Properties

Label 462.2.p.b.241.7
Level $462$
Weight $2$
Character 462.241
Analytic conductor $3.689$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 241.7
Root \(0.500000 + 1.35798i\) of defining polynomial
Character \(\chi\) \(=\) 462.241
Dual form 462.2.p.b.439.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.92604 - 1.11200i) q^{5} +1.00000 q^{6} +(-2.45660 - 0.982398i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.92604 - 1.11200i) q^{5} +1.00000 q^{6} +(-2.45660 - 0.982398i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(1.11200 - 1.92604i) q^{10} +(2.90045 - 1.60853i) q^{11} +(0.866025 - 0.500000i) q^{12} +0.112712 q^{13} +(-2.61868 + 0.377519i) q^{14} +2.22400 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.119843 + 0.207574i) q^{17} +(0.866025 + 0.500000i) q^{18} +(0.218080 + 0.377726i) q^{19} -2.22400i q^{20} +(-1.63628 - 2.07908i) q^{21} +(1.70760 - 2.84326i) q^{22} +(-0.401617 - 0.695621i) q^{23} +(0.500000 - 0.866025i) q^{24} +(-0.0269081 + 0.0466061i) q^{25} +(0.0976119 - 0.0563562i) q^{26} +1.00000i q^{27} +(-2.07908 + 1.63628i) q^{28} +7.50955i q^{29} +(1.92604 - 1.11200i) q^{30} +(0.306643 + 0.177040i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(3.31613 + 0.0571978i) q^{33} +0.239685i q^{34} +(-5.82395 + 0.839603i) q^{35} +1.00000 q^{36} +(3.67483 + 6.36499i) q^{37} +(0.377726 + 0.218080i) q^{38} +(0.0976119 + 0.0563562i) q^{39} +(-1.11200 - 1.92604i) q^{40} -3.14869 q^{41} +(-2.45660 - 0.982398i) q^{42} -10.1874i q^{43} +(0.0571978 - 3.31613i) q^{44} +(1.92604 + 1.11200i) q^{45} +(-0.695621 - 0.401617i) q^{46} +(-11.2232 + 6.47974i) q^{47} -1.00000i q^{48} +(5.06979 + 4.82672i) q^{49} +0.0538161i q^{50} +(-0.207574 + 0.119843i) q^{51} +(0.0563562 - 0.0976119i) q^{52} +(1.28196 - 2.22041i) q^{53} +(0.500000 + 0.866025i) q^{54} +(3.79771 - 6.32340i) q^{55} +(-0.982398 + 2.45660i) q^{56} +0.436161i q^{57} +(3.75478 + 6.50347i) q^{58} +(3.27440 + 1.89048i) q^{59} +(1.11200 - 1.92604i) q^{60} +(-0.525000 - 0.909326i) q^{61} +0.354081 q^{62} +(-0.377519 - 2.61868i) q^{63} -1.00000 q^{64} +(0.217089 - 0.125336i) q^{65} +(2.90045 - 1.60853i) q^{66} +(2.48189 - 4.29875i) q^{67} +(0.119843 + 0.207574i) q^{68} -0.803234i q^{69} +(-4.62388 + 3.63909i) q^{70} -7.58067 q^{71} +(0.866025 - 0.500000i) q^{72} +(-2.39827 + 4.15392i) q^{73} +(6.36499 + 3.67483i) q^{74} +(-0.0466061 + 0.0269081i) q^{75} +0.436161 q^{76} +(-8.70548 + 1.10212i) q^{77} +0.112712 q^{78} +(-0.429215 + 0.247807i) q^{79} +(-1.92604 - 1.11200i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.72685 + 1.57435i) q^{82} +0.569186 q^{83} +(-2.61868 + 0.377519i) q^{84} +0.533061i q^{85} +(-5.09368 - 8.82251i) q^{86} +(-3.75478 + 6.50347i) q^{87} +(-1.60853 - 2.90045i) q^{88} +(-12.1232 + 6.99934i) q^{89} +2.22400 q^{90} +(-0.276890 - 0.110729i) q^{91} -0.803234 