Properties

 Label 462.2.w.b.365.7 Level $462$ Weight $2$ Character 462.365 Analytic conductor $3.689$ Analytic rank $0$ Dimension $48$ CM no Inner twists $2$

Learn more

Newspace parameters

 Level: $$N$$ $$=$$ $$462 = 2 \cdot 3 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 462.w (of order $$10$$, degree $$4$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$3.68908857338$$ Analytic rank: $$0$$ Dimension: $$48$$ Relative dimension: $$12$$ over $$\Q(\zeta_{10})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

 Embedding label 365.7 Character $$\chi$$ $$=$$ 462.365 Dual form 462.2.w.b.281.7

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.309017 + 0.951057i) q^{2} +(-0.711719 + 1.57907i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.152745 + 0.0496298i) q^{5} +(-1.28185 - 1.16484i) q^{6} +(0.587785 - 0.809017i) q^{7} +(0.809017 - 0.587785i) q^{8} +(-1.98691 - 2.24771i) q^{9} +O(q^{10})$$ $$q+(-0.309017 + 0.951057i) q^{2} +(-0.711719 + 1.57907i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.152745 + 0.0496298i) q^{5} +(-1.28185 - 1.16484i) q^{6} +(0.587785 - 0.809017i) q^{7} +(0.809017 - 0.587785i) q^{8} +(-1.98691 - 2.24771i) q^{9} -0.160605i q^{10} +(-3.12194 + 1.11961i) q^{11} +(1.50395 - 0.859155i) q^{12} +(-6.36388 - 2.06775i) q^{13} +(0.587785 + 0.809017i) q^{14} +(0.0303426 - 0.276517i) q^{15} +(0.309017 + 0.951057i) q^{16} +(0.841882 + 2.59105i) q^{17} +(2.75168 - 1.19509i) q^{18} +(-3.45842 - 4.76011i) q^{19} +(0.152745 + 0.0496298i) q^{20} +(0.859155 + 1.50395i) q^{21} +(-0.100078 - 3.31511i) q^{22} -2.94363i q^{23} +(0.352360 + 1.69583i) q^{24} +(-4.02422 + 2.92376i) q^{25} +(3.93309 - 5.41344i) q^{26} +(4.96340 - 1.53773i) q^{27} +(-0.951057 + 0.309017i) q^{28} +(5.12098 + 3.72061i) q^{29} +(0.253607 + 0.114306i) q^{30} +(2.60546 - 8.01878i) q^{31} -1.00000 q^{32} +(0.454006 - 5.72659i) q^{33} -2.72439 q^{34} +(-0.0496298 + 0.152745i) q^{35} +(0.286277 + 2.98631i) q^{36} +(-0.501222 - 0.364159i) q^{37} +(5.59585 - 1.81820i) q^{38} +(7.79441 - 8.57734i) q^{39} +(-0.0944015 + 0.129933i) q^{40} +(-4.44808 + 3.23172i) q^{41} +(-1.69583 + 0.352360i) q^{42} +2.41048i q^{43} +(3.18379 + 0.929247i) q^{44} +(0.415044 + 0.244715i) q^{45} +(2.79955 + 0.909630i) q^{46} +(-1.56714 - 2.15699i) q^{47} +(-1.72172 - 0.188926i) q^{48} +(-0.309017 - 0.951057i) q^{49} +(-1.53711 - 4.73075i) q^{50} +(-4.69062 - 0.514708i) q^{51} +(3.93309 + 5.41344i) q^{52} +(2.46767 + 0.801796i) q^{53} +(-0.0713040 + 5.19566i) q^{54} +(0.421294 - 0.325955i) q^{55} -1.00000i q^{56} +(9.97797 - 2.07322i) q^{57} +(-5.12098 + 3.72061i) q^{58} +(-8.48442 + 11.6778i) q^{59} +(-0.187080 + 0.205872i) q^{60} +(-7.68134 + 2.49582i) q^{61} +(6.82118 + 4.95588i) q^{62} +(-2.98631 + 0.286277i) q^{63} +(0.309017 - 0.951057i) q^{64} +1.07467 q^{65} +(5.30602 + 2.20140i) q^{66} +9.38707 q^{67} +(0.841882 - 2.59105i) q^{68} +(4.64819 + 2.09503i) q^{69} +(-0.129933 - 0.0944015i) q^{70} +(-10.0295 + 3.25877i) q^{71} +(-2.92861 - 0.650555i) q^{72} +(0.0597686 - 0.0822645i) q^{73} +(0.501222 - 0.364159i) q^{74} +(-1.75271 - 8.43541i) q^{75} +5.88382i q^{76} +(-0.929247 + 3.18379i) q^{77} +(5.74893 + 10.0635i) q^{78} +(-8.72301 - 2.83428i) q^{79} +(-0.0944015 - 0.129933i) q^{80} +(-1.10436 + 8.93199i) q^{81} +(-1.69901 - 5.22903i) q^{82} +(-4.39153 - 13.5157i) q^{83} +(0.188926 - 1.72172i) q^{84} +(-0.257186 - 0.353987i) q^{85} +(-2.29250 - 0.744879i) q^{86} +(-9.51979 + 5.43834i) q^{87} +(-1.86761 + 2.74081i) q^{88} -15.1000i q^{89} +(-0.360994 + 0.319109i) q^{90} +(-5.41344 + 3.93309i) q^{91} +(-1.73022 + 2.38144i) q^{92} +(10.8078 + 9.82131i) q^{93} +(2.53569 - 0.823897i) q^{94} +(0.764500 + 0.555442i) q^{95} +(0.711719 - 1.57907i) q^{96} +(-3.20306 + 9.85801i) q^{97} +1.00000 q^{98} +(8.71956 + 4.79263i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$48q + 12q^{2} - 4q^{3} - 12q^{4} + 4q^{6} + 12q^{8} + 10q^{9} + O(q^{10})$$ $$48q + 12q^{2} - 4q^{3} - 12q^{4} + 4q^{6} + 12q^{8} + 10q^{9} + 8q^{11} + 6q^{12} - 24q^{15} - 12q^{16} + 24q^{17} + 10q^{18} + 30q^{19} - 8q^{22} - 6q^{24} + 18q^{25} + 20q^{26} + 38q^{27} - 8q^{29} - 36q^{30} - 32q^{31} - 48q^{32} + 24q^{33} - 4q^{34} - 6q^{35} - 20q^{37} - 20q^{38} - 34q^{39} - 22q^{44} + 12q^{45} + 20q^{46} - 20q^{47} - 4q^{48} + 12q^{49} - 28q^{50} + 2q^{51} + 20q^{52} - 20q^{53} - 18q^{54} + 16q^{55} + 12q^{57} + 8q^{58} - 30q^{59} - 4q^{60} - 20q^{61} - 8q^{62} - 4q^{63} - 12q^{64} + 46q^{66} + 36q^{67} + 24q^{68} + 30q^{69} - 4q^{70} - 10q^{72} - 20q^{73} + 20q^{74} + 40q^{75} + 16q^{77} - 16q^{78} - 20q^{79} - 54q^{81} - 10q^{82} + 46q^{83} - 10q^{84} + 10q^{85} + 30q^{86} - 8q^{87} - 8q^{88} - 62q^{90} - 36q^{91} - 10q^{92} + 44q^{93} - 50q^{95} + 4q^{96} - 2q^{97} + 48q^{98} - 26q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/462\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$211$$ $$\chi(n)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.309017 + 0.951057i −0.218508 + 0.672499i
$$3$$ −0.711719 + 1.57907i −0.410911 + 0.911675i
$$4$$ −0.809017 0.587785i −0.404508 0.293893i
$$5$$ −0.152745 + 0.0496298i −0.0683096 + 0.0221951i −0.342972 0.939345i $$-0.611434\pi$$
0.274663 + 0.961541i $$0.411434\pi$$
$$6$$ −1.28185 1.16484i −0.523313 0.475546i
$$7$$ 0.587785 0.809017i 0.222162 0.305780i
$$8$$ 0.809017 0.587785i 0.286031 0.207813i
$$9$$ −1.98691 2.24771i −0.662304 0.749235i
$$10$$ 0.160605i 0.0507879i
$$11$$ −3.12194 + 1.11961i −0.941299 + 0.337574i
$$12$$ 1.50395 0.859155i 0.434152 0.248017i
$$13$$ −6.36388 2.06775i −1.76502 0.573491i −0.767322 0.641262i $$-0.778411\pi$$
−0.997701 + 0.0677714i $$0.978411\pi$$
$$14$$ 0.587785 + 0.809017i 0.157092 + 0.216219i
$$15$$ 0.0303426 0.276517i 0.00783442 0.0713964i
$$16$$ 0.309017 + 0.951057i 0.0772542 + 0.237764i
$$17$$ 0.841882 + 2.59105i 0.204186 + 0.628421i 0.999746 + 0.0225456i $$0.00717710\pi$$
−0.795559 + 0.605876i $$0.792823\pi$$
$$18$$ 2.75168 1.19509i 0.648578 0.281685i
$$19$$ −3.45842 4.76011i −0.793417 1.09204i −0.993674 0.112301i $$-0.964178\pi$$
0.200257 0.979743i $$-0.435822\pi$$
$$20$$ 0.152745 + 0.0496298i 0.0341548 + 0.0110976i
$$21$$ 0.859155 + 1.50395i 0.187483 + 0.328188i
$$22$$ −0.100078 3.31511i −0.0213367 0.706785i
$$23$$ 2.94363i 0.613788i −0.951744 0.306894i $$-0.900710\pi$$
0.951744 0.306894i $$-0.0992898\pi$$
