Defining parameters
| Level: | \( N \) | \(=\) | \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 4620.eu (of order \(12\) and degree \(4\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 105 \) | 
| Character field: | \(\Q(\zeta_{12})\) | ||
| Sturm bound: | \(2304\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4620, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 4704 | 640 | 4064 | 
| Cusp forms | 4512 | 640 | 3872 | 
| Eisenstein series | 192 | 0 | 192 | 
Decomposition of \(S_{2}^{\mathrm{new}}(4620, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4620, [\chi])\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(4620, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1155, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2310, [\chi])\)\(^{\oplus 2}\)