Newspace parameters
Level: | \( N \) | \(=\) | \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 462.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(74.0973247536\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−4.00000 | −9.00000 | 16.0000 | −78.0000 | 36.0000 | 49.0000 | −64.0000 | 81.0000 | 312.000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(3\) | \(1\) |
\(7\) | \(-1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 462.6.a.a | ✓ | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
462.6.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 78 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(462))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 4 \)
$3$
\( T + 9 \)
$5$
\( T + 78 \)
$7$
\( T - 49 \)
$11$
\( T - 121 \)
$13$
\( T + 502 \)
$17$
\( T + 642 \)
$19$
\( T + 520 \)
$23$
\( T - 1020 \)
$29$
\( T - 4818 \)
$31$
\( T - 1784 \)
$37$
\( T - 7958 \)
$41$
\( T - 2430 \)
$43$
\( T - 22904 \)
$47$
\( T + 11316 \)
$53$
\( T + 12222 \)
$59$
\( T + 15852 \)
$61$
\( T - 46298 \)
$67$
\( T - 19412 \)
$71$
\( T + 17292 \)
$73$
\( T + 30214 \)
$79$
\( T - 35672 \)
$83$
\( T + 43428 \)
$89$
\( T + 14934 \)
$97$
\( T - 85106 \)
show more
show less