$$24$$ 0.352360 + 1.69583i 0.0719252 + 0.346160i
$$25$$ −4.02422 + 2.92376i −0.804843 + 0.584753i
$$26$$ 3.93309 5.41344i 0.771343 1.06166i
$$27$$ 4.96340 1.53773i 0.955207 0.295937i
$$28$$ −0.951057 + 0.309017i −0.179733 + 0.0583987i
$$29$$ 5.12098 + 3.72061i 0.950942 + 0.690900i 0.951029 0.309100i $$-0.100028\pi$$
−8.76975e−5 1.00000i $$0.500028\pi$$
$$30$$ 0.253607 + 0.114306i 0.0463021 + 0.0208693i
$$31$$ 2.60546 8.01878i 0.467954 1.44021i −0.387275 0.921964i $$-0.626584\pi$$
0.855229 0.518250i $$-0.173416\pi$$
$$32$$ −1.00000 −0.176777
$$33$$ 0.454006 5.72659i 0.0790324 0.996872i
$$34$$ −2.72439 −0.467229
$$35$$ −0.0496298 + 0.152745i −0.00838897 + 0.0258186i
$$36$$ 0.286277 + 2.98631i 0.0477129 + 0.497718i
$$37$$ −0.501222 0.364159i −0.0824003 0.0598673i 0.545822 0.837901i $$-0.316217\pi$$
−0.628223 + 0.778034i $$0.716217\pi$$
$$38$$ 5.59585 1.81820i 0.907766 0.294951i
$$39$$ 7.79441 8.57734i 1.24810 1.37347i
$$40$$ −0.0944015 + 0.129933i −0.0149262 + 0.0205441i
$$41$$ −4.44808 + 3.23172i −0.694673 + 0.504709i −0.878193 0.478307i $$-0.841251\pi$$
0.183520 + 0.983016i $$0.441251\pi$$
$$42$$ −1.69583 + 0.352360i −0.261672 + 0.0543703i
$$43$$ 2.41048i 0.367594i 0.982964 + 0.183797i $$0.0588390\pi$$
−0.982964 + 0.183797i $$0.941161\pi$$
$$44$$ 3.18379 + 0.929247i 0.479974 + 0.140089i
$$45$$ 0.415044 + 0.244715i 0.0618711 + 0.0364800i
$$46$$ 2.79955 + 0.909630i 0.412772 + 0.134118i
$$47$$ −1.56714 2.15699i −0.228592 0.314629i 0.679279 0.733880i $$-0.262293\pi$$
−0.907870 + 0.419251i $$0.862293\pi$$
$$48$$ −1.72172 0.188926i −0.248508 0.0272691i
$$49$$ −0.309017 0.951057i −0.0441453 0.135865i
$$50$$ −1.53711 4.73075i −0.217381 0.669029i
$$51$$ −4.69062 0.514708i −0.656819 0.0720736i
$$52$$ 3.93309 + 5.41344i 0.545422 + 0.750709i
$$53$$ 2.46767 + 0.801796i 0.338961 + 0.110135i 0.473551 0.880766i $$-0.342972\pi$$
−0.134590 + 0.990901i $$0.542972\pi$$
$$54$$ −0.0713040 + 5.19566i −0.00970325 + 0.707040i
$$55$$ 0.421294 0.325955i 0.0568072 0.0439518i
$$56$$ 1.00000i 0.133631i
$$57$$ 9.97797 2.07322i 1.32161 0.274605i
$$58$$ −5.12098 + 3.72061i −0.672417 + 0.488540i
$$59$$ −8.48442 + 11.6778i −1.10458 + 1.52032i −0.275403 + 0.961329i $$0.588811\pi$$
−0.829174 + 0.558991i $$0.811189\pi$$
$$60$$ −0.187080 + 0.205872i −0.0241520 + 0.0265780i
$$61$$ −7.68134 + 2.49582i −0.983495 + 0.319557i −0.756251 0.654281i $$-0.772971\pi$$
−0.227243 + 0.973838i $$0.572971\pi$$
$$62$$ 6.82118 + 4.95588i 0.866291 + 0.629397i
$$63$$ −2.98631 + 0.286277i −0.376240 + 0.0360675i
$$64$$ 0.309017 0.951057i 0.0386271 0.118882i
$$65$$ 1.07467 0.133297
$$66$$ 5.30602 + 2.20140i 0.653126 + 0.270974i
$$67$$ 9.38707 1.14681 0.573407 0.819271i $$-0.305622\pi$$
0.573407 + 0.819271i $$0.305622\pi$$
$$68$$ 0.841882 2.59105i 0.102093 0.314211i
$$69$$ 4.64819 + 2.09503i 0.559576 + 0.252213i
$$70$$ −0.129933 0.0944015i −0.0155299 0.0112831i
$$71$$ −10.0295 + 3.25877i −1.19028 + 0.386745i −0.836176 0.548462i $$-0.815214\pi$$
−0.354103 + 0.935207i $$0.615214\pi$$
$$72$$ −2.92861 0.650555i −0.345140 0.0766686i
$$73$$ 0.0597686 0.0822645i 0.00699539 0.00962833i −0.805505 0.592589i $$-0.798106\pi$$
0.812500 + 0.582961i $$0.198106\pi$$
$$74$$ 0.501222 0.364159i 0.0582658 0.0423326i
$$75$$ −1.75271 8.43541i −0.202386 0.974037i
$$76$$ 5.88382i 0.674921i
$$77$$ −0.929247 + 3.18379i −0.105898 + 0.362826i
$$78$$ 5.74893 + 10.0635i 0.650938 + 1.13946i
$$79$$ −8.72301 2.83428i −0.981415 0.318881i −0.226000 0.974127i $$-0.572565\pi$$
−0.755415 + 0.655246i $$0.772565\pi$$
$$80$$ −0.0944015 0.129933i −0.0105544 0.0145269i
$$81$$ −1.10436 + 8.93199i −0.122707 + 0.992443i
$$82$$ −1.69901 5.22903i −0.187625 0.577450i
$$83$$ −4.39153 13.5157i −0.482033 1.48355i −0.836232 0.548376i $$-0.815246\pi$$
0.354199 0.935170i $$-0.384754\pi$$
$$84$$ 0.188926 1.72172i 0.0206135 0.187855i
$$85$$ −0.257186 0.353987i −0.0278958 0.0383953i
$$86$$ −2.29250 0.744879i −0.247207 0.0803223i
$$87$$ −9.51979 + 5.43834i −1.02063 + 0.583052i
$$88$$ −1.86761 + 2.74081i −0.199088 + 0.292171i
$$89$$ 15.1000i 1.60060i −0.599601 0.800299i $$-0.704674\pi$$
0.599601 0.800299i $$-0.295326\pi$$
$$90$$ −0.360994 + 0.319109i −0.0380521 + 0.0336370i
$$91$$ −5.41344 + 3.93309i −0.567483 + 0.412300i
$$92$$ −1.73022 + 2.38144i −0.180388 + 0.248283i
$$93$$ 10.8078 + 9.82131i 1.12072 + 1.01842i
$$94$$ 2.53569 0.823897i 0.261537 0.0849785i
$$95$$ 0.764500 + 0.555442i 0.0784361 + 0.0569871i
$$96$$ 0.711719 1.57907i 0.0726395 0.161163i
$$97$$ −3.20306 + 9.85801i −0.325222 + 1.00093i 0.646119 + 0.763237i $$0.276391\pi$$
−0.971341 + 0.237692i $$0.923609\pi$$
$$98$$ 1.00000 0.101015
$$99$$ 8.71956 + 4.79263i 0.876348 + 0.481678i
$$100$$ 4.97421 0.497421
$$101$$ −3.65609 + 11.2523i −0.363795 + 1.11964i 0.586938 + 0.809632i $$0.300333\pi$$
−0.950732 + 0.310013i $$0.899667\pi$$
$$102$$ 1.93900 4.30199i 0.191990 0.425961i
$$103$$ 0.881475 + 0.640429i 0.0868543 + 0.0631033i 0.630365 0.776299i $$-0.282905\pi$$
−0.543511 + 0.839402i $$0.682905\pi$$
$$104$$ −6.36388 + 2.06775i −0.624030 + 0.202760i
$$105$$ −0.205872 0.187080i −0.0200911 0.0182572i
$$106$$ −1.52511 + 2.09913i −0.148131 + 0.203885i
$$107$$ −6.75237 + 4.90589i −0.652776 + 0.474270i −0.864216 0.503121i $$-0.832185\pi$$
0.211439 + 0.977391i $$0.432185\pi$$
$$108$$ −4.91934 1.67336i −0.473363 0.161019i
$$109$$ 0.765456i 0.0733174i 0.999328 + 0.0366587i $$0.0116714\pi$$
−0.999328 + 0.0366587i $$0.988329\pi$$
$$110$$ 0.179815 + 0.501400i 0.0171447 + 0.0478066i
$$111$$ 0.931761 0.532284i 0.0884388 0.0505222i
$$112$$ 0.951057 + 0.309017i 0.0898664 + 0.0291994i
$$113$$ 6.11535 + 8.41706i 0.575284 + 0.791810i 0.993168 0.116690i $$-0.0372283\pi$$
−0.417885 + 0.908500i $$0.637228\pi$$
$$114$$ −1.11161 + 10.1303i −0.104112 + 0.948787i
$$115$$ 0.146092 + 0.449624i 0.0136231 + 0.0419276i
$$116$$ −1.95604 6.02007i −0.181614 0.558950i
$$117$$ 7.99678 + 18.4126i 0.739302 + 1.70224i
$$118$$ −8.48442 11.6778i −0.781054 1.07503i
$$119$$ 2.59105 + 0.841882i 0.237521 + 0.0771752i
$$120$$ −0.137985 0.241542i −0.0125962 0.0220497i
$$121$$ 8.49296 6.99068i 0.772088 0.635516i
$$122$$ 8.07664i 0.731225i
$$123$$ −1.93732 9.32389i −0.174682 0.840707i
$$124$$ −6.82118 + 4.95588i −0.612560 + 0.445051i
$$125$$ 0.941580 1.29597i 0.0842175 0.115915i
$$126$$ 0.650555 2.92861i 0.0579560 0.260902i
