1 1856.2.a.f 1
8.d odd 2 1 1856.2.a.k 1
12.b even 2 1 522.2.a.b 1
20.d odd 2 1 1450.2.a.c 1
20.e even 4 2 1450.2.b.b 2
28.d even 2 1 2842.2.a.e 1
44.c even 2 1 7018.2.a.a 1
52.b odd 2 1 9802.2.a.a 1
116.d odd 2 1 1682.2.a.d 1
116.e even 4 2 1682.2.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.b 1 4.b odd 2 1
464.2.a.e 1 1.a even 1 1 trivial
522.2.a.b 1 12.b even 2 1
1450.2.a.c 1 20.d odd 2 1
1450.2.b.b 2 20.e even 4 2
1682.2.a.d 1 116.d odd 2 1
1682.2.b.a 2 116.e even 4 2
1856.2.a.f 1 8.b even 2 1
1856.2.a.k 1 8.d odd 2 1
2842.2.a.e 1 28.d even 2 1
4176.2.a.n 1 3.b odd 2 1
7018.2.a.a 1 44.c even 2 1
9802.2.a.a 1 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(464))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 8 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T - 11 \) Copy content Toggle raw display
$47$ \( T + 13 \) Copy content Toggle raw display
$53$ \( T + 11 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T - 4 \) Copy content Toggle raw display
$79$ \( T + 15 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 10 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less