$$127$$ 12.9700 4.21421i 1.15090 0.373951i 0.329419 0.944184i $$-0.393147\pi$$
0.821483 + 0.570233i $$0.193147\pi$$
$$128$$ 0.809017 + 0.587785i 0.0715077 + 0.0519534i
$$129$$ −3.80631 1.71558i −0.335127 0.151049i
$$130$$ −0.332092 + 1.02207i −0.0291264 + 0.0896418i
$$131$$ −7.47224 −0.652852 −0.326426 0.945223i $$-0.605844\pi$$
−0.326426 + 0.945223i $$0.605844\pi$$
$$132$$ −3.73331 + 4.36605i −0.324943 + 0.380016i
$$133$$ −5.88382 −0.510192
$$134$$ −2.90076 + 8.92763i −0.250588 + 0.771230i
$$135$$ −0.681817 + 0.481214i −0.0586815 + 0.0414163i
$$136$$ 2.20408 + 1.60136i 0.188998 + 0.137315i
$$137$$ −4.15192 + 1.34904i −0.354722 + 0.115256i −0.480957 0.876744i $$-0.659711\pi$$
0.126235 + 0.992000i $$0.459711\pi$$
$$138$$ −3.42886 + 3.77329i −0.291884 + 0.321203i
$$139$$ −12.1741 + 16.7562i −1.03260 + 1.42125i −0.129615 + 0.991564i $$0.541374\pi$$
−0.902981 + 0.429681i $$0.858626\pi$$
$$140$$ 0.129933 0.0944015i 0.0109813 0.00797839i
$$141$$ 4.52140 0.939457i 0.380771 0.0791166i
$$142$$ 10.5456i 0.884967i
$$143$$ 22.1827 0.669659i 1.85501 0.0559997i
$$144$$ 1.52371 2.58424i 0.126975 0.215354i
$$145$$ −0.966856 0.314151i −0.0802930 0.0260888i
$$146$$ 0.0597686 + 0.0822645i 0.00494649 + 0.00680826i
$$147$$ 1.72172 + 0.188926i 0.142005 + 0.0155824i
$$148$$ 0.191450 + 0.589221i 0.0157371 + 0.0484337i
$$149$$ 0.923115 + 2.84105i 0.0756245 + 0.232748i 0.981722 0.190321i $$-0.0609528\pi$$
−0.906097 + 0.423069i $$0.860953\pi$$
$$150$$ 8.56417 + 0.939758i 0.699262 + 0.0767309i
$$151$$ 0.0890010 + 0.122499i 0.00724280 + 0.00996886i 0.812623 0.582790i $$-0.198039\pi$$
−0.805380 + 0.592759i $$0.798039\pi$$
$$152$$ −5.59585 1.81820i −0.453883 0.147476i
$$153$$ 4.15117 7.04049i 0.335602 0.569190i
$$154$$ −2.74081 1.86761i −0.220861 0.150496i
$$155$$ 1.35414i 0.108767i
$$156$$ −11.3474 + 2.35778i −0.908523 + 0.188773i
$$157$$ 1.43904 1.04552i 0.114848 0.0834417i −0.528879 0.848697i $$-0.677387\pi$$
0.643727 + 0.765256i $$0.277387\pi$$
$$158$$ 5.39112 7.42024i 0.428894 0.590322i
$$159$$ −3.02238 + 3.32597i −0.239690 + 0.263767i
$$160$$ 0.152745 0.0496298i 0.0120755 0.00392358i
$$161$$ −2.38144 1.73022i −0.187684 0.136360i
$$162$$ −8.15356 3.81045i −0.640604 0.299377i
$$163$$ 5.31247 16.3501i 0.416105 1.28064i −0.495154 0.868805i $$-0.664889\pi$$
0.911259 0.411833i $$-0.135111\pi$$
$$164$$ 5.49813 0.429331
$$165$$ 0.214863 + 0.897240i 0.0167270 + 0.0698501i
$$166$$ 14.2113 1.10301
$$167$$ 6.43253 19.7973i 0.497764 1.53196i −0.314841 0.949145i $$-0.601951\pi$$
0.812605 0.582815i $$-0.198049\pi$$
$$168$$ 1.57907 + 0.711719i 0.121828 + 0.0549103i
$$169$$ 25.7062 + 18.6766i 1.97740 + 1.43666i
$$170$$ 0.416136 0.135211i 0.0319162 0.0103702i
$$171$$ −3.82775 + 17.2314i −0.292715 + 1.31772i
$$172$$ 1.41684 1.95012i 0.108033 0.148695i
$$173$$ −14.9931 + 10.8931i −1.13990 + 0.828188i −0.987106 0.160069i $$-0.948828\pi$$
−0.152797 + 0.988258i $$0.548828\pi$$
$$174$$ −2.23040 10.7344i −0.169086 0.813773i
$$175$$ 4.97421i 0.376015i
$$176$$ −2.02954 2.62316i −0.152982 0.197728i
$$177$$ −12.4015 21.7088i −0.932155 1.63173i
$$178$$ 14.3610 + 4.66616i 1.07640 + 0.349743i
$$179$$ 10.7526 + 14.7997i 0.803686 + 1.10618i 0.992267 + 0.124121i $$0.0396111\pi$$
−0.188581 + 0.982058i $$0.560389\pi$$
$$180$$ −0.191937 0.441936i −0.0143062 0.0329399i
$$181$$ 0.221317 + 0.681143i 0.0164503 + 0.0506289i 0.958945 0.283593i $$-0.0915265\pi$$
−0.942494 + 0.334222i $$0.891526\pi$$
$$182$$ −2.06775 6.36388i −0.153272 0.471722i
$$183$$ 1.52589 13.9057i 0.112797 1.02794i
$$184$$ −1.73022 2.38144i −0.127553 0.175562i
$$185$$ 0.0946322 + 0.0307479i 0.00695750 + 0.00226063i
$$186$$ −12.6804 + 7.24391i −0.929774 + 0.531150i
$$187$$ −5.52926 7.14651i −0.404339 0.522604i
$$188$$ 2.66619i 0.194452i
$$189$$ 1.67336 4.91934i 0.121719 0.357829i
$$190$$ −0.764500 + 0.555442i −0.0554627 + 0.0402960i
$$191$$ 15.3041 21.0643i 1.10737 1.52416i 0.282126 0.959377i $$-0.408960\pi$$
0.825240 0.564782i $$-0.191040\pi$$
$$192$$ 1.28185 + 1.16484i 0.0925095 + 0.0840654i
$$193$$ −2.38681 + 0.775523i −0.171807 + 0.0558234i −0.393657 0.919257i $$-0.628790\pi$$
0.221851 + 0.975081i $$0.428790\pi$$
$$194$$ −8.38572 6.09258i −0.602060 0.437422i
$$195$$ −0.764865 + 1.69698i −0.0547731 + 0.121523i
$$196$$ −0.309017 + 0.951057i −0.0220726 + 0.0679326i
$$197$$ 7.14552 0.509097 0.254549 0.967060i $$-0.418073\pi$$
0.254549 + 0.967060i $$0.418073\pi$$
$$198$$ −7.25256 + 6.81179i −0.515417 + 0.484093i
$$199$$ 12.9631 0.918927 0.459464 0.888197i $$-0.348042\pi$$
0.459464 + 0.888197i $$0.348042\pi$$
$$200$$ −1.53711 + 4.73075i −0.108690 + 0.334515i
$$201$$ −6.68096 + 14.8228i −0.471238 + 1.04552i
$$202$$ −9.57177 6.95430i −0.673467 0.489303i
$$203$$ 6.02007 1.95604i 0.422526 0.137287i
$$204$$ 3.49226 + 3.17349i 0.244507 + 0.222189i
$$205$$ 0.519031 0.714386i 0.0362507 0.0498948i
$$206$$ −0.881475 + 0.640429i −0.0614153 + 0.0446208i
$$207$$ −6.61640 + 5.84872i −0.459872 + 0.406514i
$$208$$ 6.69138i 0.463964i
$$209$$ 16.1264 + 10.9887i 1.11549 + 0.760104i
$$210$$ 0.241542 0.137985i 0.0166680 0.00952187i
$$211$$ −21.9899 7.14496i −1.51385 0.491879i −0.569828 0.821764i $$-0.692990\pi$$
−0.944021 + 0.329885i $$0.892990\pi$$
$$212$$ −1.52511 2.09913i −0.104745 0.144169i
$$213$$ 1.99234 18.1565i 0.136513 1.24407i
$$214$$ −2.57918 7.93789i −0.176309 0.542623i
$$215$$ −0.119632 0.368188i −0.00815881 0.0251102i
$$216$$ 3.11162 4.16147i 0.211719 0.283152i
$$217$$ −4.95588 6.82118i −0.336427 0.463052i
$$218$$ −0.727992 0.236539i −0.0493058 0.0160204i
$$219$$ 0.0873627 + 0.152928i 0.00590342 + 0.0103339i
$$220$$ −0.532426 + 0.0160731i −0.0358961 + 0.00108364i
$$221$$ 18.2299i 1.22628i
$$222$$ 0.218303 + 1.05064i 0.0146515 + 0.0705145i
$$223$$ 6.15373 4.47095i 0.412084 0.299397i −0.362361 0.932038i $$-0.618029\pi$$
0.774445 + 0.632641i $$0.218029\pi$$
$$224$$ −0.587785 + 0.809017i −0.0392731 + 0.0540547i
$$225$$ 14.5675 + 3.23599i 0.971169 + 0.215733i
$$226$$ −9.89485 + 3.21503i −0.658195 + 0.213861i
$$227$$ −19.2651 13.9969i −1.27867 0.929009i −0.279160 0.960245i $$-0.590056\pi$$
−0.999512 + 0.0312354i $$0.990056\pi$$
$$228$$ −9.29096 4.18763i −0.615309 0.277332i
$$229$$ −4.25896 + 13.1077i −0.281440 + 0.866184i 0.706003 + 0.708209i $$0.250496\pi$$
−0.987443 + 0.157975i $$0.949504\pi$$
$$230$$ −0.472762 −0.0311730
$$231$$ −4.36605 3.73331i −0.287265 0.245634i
$$232$$ 6.32988 0.415577
$$233$$ 0.322037 0.991129i 0.0210974 0.0649310i −0.939954 0.341302i $$-0.889132\pi$$
0.961051 + 0.276371i $$0.0891320\pi$$
$$234$$ −19.9825 + 1.91559i −1.30630 + 0.125226i
$$235$$ 0.346424 + 0.251692i 0.0225982 + 0.0164186i
$$236$$ 13.7281 4.46052i 0.893621 0.290355i
$$237$$ 10.6838 11.7570i 0.693991 0.763700i
$$238$$ −1.60136 + 2.20408i −0.103800 + 0.142869i
$$239$$ −17.2577 + 12.5384i −1.11630 + 0.811043i −0.983645 0.180119i $$-0.942352\pi$$
−0.132660 + 0.991162i $$0.542352\pi$$
$$240$$ 0.272360 0.0565910i 0.0175807 0.00365293i
$$241$$ 12.2281i 0.787678i −0.919179 0.393839i $$-0.871147\pi$$
0.919179 0.393839i $$-0.128853\pi$$
$$242$$ 4.02406 + 10.2375i 0.258676 + 0.658093i
$$243$$ −13.3182 8.10093i −0.854364 0.519675i
$$244$$ 7.68134 + 2.49582i 0.491747 + 0.159778i
$$245$$ 0.0944015 + 0.129933i 0.00603109 + 0.00830109i
$$246$$ 9.46621 + 1.03874i 0.603544 + 0.0662276i
$$247$$ 12.1663 + 37.4439i 0.774121 + 2.38250i
$$248$$ −2.60546 8.01878i −0.165447 0.509193i
$$249$$ 24.4678 + 2.68489i 1.55059 + 0.170148i
$$250$$ 0.941580 + 1.29597i 0.0595508 + 0.0819646i
$$251$$ −0.705970 0.229384i −0.0445604 0.0144786i 0.286652 0.958035i $$-0.407458\pi$$
−0.331212 + 0.943556i $$0.607458\pi$$
$$252$$ 2.58424 + 1.52371i 0.162792 + 0.0959844i
$$253$$ 3.29570 + 9.18981i 0.207199 + 0.577758i
$$254$$ 13.6375i 0.855691i
$$255$$ 0.742014 0.154176i 0.0464667 0.00965486i
$$256$$ −0.809017 + 0.587785i −0.0505636 + 0.0367366i
$$257$$ −1.74642 + 2.40375i −0.108939 + 0.149942i −0.860005 0.510285i $$-0.829540\pi$$
0.751066 + 0.660227i $$0.229540\pi$$
$$258$$ 2.80783 3.08987i 0.174808 0.192367i
$$259$$ −0.589221 + 0.191450i −0.0366124 + 0.0118961i
$$260$$ −0.869428 0.631676i −0.0539196 0.0391749i
$$261$$ −1.81210 18.9030i −0.112166 1.17006i
$$262$$ 2.30905 7.10652i 0.142653 0.439042i
$$263$$ 2.16498 0.133499 0.0667493 0.997770i $$-0.478737\pi$$
0.0667493 + 0.997770i $$0.478737\pi$$
$$264$$ −2.99871 4.89977i −0.184558 0.301560i
$$265$$ −0.416718 −0.0255988
$$266$$ 1.81820 5.59585i 0.111481 0.343103i
$$267$$ 23.8439 + 10.7470i 1.45923 + 0.657704i
$$268$$ −7.59430 5.51758i −0.463896 0.337040i
$$269$$ 1.35856 0.441423i 0.0828328 0.0269140i −0.267307 0.963611i $$-0.586134\pi$$
0.350140 + 0.936697i $$0.386134\pi$$
$$270$$ −0.246969 0.797150i −0.0150300 0.0485130i
$$271$$ 8.04765 11.0766i 0.488860 0.672858i −0.491317 0.870981i $$-0.663484\pi$$
0.980177 + 0.198123i $$0.0634844\pi$$
$$272$$ −2.20408 + 1.60136i −0.133642 + 0.0970964i
$$273$$ −2.35778 11.3474i −0.142699 0.686779i
$$274$$ 4.36559i 0.263735i
$$275$$ 9.28988 13.6333i 0.560201 0.822122i
$$276$$ −2.52903 4.42705i −0.152230 0.266477i
$$277$$ −8.82592 2.86771i −0.530298 0.172304i 0.0316157 0.999500i $$-0.489935\pi$$
−0.561914 + 0.827196i $$0.689935\pi$$
$$278$$ −12.1741 16.7562i −0.730155 1.00497i
$$279$$ −23.2007 + 10.0763i −1.38899 + 0.603252i
$$280$$ 0.0496298 + 0.152745i 0.00296595 + 0.00912825i
$$281$$ −4.04096 12.4368i −0.241064 0.741918i −0.996259 0.0864177i $$-0.972458\pi$$
0.755195 0.655500i $$-0.227542\pi$$
$$282$$ −0.503712 + 4.59042i −0.0299956 + 0.273355i
$$283$$ −8.51009 11.7131i −0.505873 0.696274i 0.477344 0.878717i $$-0.341600\pi$$
−0.983216 + 0.182443i $$0.941600\pi$$
$$284$$ 10.0295 + 3.25877i 0.595139 + 0.193372i
$$285$$ −1.42119 + 0.811879i −0.0841840 + 0.0480916i
$$286$$ −6.21794 + 21.3039i −0.367675 + 1.25973i
$$287$$ 5.49813i 0.324544i
$$288$$ 1.98691 + 2.24771i 0.117080 + 0.132447i
$$289$$ 7.74853 5.62964i 0.455796 0.331155i
$$290$$ 0.597550 0.822457i 0.0350893 0.0482963i
$$291$$ −13.2868 12.0740i −0.778885 0.707789i
$$292$$ −0.0967077 + 0.0314222i −0.00565939 + 0.00183885i
$$293$$ −6.56633 4.77072i −0.383609 0.278708i 0.379223 0.925305i $$-0.376191\pi$$
−0.762832 + 0.646597i $$0.776191\pi$$
$$294$$ −0.711719 + 1.57907i −0.0415083 + 0.0920931i
$$295$$ 0.716384 2.20480i 0.0417095 0.128369i
$$296$$ −0.619544 −0.0360103
$$297$$ −13.7738 + 10.3578i −0.799235 + 0.601018i
$$298$$ −2.98726 −0.173047
$$299$$ −6.08668 + 18.7329i −0.352002 + 1.08335i
$$300$$ −3.54024 + 7.85461i −0.204396 + 0.453486i
$$301$$ 1.95012 + 1.41684i 0.112403 + 0.0816655i
$$302$$ −0.144007 + 0.0467906i −0.00828665 + 0.00269250i
$$303$$ −15.1660 13.7817i −0.871265 0.791737i
$$304$$ 3.45842 4.76011i 0.198354 0.273011i
$$305$$ 1.04942 0.762447i 0.0600895 0.0436576i
$$306$$ 5.41312 + 6.12362i 0.309447 + 0.350064i
$$307$$ 20.9851i 1.19769i −0.800867 0.598843i $$-0.795627\pi$$
0.800867 0.598843i $$-0.204373\pi$$
$$308$$ 2.62316 2.02954i 0.149468 0.115644i
$$309$$ −1.63864 + 0.936103i −0.0932192 + 0.0532531i
$$310$$ −1.28786 0.418451i −0.0731455 0.0237664i
$$311$$ 4.45601 + 6.13317i 0.252677 + 0.347780i 0.916447 0.400157i $$-0.131044\pi$$
−0.663770 + 0.747937i $$0.731044\pi$$
$$312$$ 1.26418 11.5207i 0.0715699 0.652229i
$$313$$ −0.203328 0.625778i −0.0114928 0.0353710i 0.945146 0.326649i $$-0.105920\pi$$
−0.956638 + 0.291278i $$0.905920\pi$$
$$314$$ 0.549663 + 1.69169i 0.0310193 + 0.0954676i
$$315$$ 0.441936 0.191937i 0.0249003 0.0108144i
$$316$$ 5.39112 + 7.42024i 0.303274 + 0.417421i
$$317$$ 16.2965 + 5.29505i 0.915302 + 0.297400i 0.728538 0.685005i $$-0.240200\pi$$
0.186764 + 0.982405i $$0.440200\pi$$
$$318$$ −2.22922 3.90224i −0.125008 0.218827i
$$319$$ −20.1530 5.88202i −1.12835 0.329330i
$$320$$ 0.160605i 0.00897812i
$$321$$ −2.94094 14.1541i −0.164147 0.790003i
$$322$$ 2.38144 1.73022i 0.132713 0.0964214i
$$323$$ 9.42209 12.9684i 0.524259 0.721581i
$$324$$ 6.14354 6.57700i 0.341308 0.365389i
$$325$$ 31.6552 10.2854i 1.75592 0.570532i
$$326$$ 13.9082 + 10.1049i 0.770305 + 0.559660i
$$327$$ −1.20871 0.544789i −0.0668416 0.0301269i
$$328$$ −1.69901 + 5.22903i −0.0938124 + 0.288725i
$$329$$ −2.66619 −0.146992
$$330$$ −0.919722 0.0729159i −0.0506290 0.00401389i
$$331$$ 11.6127 0.638293 0.319147 0.947705i $$-0.396604\pi$$
0.319147 + 0.947705i $$0.396604\pi$$
$$332$$ −4.39153 + 13.5157i −0.241017 + 0.741773i
$$333$$ 0.177361 + 1.85015i 0.00971934 + 0.101388i
$$334$$ 16.8406 + 12.2354i 0.921475 + 0.669491i
$$335$$ −1.43383 + 0.465879i −0.0783383 + 0.0254537i
$$336$$ −1.16484 + 1.28185i −0.0635474 + 0.0699306i
$$337$$ 10.2525 14.1114i 0.558492 0.768698i −0.432642 0.901566i $$-0.642419\pi$$
0.991134 + 0.132868i $$0.0424186\pi$$
$$338$$ −25.7062 + 18.6766i −1.39823 + 1.01587i
$$339$$ −17.6435 + 3.66597i −0.958265 + 0.199108i
$$340$$ 0.437552i 0.0237296i
$$341$$ 0.843801 + 27.9512i 0.0456944 + 1.51364i
$$342$$ −15.2052 8.96521i −0.822205 0.484783i
$$343$$ −0.951057 0.309017i −0.0513522 0.0166853i
$$344$$ 1.41684 + 1.95012i 0.0763911 + 0.105143i
$$345$$ −0.813963 0.0893172i −0.0438223 0.00480868i
$$346$$ −5.72685 17.6254i −0.307877 0.947549i
$$347$$ 3.71644 + 11.4380i 0.199509 + 0.614025i 0.999894 + 0.0145394i $$0.00462821\pi$$
−0.800385 + 0.599486i $$0.795372\pi$$
$$348$$ 10.8983 + 1.19588i 0.584208 + 0.0641059i
$$349$$ 5.97931 + 8.22981i 0.320065 + 0.440532i 0.938487 0.345315i $$-0.112228\pi$$
−0.618422 + 0.785846i $$0.712228\pi$$
$$350$$ −4.73075 1.53711i −0.252869 0.0821622i
$$351$$ −34.7662 0.477122i −1.85568 0.0254669i
$$352$$ 3.12194 1.11961i 0.166400 0.0596752i
$$353$$ 9.39359i 0.499970i 0.968250 + 0.249985i $$0.0804257\pi$$
−0.968250 + 0.249985i $$0.919574\pi$$
$$354$$ 24.4786 5.08616i 1.30102 0.270326i
$$355$$ 1.37022 0.995521i 0.0727236 0.0528368i
$$356$$ −8.87556 + 12.2162i −0.470404 + 0.647455i
$$357$$ −3.17349 + 3.49226i −0.167959 + 0.184830i
$$358$$ −17.3980 + 5.65297i −0.919515 + 0.298769i
$$359$$ 17.8080 + 12.9382i 0.939869 + 0.682855i 0.948389 0.317109i $$-0.102712\pi$$
−0.00852040 + 0.999964i $$0.502712\pi$$
$$360$$ 0.479618 0.0459777i 0.0252781 0.00242324i
$$361$$ −4.82665 + 14.8549i −0.254034 + 0.781837i
$$362$$ −0.716196 −0.0376424
$$363$$ 4.99415 + 18.3864i 0.262125 + 0.965034i
$$364$$ 6.69138 0.350724
$$365$$ −0.00504658 + 0.0155318i −0.000264150 + 0.000812971i
$$366$$ 12.7536 + 5.74830i 0.666639 + 0.300468i
$$367$$ 13.6048 + 9.88448i 0.710166 + 0.515966i 0.883227 0.468945i $$-0.155366\pi$$
−0.173061 + 0.984911i $$0.555366\pi$$
$$368$$ 2.79955 0.909630i 0.145937 0.0474178i
$$369$$ 16.1019 + 3.57683i 0.838231 + 0.186202i
$$370$$ −0.0584859 + 0.0804989i −0.00304054 + 0.00418494i
$$371$$ 2.09913 1.52511i 0.108981 0.0791796i
$$372$$ −2.97090 14.2983i −0.154034 0.741332i
$$373$$ 11.6100i 0.601145i −0.953759 0.300572i $$-0.902822\pi$$
0.953759 0.300572i $$-0.0971777\pi$$
$$374$$ 8.50536 3.05024i 0.439802 0.157724i
$$375$$ 1.37629 + 2.40919i 0.0710713 + 0.124410i
$$376$$ −2.53569 0.823897i −0.130768 0.0424892i
$$377$$ −24.8960 34.2664i −1.28221 1.76481i
$$378$$ 4.16147 + 3.11162i 0.214043 + 0.160044i
$$379$$ 5.02873 + 15.4768i 0.258308 + 0.794992i 0.993160 + 0.116763i $$0.0372519\pi$$
−0.734851 + 0.678228i $$0.762748\pi$$
$$380$$ −0.292013 0.898724i −0.0149800 0.0461036i
$$381$$ −2.57647 + 23.4798i −0.131997 + 1.20291i
$$382$$ 15.3041 + 21.0643i 0.783026 + 1.07774i
$$383$$ 14.2826 + 4.64070i 0.729807 + 0.237129i 0.650270 0.759703i $$-0.274656\pi$$
0.0795372 + 0.996832i $$0.474656\pi$$
$$384$$ −1.50395 + 0.859155i −0.0767479 + 0.0438436i
$$385$$ −0.0160731 0.532426i −0.000819159 0.0271349i
$$386$$ 2.50964i 0.127738i
$$387$$ 5.41805 4.78941i 0.275415 0.243459i
$$388$$ 8.38572 6.09258i 0.425720 0.309304i
$$389$$ −1.76075 + 2.42346i −0.0892736 + 0.122875i −0.851318 0.524651i $$-0.824196\pi$$
0.762044 + 0.647525i $$0.224196\pi$$
$$390$$ −1.37757 1.25183i −0.0697559 0.0633886i
$$391$$ 7.62707 2.47819i 0.385718 0.125327i
$$392$$ −0.809017 0.587785i −0.0408615 0.0296876i
$$393$$ 5.31813 11.7992i 0.268264 0.595189i
$$394$$ −2.20809 + 6.79580i −0.111242 + 0.342367i
$$395$$ 1.47306 0.0741177
$$396$$ −4.23723 9.00255i −0.212929 0.452395i
$$397$$ 8.11214 0.407137 0.203568 0.979061i $$-0.434746\pi$$
0.203568 + 0.979061i $$0.434746\pi$$
$$398$$ −4.00581 + 12.3286i −0.200793 + 0.617977i
$$399$$ 4.18763 9.29096i 0.209644 0.465130i
$$400$$ −4.02422 2.92376i −0.201211 0.146188i
$$401$$ −30.8478 + 10.0231i −1.54047 + 0.500528i −0.951505 0.307633i $$-0.900463\pi$$
−0.588962 + 0.808161i $$0.700463\pi$$
$$402$$ −12.0328 10.9345i −0.600142 0.545362i
$$403$$ −33.1617 + 45.6431i −1.65190 + 2.27364i
$$404$$ 9.57177 6.95430i 0.476213 0.345989i
$$405$$ −0.274607 1.41912i −0.0136453 0.0705169i
$$406$$ 6.32988i 0.314147i
$$407$$ 1.97250 + 0.575709i 0.0977730 + 0.0285369i
$$408$$ −4.09733 + 2.34067i −0.202848 + 0.115881i
$$409$$ 24.0621 + 7.81825i 1.18979 + 0.386587i 0.835997 0.548735i $$-0.184890\pi$$
0.353797 + 0.935322i $$0.384890\pi$$
$$410$$ 0.519031 + 0.714386i 0.0256331 + 0.0352810i
$$411$$ 0.824774 7.51630i 0.0406831 0.370752i
$$412$$ −0.336693 1.03624i −0.0165877 0.0510517i
$$413$$ 4.46052 + 13.7281i 0.219488 + 0.675514i
$$414$$ −3.51789 8.09993i −0.172895 0.398090i
$$415$$ 1.34157 + 1.84651i 0.0658550 + 0.0906416i
$$416$$ 6.36388 + 2.06775i 0.312015 + 0.101380i
$$417$$ −17.7947 31.1495i −0.871410 1.52540i
$$418$$ −15.4342 + 11.9415i −0.754912 + 0.584076i
$$419$$ 3.94839i 0.192892i −0.995338 0.0964458i $$-0.969253\pi$$
0.995338 0.0964458i $$-0.0307475\pi$$
$$420$$ 0.0565910 + 0.272360i 0.00276136 + 0.0132898i
$$421$$ −21.4274 + 15.5679i −1.04431 + 0.758733i −0.971121 0.238586i $$-0.923316\pi$$
−0.0731846 + 0.997318i $$0.523316\pi$$
$$422$$ 13.5905 18.7057i 0.661576 0.910582i
$$423$$ −1.73450 + 7.80823i −0.0843342 + 0.379649i
$$424$$ 2.46767 0.801796i 0.119841 0.0389387i
$$425$$ −10.9635 7.96547i −0.531809 0.386382i
$$426$$ 16.6522 + 7.50551i 0.806803 + 0.363643i
$$427$$ −2.49582 + 7.68134i −0.120781 + 0.371726i
$$428$$ 8.34639 0.403438
$$429$$ −14.7304 + 35.5046i −0.711191 + 1.71418i
$$430$$ 0.387136 0.0186694
$$431$$ −11.3955 + 35.0716i −0.548900 + 1.68934i 0.162631 + 0.986687i $$0.448002\pi$$
−0.711531 + 0.702655i $$0.751998\pi$$
$$432$$ 2.99625 + 4.24529i 0.144157 + 0.204252i
$$433$$ −17.7907 12.9257i −0.854966 0.621169i 0.0715448 0.997437i $$-0.477207\pi$$
−0.926511 + 0.376268i $$0.877207\pi$$
$$434$$ 8.01878 2.60546i 0.384914 0.125066i
$$435$$ 1.18420 1.30314i 0.0567778 0.0624810i
$$436$$ 0.449924 0.619267i 0.0215474 0.0296575i
$$437$$ −14.0120 + 10.1803i −0.670284 + 0.486990i
$$438$$ −0.172440 + 0.0358295i −0.00823949 + 0.00171200i
$$439$$ 0.987382i 0.0471252i −0.999722 0.0235626i $$-0.992499\pi$$
0.999722 0.0235626i $$-0.00750090\pi$$
$$440$$ 0.149242 0.511334i 0.00711484 0.0243769i
$$441$$ −1.52371 + 2.58424i −0.0725574 + 0.123059i
$$442$$ 17.3377 + 5.63335i 0.824669 + 0.267951i
$$443$$ −5.42049 7.46066i −0.257535 0.354467i 0.660597 0.750740i $$-0.270303\pi$$
−0.918132 + 0.396274i $$0.870303\pi$$
$$444$$ −1.06668 0.117048i −0.0506223 0.00555486i
$$445$$ 0.749411 + 2.30645i 0.0355255 + 0.109336i
$$446$$ 2.35051 + 7.23414i 0.111300 + 0.342547i
$$447$$ −5.14322 0.564372i −0.243266 0.0266939i
$$448$$ −0.587785 0.809017i −0.0277702 0.0382225i
$$449$$ −28.6076 9.29517i −1.35008 0.438666i −0.457358 0.889283i $$-0.651204\pi$$
−0.892718 + 0.450617i $$0.851204\pi$$
$$450$$ −7.57923 + 12.8546i −0.357288 + 0.605970i
$$451$$ 10.2684 15.0693i 0.483518 0.709586i
$$452$$ 10.4041i 0.489366i
$$453$$ −0.256779 + 0.0533535i −0.0120645 + 0.00250677i
$$454$$ 19.2651 13.9969i 0.904157 0.656909i
$$455$$ 0.631676 0.869428i 0.0296134 0.0407594i
$$456$$ 6.85373 7.54218i 0.320956 0.353195i
$$457$$ −13.0274 + 4.23287i −0.609398 + 0.198005i −0.597427 0.801923i $$-0.703810\pi$$
−0.0119705 + 0.999928i $$0.503810\pi$$
$$458$$ −11.1501 8.10103i −0.521010 0.378536i
$$459$$ 8.16294 + 11.5658i 0.381014 + 0.539846i
$$460$$ 0.146092 0.449624i 0.00681156 0.0209638i
$$461$$ −2.00605 −0.0934310 −0.0467155 0.998908i $$-0.514875\pi$$
−0.0467155 + 0.998908i $$0.514875\pi$$
$$462$$ 4.89977 2.99871i 0.227958 0.139513i
$$463$$ −22.4838 −1.04491 −0.522456 0.852666i $$-0.674984\pi$$
−0.522456 + 0.852666i $$0.674984\pi$$
$$464$$ −1.95604 + 6.02007i −0.0908069 + 0.279475i
$$465$$ −2.13827 0.963764i −0.0991600 0.0446935i
$$466$$ 0.843104 + 0.612551i 0.0390561 + 0.0283759i
$$467$$ 14.7956 4.80739i 0.684659 0.222459i 0.0540251 0.998540i $$-0.482795\pi$$
0.630634 + 0.776080i $$0.282795\pi$$
$$468$$ 4.35311 19.5965i 0.201222 0.905847i
$$469$$ 5.51758 7.59430i 0.254778 0.350672i
$$470$$ −0.346424 + 0.251692i −0.0159794 + 0.0116097i
$$471$$ 0.626760 + 3.01646i 0.0288796 + 0.138991i
$$472$$ 14.4345i 0.664404i
$$473$$ −2.69879 7.52536i −0.124090 0.346016i
$$474$$ 7.88010 + 13.7941i 0.361945 + 0.633582i
$$475$$ 27.8349 + 9.04411i 1.27715 + 0.414972i
$$476$$ −1.60136 2.20408i −0.0733980 0.101024i
$$477$$ −3.10085 7.13970i −0.141978 0.326905i
$$478$$ −6.59184 20.2876i −0.301504 0.927933i
$$479$$ −7.65871 23.5711i −0.349935 1.07699i −0.958888 0.283784i $$-0.908410\pi$$
0.608953 0.793206i $$-0.291590\pi$$
$$480$$ −0.0303426 + 0.276517i −0.00138494 + 0.0126212i
$$481$$ 2.43673 + 3.35386i 0.111105 + 0.152923i
$$482$$ 11.6296 + 3.77868i 0.529712 + 0.172114i
$$483$$ 4.42705 2.52903i 0.201438 0.115075i
$$484$$ −10.9800 + 0.663539i −0.499089 + 0.0301609i
$$485$$ 1.66473i 0.0755914i
$$486$$ 11.8200 10.1631i 0.536166 0.461006i
$$487$$ 18.9050 13.7353i 0.856667 0.622405i −0.0703088 0.997525i $$-0.522398\pi$$
0.926976 + 0.375120i $$0.122398\pi$$
$$488$$ −4.74733 + 6.53414i −0.214901 + 0.295787i
$$489$$ 22.0369 + 20.0254i 0.996544 + 0.905581i
$$490$$ −0.152745 + 0.0496298i −0.00690031 + 0.00224205i
$$491$$ −11.4997 8.35505i −0.518976 0.377058i 0.297242 0.954802i $$-0.403933\pi$$
−0.816218 + 0.577744i $$0.803933\pi$$
$$492$$ −3.91312 + 8.68191i −0.176417 + 0.391411i
$$493$$ −5.32901 + 16.4010i −0.240007 + 0.738664i
$$494$$ −39.3709 −1.77138
$$495$$ −1.56973 0.299300i −0.0705539 0.0134525i
$$496$$ 8.43144 0.378583
$$497$$ −3.25877 + 10.0295i −0.146176 + 0.449883i
$$498$$ −10.1145 + 22.4406i −0.453239 + 1.00559i
$$499$$ 31.5546 + 22.9258i 1.41258 + 1.02630i 0.992941 + 0.118606i $$0.0378424\pi$$
0.419636 + 0.907692i $$0.362158\pi$$
$$500$$ −1.52351 + 0.495018i −0.0681334 + 0.0221379i
$$501$$ 26.6831 + 24.2475i 1.19211 + 1.08330i
$$502$$ 0.436314 0.600534i 0.0194736 0.0268031i
$$503$$ −11.0554 + 8.03224i −0.492937 + 0.358140i −0.806313 0.591489i $$-0.798540\pi$$
0.313376 + 0.949629i $$0.398540\pi$$
$$504$$ −2.24771 + 1.98691i −0.100121 + 0.0885041i
$$505$$ 1.90018i 0.0845569i
$$506$$ −9.75846 + 0.294592i −0.433816 + 0.0130962i
$$507$$ −47.7872 + 27.2993i −2.12230 + 1.21240i
$$508$$ −12.9700 4.21421i −0.575451 0.186975i
$$509$$ −0.328071 0.451551i −0.0145415 0.0200146i 0.801684 0.597748i $$-0.203938\pi$$
−0.816226 + 0.577733i $$0.803938\pi$$
$$510$$ −0.0826650 + 0.753340i −0.00366047 + 0.0333584i
$$511$$ −0.0314222 0.0967077i −0.00139004 0.00427810i
$$512$$ −0.309017 0.951057i −0.0136568 0.0420312i
$$513$$ −24.4853 18.3082i −1.08105 0.808328i
$$514$$ −1.74642 2.40375i −0.0770314 0.106025i
$$515$$ −0.166425 0.0540748i −0.00733357 0.00238282i
$$516$$ 2.07097 + 3.62523i 0.0911695 + 0.159592i
$$517$$ 7.30750 + 4.97940i 0.321384 + 0.218994i
$$518$$ 0.619544i 0.0272212i
$$519$$ −6.53010 31.4279i −0.286640 1.37953i
$$520$$ 0.869428 0.631676i 0.0381269 0.0277008i
$$521$$ 10.1785 14.0094i 0.445926 0.613765i −0.525590 0.850738i $$-0.676155\pi$$
0.971516 + 0.236973i $$0.0761553\pi$$
$$522$$ 18.5378 + 4.11793i 0.811376 + 0.180237i
$$523$$ 3.75620 1.22046i 0.164247 0.0533672i −0.225739 0.974188i $$-0.572480\pi$$
0.389986 + 0.920821i $$0.372480\pi$$
$$524$$ 6.04517 + 4.39207i 0.264084 + 0.191868i
$$525$$ −7.85461 3.54024i −0.342803 0.154509i
$$526$$ −0.669016 + 2.05902i −0.0291705 + 0.0897776i
$$527$$ 22.9705 1.00061
$$528$$ 5.58661 1.33783i 0.243126 0.0582215i
$$529$$ 14.3351 0.623264
$$530$$ 0.128773 0.396322i 0.00559353 0.0172151i
$$531$$ 43.1060 4.13228i 1.87064 0.179326i
$$532$$ 4.76011 + 3.45842i 0.206377 + 0.149942i
$$533$$ 34.9894 11.3687i 1.51556 0.492435i
$$534$$ −17.5892 + 19.3559i −0.761157 + 0.837614i
$$535$$ 0.787912 1.08447i 0.0340644 0.0468856i
$$536$$ 7.59430 5.51758i 0.328024 0.238323i
$$537$$ −31.0225 + 6.44586i −1.33872 + 0.278159i
$$538$$ 1.42847i 0.0615859i
$$539$$ 2.02954 + 2.62316i 0.0874185 + 0.112987i
$$540$$ 0.834452 + 0.0114518i 0.0359091 + 0.000492808i
$$541$$ −2.19061 0.711774i −0.0941819 0.0306015i 0.261547 0.965191i $$-0.415767\pi$$
−0.355729 + 0.934589i $$0.615767\pi$$
$$542$$ 8.04765 + 11.0766i 0.345676 + 0.475783i
$$543$$ −1.23309 0.135308i −0.0529168 0.00580663i
$$544$$ −0.841882 2.59105i −0.0360954 0.111090i
$$545$$ −0.0379894 0.116919i −0.00162729 0.00500828i
$$546$$ 11.5207 + 1.26418i 0.493039 + 0.0541018i
$$547$$ −10.3976 14.3110i −0.444568 0.611895i 0.526652 0.850081i $$-0.323447\pi$$
−0.971219 + 0.238186i $$0.923447\pi$$
$$548$$ 4.15192 + 1.34904i 0.177361 + 0.0576281i
$$549$$ 20.8720 + 12.3064i 0.890796 + 0.525225i
$$550$$ 10.0954 + 13.0481i 0.430467 + 0.556374i
$$551$$ 37.2439i 1.58664i
$$552$$ 4.99189 1.03722i 0.212469 0.0441469i
$$553$$ −7.42024 + 5.39112i −0.315541 + 0.229254i
$$554$$ 5.45472 7.50777i 0.231749 0.318975i
$$555$$ −0.115904 + 0.127547i −0.00491987 + 0.00541406i
$$556$$ 19.6981 6.40031i 0.835387 0.271434i
$$557$$ 19.5079 + 14.1733i 0.826575 + 0.600542i 0.918588 0.395216i $$-0.129330\pi$$
−0.0920130 + 0.995758i $$0.529330\pi$$
$$558$$ −2.41373 25.1789i −0.102181 1.06591i
$$559$$ 4.98427 15.3400i 0.210812 0.648813i
$$560$$ −0.160605 −0.00678682
$$561$$ 15.2201 3.64477i 0.642593 0.153882i
$$562$$ 13.0768 0.551613
$$563$$ 3.90298 12.0121i 0.164491 0.506251i −0.834507 0.550997i $$-0.814248\pi$$
0.998998 + 0.0447455i $$0.0142477\pi$$
$$564$$ −4.21009 1.89758i −0.177277 0.0799023i
$$565$$ −1.35183 0.982159i −0.0568717 0.0413197i
$$566$$ 13.7696 4.47402i 0.578780 0.188057i
$$567$$ 6.57700 + 6.14354i 0.276208 + 0.258004i
$$568$$ −6.19855 + 8.53157i −0.260085 + 0.357977i
$$569$$ −5.85782 + 4.25595i −0.245572 + 0.178419i −0.703762 0.710436i $$-0.748498\pi$$
0.458190 + 0.888854i $$0.348498\pi$$
$$570$$ −0.332971 1.60252i −0.0139466 0.0671220i
$$571$$ 23.6249i 0.988672i −0.869271 0.494336i $$-0.835411\pi$$
0.869271 0.494336i $$-0.164589\pi$$
$$572$$ −18.3398 12.4969i −0.766825 0.522521i
$$573$$ 22.3697 + 39.1581i 0.934509 + 1.63585i
$$574$$ −5.22903 1.69901i −0.218255 0.0709155i
$$575$$ 8.60647 + 11.8458i 0.358915 + 0.494004i
$$576$$ −2.75168 + 1.19509i −0.114654 + 0.0497953i
$$577$$ −7.52191 23.1501i −0.313141 0.963749i −0.976513 0.215459i $$-0.930875\pi$$
0.663372 0.748290i $$-0.269125\pi$$
$$578$$ 2.95967 + 9.10894i 0.123106 + 0.378882i
$$579$$ 0.474138 4.32090i 0.0197045 0.179570i
$$580$$ 0.597550 + 0.822457i 0.0248119 + 0.0341507i
$$581$$ −13.5157 4.39153i −0.560728 0.182191i
$$582$$ 15.5889 8.90542i 0.646180 0.369141i
$$583$$ −8.60162 + 0.259669i −0.356243 + 0.0107544i
$$584$$ 0.101684i 0.00420773i
$$585$$ −2.13528 2.41555i −0.0882829 0.0998706i
$$586$$ 6.56633 4.77072i 0.271253 0.197077i
$$587$$ 10.3759 14.2812i 0.428259 0.589447i −0.539294 0.842118i $$-0.681309\pi$$
0.967552 + 0.252670i $$0.0813088\pi$$
$$588$$ −1.28185 1.16484i −0.0528626 0.0480374i
$$589$$ −47.1811 + 15.3301i −1.94406 + 0.631664i
$$590$$ 1.87552 + 1.36264i 0.0772138 + 0.0560991i
$$591$$ −5.08561 + 11.2833i −0.209194 + 0.464132i
$$592$$ 0.191450 0.589221i 0.00786853 0.0242169i
$$593$$ 22.6256 0.929122 0.464561 0.885541i $$-0.346212\pi$$
0.464561 + 0.885541i $$0.346212\pi$$
$$594$$ −5.59449 16.3004i −0.229545 0.668812i
$$595$$ −0.437552 −0.0179379
$$596$$ 0.923115 2.84105i 0.0378123 0.116374i
$$597$$ −9.22606 + 20.4696i −0.377598 + 0.837764i
$$598$$ −15.9351 11.5776i −0.651636 0.473442i
$$599$$ −26.5826 + 8.63722i −1.08614 + 0.352907i −0.796753 0.604306i $$-0.793451\pi$$
−0.289384 + 0.957213i $$0.593451\pi$$
$$600$$ −6.37618 5.79417i −0.260307 0.236546i
$$601$$ −14.4751 + 19.9233i −0.590453 + 0.812688i −0.994793 0.101921i $$-0.967501\pi$$
0.404340 + 0.914609i $$0.367501\pi$$
$$602$$ −1.95012 + 1.41684i −0.0794809 + 0.0577462i
$$603$$ −18.6513 21.0994i −0.759539 0.859233i
$$604$$ 0.151418i 0.00616109i
$$605$$ −0.950310 + 1.48929i −0.0386356 + 0.0605484i
$$606$$ 17.7937 10.1650i 0.722820 0.412924i
$$607$$ 9.71031 + 3.15507i 0.394129 + 0.128060i 0.499375 0.866386i $$-0.333563\pi$$
−0.105246 + 0.994446i $$0.533563\pi$$
$$608$$ 3.45842 + 4.76011i 0.140258 + 0.193048i
$$609$$ −1.19588 + 10.8983i −0.0484595 + 0.441619i
$$610$$ 0.400842 + 1.23367i 0.0162296 + 0.0499496i
$$611$$ 5.51301 + 16.9673i 0.223032 + 0.686423i
$$612$$ −7.49666 + 3.25588i −0.303034 + 0.131611i
$$613$$ −19.0272 26.1887i −0.768501 1.05775i −0.996459 0.0840800i $$-0.973205\pi$$
0.227958 0.973671i $$-0.426795\pi$$
$$614$$ 19.9581 + 6.48477i 0.805442 + 0.261704i
$$615$$ 0.758659 + 1.32803i 0.0305921 + 0.0535513i
$$616$$ 1.11961 + 3.12194i 0.0451102 + 0.125786i
$$617$$ 1.78277i 0.0717717i −0.999356 0.0358859i $$-0.988575\pi$$
0.999356 0.0358859i $$-0.0114253\pi$$
$$618$$ −0.383918 1.84771i −0.0154435 0.0743260i
$$619$$ −8.02668 + 5.83173i −0.322620 + 0.234397i −0.737292 0.675574i $$-0.763896\pi$$
0.414673 + 0.909971i $$0.363896\pi$$
$$620$$ 0.795941 1.09552i 0.0319658 0.0439971i
$$621$$ −4.52651 14.6104i −0.181643 0.586295i
$$622$$ −7.20997 + 2.34266i −0.289094 + 0.0939322i
$$623$$ −12.2162 8.87556i −0.489430 0.355592i
$$624$$ 10.5661 + 4.76238i 0.422984 + 0.190648i
$$625$$ 7.60607 23.4091i 0.304243 0.936363i
$$626$$ 0.657982 0.0262982
$$627$$ −28.8294 + 17.6439i −1.15133 + 0.704628i
$$628$$ −1.77875 −0.0709798
$$629$$ 0.521583 1.60527i 0.0207969 0.0640062i
$$630$$ 0.0459777 + 0.479618i 0.00183179 + 0.0191084i
$$631$$ −37.9689 27.5860i −1.51152 1.09818i −0.965498 0.260411i $$-0.916142\pi$$
−0.546021 0.837771i $$-0.683858\pi$$
$$632$$ −8.72301 + 2.83428i −0.346983 + 0.112742i
$$633$$ 26.9330 29.6384i 1.07049 1.17802i
$$634$$ −10.0718 + 13.8626i −0.400002 + 0.550555i
$$635$$ −1.77195 + 1.28740i −0.0703177 + 0.0510888i
$$636$$ 4.40012 0.914257i 0.174476 0.0362526i
$$637$$ 6.69138i 0.265122i
$$638$$ 11.8217 17.3490i 0.468027 0.686853i
$$639$$ 27.2524 + 16.0684i 1.07809 + 0.635656i
$$640$$ −0.152745 0.0496298i −0.00603777 0.00196179i
$$641$$ −24.6324 33.9036i −0.972920 1.33911i −0.940558 0.339634i $$-0.889697\pi$$
−0.0323623 0.999476i $$-0.510303\pi$$
$$642$$ 14.3701 + 1.57685i 0.567143 + 0.0622334i
$$643$$ −3.48769 10.7340i −0.137541 0.423308i 0.858435 0.512922i $$-0.171437\pi$$
−0.995977 + 0.0896133i $$0.971437\pi$$
$$644$$ 0.909630 + 2.79955i 0.0358445 + 0.110318i
$$645$$ 0.666538 + 0.0731401i 0.0262449 + 0.00287989i
$$646$$ 9.42209 + 12.9684i 0.370707 + 0.510235i
$$647$$ 28.7627 + 9.34555i 1.13078 + 0.367412i 0.813871 0.581046i $$-0.197356\pi$$
0.316905 + 0.948457i $$0.397356\pi$$
$$648$$ 4.35664 + 7.87526i 0.171145 + 0.309369i
$$649$$ 13.4133 45.9565i 0.526517 1.80395i
$$650$$ 33.2843i 1.30552i
$$651$$ 14.2983 2.97090i 0.560394 0.116439i
$$652$$ −13.9082 + 10.1049i −0.544688 + 0.395739i
$$653$$ 5.11472 7.03980i 0.200154 0.275489i −0.697127 0.716947i $$-0.745539\pi$$
0.897282 + 0.441459i $$0.145539\pi$$
$$654$$ 0.891636 0.981199i 0.0348657 0.0383679i
$$655$$ 1.14135 0.370846i 0.0445961 0.0144901i
$$656$$ −4.44808 3.23172i −0.173668 0.126177i
$$657$$ −0.303661 + 0.0291099i −0.0118470 + 0.00113569i
$$658$$ 0.823897 2.53569i 0.0321188 0.0988516i
$$659$$ −1.04851 −0.0408442 −0.0204221 0.999791i $$-0.506501\pi$$
−0.0204221 + 0.999791i $$0.506501\pi$$
$$660$$ 0.353557 0.852176i 0.0137622 0.0331709i
$$661$$ −37.7527 −1.46841 −0.734206 0.678927i $$-0.762445\pi$$
−0.734206 + 0.678927i $$0.762445\pi$$
$$662$$ −3.58853 + 11.0444i −0.139472 + 0.429251i
$$663$$ 28.7863 + 12.9746i 1.11797 + 0.503891i
$$664$$ −11.4972 8.35319i −0.446177 0.324167i
$$665$$ 0.898724 0.292013i 0.0348510 0.0113238i
$$666$$ −1.81441 0.403047i −0.0703068 0.0156178i
$$667$$ 10.9521 15.0742i 0.424066 0.583677i
$$668$$ −16.8406 + 12.2354i −0.651581 + 0.473402i
$$669$$ 2.68020 + 12.8992i 0.103623 + 0.498712i
$$670$$ 1.50761i 0.0582442i
$$671$$ 21.1863 16.3919i 0.817889 0.632801i
$$672$$ −0.859155 1.50395i −0.0331426 0.0580160i
$$673$$ −34.2404 11.1254i −1.31987 0.428851i −0.437419 0.899258i $$-0.644107\pi$$
−0.882450 + 0.470407i $$0.844107\pi$$
$$674$$ 10.2525 + 14.1114i 0.394913 + 0.543552i
$$675$$ −15.4778 + 20.7000i −0.595742 + 0.796743i
$$676$$ −9.81888 30.2194i −0.377649 1.16228i
$$677$$ 8.43360 + 25.9559i 0.324129 + 0.997568i 0.971832 + 0.235675i $$0.0757299\pi$$
−0.647703 + 0.761893i $$0.724270\pi$$
$$678$$ 1.96560 17.9128i 0.0754884 0.687938i
$$679$$ 6.09258 + 8.38572i 0.233812 + 0.321814i
$$680$$ −0.416136 0.135211i −0.0159581 0.00518510i
$$681$$ 35.8135 20.4591i 1.37238 0.783993i
$$682$$ −26.8439 7.83489i −1.02791 0.300013i
$$683$$ 45.1710i 1.72842i −0.503131 0.864210i $$-0.667819\pi$$
0.503131 0.864210i $$-0.332181\pi$$
$$684$$ 13.2251 11.6906i 0.505674 0.447003i
$$685$$ 0.567232 0.412118i 0.0216728 0.0157462i
$$686$$ 0.587785 0.809017i 0.0224417 0.0308884i
$$687$$ −17.6668 16.0542i −0.674031 0.612507i
$$688$$ −2.29250 + 0.744879i −0.0874008 + 0.0283982i
$$689$$ −14.0461 10.2051i −0.535113 0.388782i
$$690$$ 0.336474 0.746524i 0.0128093 0.0284197i
$$691$$ 3.47116 10.6831i 0.132049 0.406406i −0.863070 0.505084i $$-0.831462\pi$$
0.995119 + 0.0986784i $$0.0314615\pi$$
$$692$$ 18.5325 0.704499
$$693$$ 9.00255 4.23723i 0.341979 0.160959i
$$694$$ −12.0266 −0.456525
$$695$$ 1.02793 3.16363i 0.0389914 0.120003i
$$696$$ −4.50509 + 9.99531i −0.170765 + 0.378871i
$$697$$ −12.1183 8.80445i −0.459013 0.333492i
$$698$$ −9.67472 + 3.14351i −0.366194 + 0.118983i
$$699$$ 1.33586 + 1.21392i 0.0505269 + 0.0459148i
$$700$$ 2.92376 4.02422i 0.110508 0.152101i
$$701$$ 24.7251 17.9638i 0.933852 0.678483i −0.0130806 0.999914i $$-0.504164\pi$$
0.946933 + 0.321431i $$0.104164\pi$$
$$702$$ 11.1971 32.9171i 0.422607 1.24238i
$$703$$ 3.64529i 0.137485i
$$704$$ 0.100078 + 3.31511i 0.00377183 + 0.124943i
$$705$$ −0.643996 + 0.367894i −0.0242543 + 0.0138557i
$$706$$ −8.93383 2.90278i −0.336229 0.109247i
$$707$$ 6.95430 + 9.57177i 0.261543 + 0.359983i
$$708$$ −2.72706 + 24.8522i −0.102489 + 0.934003i
$$709$$ −3.50974 10.8019i −0.131811 0.405673i 0.863269 0.504744i $$-0.168413\pi$$
−0.995080 + 0.0990706i $$0.968413\pi$$
$$710$$ 0.523376 + 1.61079i 0.0196420 + 0.0604517i
$$711$$ 10.9612 + 25.2382i 0.411078 + 0.946507i
$$712$$ −8.87556 12.2162i −0.332626 0.457820i
$$713$$ −23.6043 7.66949i −0.883987 0.287225i
$$714$$ −2.34067 4.09733i −0.0875974 0.153339i
$$715$$ −3.35506 + 1.20321i −0.125472 + 0.0449975i
$$716$$ 18.2934i 0.683656i
$$717$$ −7.51642 36.1748i −0.280706 1.35097i
$$718$$ −17.8080 + 12.9382i −0.664587 + 0.482851i
$$719$$ 9.17659 12.6305i 0.342229 0.471038i −0.602862 0.797846i $$-0.705973\pi$$
0.945091 + 0.326808i $$0.105973\pi$$
$$720$$ −0.104483 + 0.470351i −0.00389384 + 0.0175290i
$$721$$ 1.03624 0.336693i 0.0385914 0.0125391i
$$722$$ −12.6363 9.18083i −0.470276 0.341675i
$$723$$ 19.3089 + 8.70294i 0.718107 + 0.323666i
$$724$$ 0.221317 0.681143i 0.00822517 0.0253145i
$$725$$ −31.4861 −1.16936
$$726$$ −19.0298 0.931978i −0.706260 0.0345889i
$$727$$ −43.2823 −1.60525 −0.802626 0.596483i $$-0.796564\pi$$
−0.802626 + 0.596483i $$0.796564\pi$$
$$728$$ −2.06775 + 6.36388i −0.0766359 + 0.235861i
$$729$$ 22.2707 15.2648i 0.824843 0.565363i
$$730$$ −0.0132121 0.00959917i −0.000489003 0.000355281i
$$731$$ −6.24566 + 2.02934i −0.231004 + 0.0750578i
$$732$$ −9.40802 + 10.3530i −0.347731 + 0.382659i
$$733$$ −7.76379 + 10.6859i −0.286762 + 0.394694i −0.927959 0.372682i $$-0.878438\pi$$
0.641197 + 0.767376i $$0.278438\pi$$
$$734$$ −13.6048 + 9.88448i −0.502163 + 0.364843i
$$735$$ −0.272360 + 0.0565910i −0.0100461 + 0.00208739i
$$736$$ 2.94363i 0.108503i
$$737$$ −29.3058 + 10.5098i −1.07949 + 0.387134i
$$738$$ −8.37753 + 14.2085i −0.308381 + 0.523022i
$$739$$ −16.8990 5.49083i −0.621641 0.201983i −0.0187721 0.999824i $$-0.505976\pi$$
−0.602869 + 0.797840i $$0.705976\pi$$
$$740$$ −0.0584859 0.0804989i −0.00214998 0.00295920i
$$741$$ −67.7855 7.43819i −2.49016 0.273249i
$$742$$ 0.801796 + 2.46767i 0.0294349 + 0.0905912i
$$743$$ 6.86362 + 21.1240i 0.251802 + 0.774966i 0.994443 + 0.105277i $$0.0335728\pi$$
−0.742641 + 0.669689i $$0.766427\pi$$
$$744$$ 14.5165 + 1.59292i 0.532202 + 0.0583993i
$$745$$ −0.282002 0.388143i −0.0103318 0.0142204i
$$746$$ 11.0418 + 3.58770i 0.404269 + 0.131355i
$$747$$ −21.6538 + 36.7255i −0.792272 + 1.34371i
$$748$$ 0.272651 + 9.03166i 0.00996911 + 0.330230i
$$749$$ 8.34639i 0.304970i
$$750$$ −2.71657 + 0.564450i −0.0991952 + 0.0206108i
$$751$$ −5.60877 + 4.07501i −0.204667 + 0.148699i −0.685397 0.728169i $$-0.740371\pi$$
0.480731 + 0.876868i $$0.340371\pi$$
$$752$$ 1.56714 2.15699i 0.0571479 0.0786573i
$$753$$ 0.864665 0.951518i 0.0315101 0.0346753i
$$754$$ 40.2826 13.0886i 1.46700 0.476659i
$$755$$ −0.0196741 0.0142941i −0.000716013 0.000520214i
$$756$$ −4.24529 + 2.99625i −0.154400 + 0.108972i
$$757$$ −10.4463 + 32.1505i −0.379678 + 1.16853i 0.560590 + 0.828094i $$0.310575\pi$$
−0.940268 + 0.340436i $$0.889425\pi$$
$$758$$ −16.2733 −0.591073
$$759$$ −16.8569 1.33642i −0.611868 0.0485091i
$$760$$ 0.944974 0.0342778
$$761$$ −5.92539 + 18.2365i −0.214795 + 0.661072i 0.784373 + 0.620290i $$0.212985\pi$$
−0.999168 + 0.0407823i $$0.987015\pi$$
$$762$$ −21.5345 9.70605i −0.780112 0.351613i
$$763$$ 0.619267 + 0.449924i 0.0224190 + 0.0162883i
$$764$$ −24.7626 + 8.04585i −0.895878 + 0.291088i
$$765$$ −0.284651 + 1.28142i −0.0102916 + 0.0463298i
$$766$$ −8.82714 + 12.1495i −0.318937 + 0.438980i
$$767$$ 78.1406 56.7724i 2.82149 2.04993i
$$768$$ −0.352360 1.69583i −0.0127147 0.0611930i
$$769$$ 4.54196i 0.163787i −0.996641 0.0818936i $$-0.973903\pi$$
0.996641 0.0818936i $$-0.0260968\pi$$
$$770$$ 0.511334 + 0.149242i 0.0184272 + 0.00537831i
$$771$$ −2.55272 4.46851i −0.0919338 0.160930i
$$772$$ 2.38681 + 0.775523i 0.0859033 + 0.0279117i
$$773$$ −9.80576 13.4965i −0.352689 0.485434i