q^{92} +(0.177040 + 0.306643i) q^{93} +(-6.47974 + 11.2232i) q^{94} +(0.840064 + 0.485011i) q^{95} +(-0.500000 - 0.866025i) q^{96} -10.6708i q^{97} +(6.80393 + 1.64517i) q^{98} +(2.84326 + 1.70760i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + 12q^{5} + 16q^{6} + 6q^{7} + 8q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 12q^{5} + 16q^{6} + 6q^{7} + 8q^{9} - 2q^{10} - 4q^{11} + 8q^{14} - 4q^{15} - 8q^{16} + 10q^{19} + 4q^{21} + 2q^{22} - 4q^{23} + 8q^{24} + 10q^{25} + 12q^{26} + 12q^{30} + 6q^{31} + 4q^{33} + 8q^{35} + 16q^{36} + 14q^{37} - 12q^{38} + 12q^{39} + 2q^{40} - 32q^{41} + 6q^{42} + 4q^{44} + 12q^{45} - 18q^{46} - 24q^{47} - 6q^{49} - 6q^{51} + 8q^{54} + 14q^{55} + 4q^{56} - 2q^{60} - 28q^{61} + 8q^{62} + 6q^{63} - 16q^{64} - 72q^{65} - 4q^{66} - 16q^{67} - 30q^{70} - 56q^{71} + 44q^{73} - 24q^{74} - 12q^{75} + 20q^{76} - 52q^{77} + 30q^{79} - 12q^{80} - 8q^{81} - 12q^{82} - 8q^{83} + 8q^{84} - 12q^{86} - 2q^{88} - 36q^{89} - 4q^{90} - 8q^{91} - 8q^{92} + 4q^{93} - 14q^{94} - 72q^{95} - 8q^{96} + 40q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.92604 1.11200i 0.861352 0.497302i −0.00311268 0.999995i \(-0.500991\pi\)
0.864465 + 0.502693i \(0.167657\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.45660 0.982398i −0.928508 0.371312i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.11200 1.92604i 0.351646 0.609068i
\(11\) 2.90045 1.60853i 0.874519 0.484990i
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) 0.112712 0.0312608 0.0156304 0.999878i \(-0.495024\pi\)
0.0156304 + 0.999878i \(0.495024\pi\)
\(14\) −2.61868 + 0.377519i −0.699871 + 0.100896i
\(15\) 2.22400 0.574235
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.119843 + 0.207574i −0.0290661 + 0.0503440i −0.880193 0.474617i \(-0.842587\pi\)
0.851126 + 0.524961i \(0.175920\pi\)
\(18\) 0.866025 + 0.500000i 0.204124 + 0.117851i
\(19\) 0.218080 + 0.377726i 0.0500311 + 0.0866564i 0.889956 0.456046i \(-0.150735\pi\)
−0.839925 + 0.542702i \(0.817401\pi\)
\(20\) 2.22400i 0.497302i
\(21\) −1.63628 2.07908i −0.357066 0.453693i
\(22\) 1.70760 2.84326i 0.364062 0.606184i
\(23\) −0.401617 0.695621i −0.0837429 0.145047i 0.821112 0.570767i \(-0.193354\pi\)
−0.904855 + 0.425720i \(0.860021\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −0.0269081 + 0.0466061i −0.00538161 + 0.00932123i
\(26\) 0.0976119 0.0563562i 0.0191433 0.0110524i
\(27\) 1.00000i 0.192450i
\(28\) −2.07908 + 1.63628i −0.392910 + 0.309228i
\(29\) 7.50955i 1.39449i 0.716833 + 0.697245i \(0.245591\pi\)
−0.716833 + 0.697245i \(0.754409\pi\)
\(30\) 1.92604 1.11200i 0.351646 0.203023i
\(31\) 0.306643 + 0.177040i 0.0550747 + 0.0317974i 0.527285 0.849689i \(-0.323210\pi\)
−0.472210 + 0.881486i \(0.656544\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 3.31613 + 0.0571978i 0.577264 + 0.00995685i
\(34\) 0.239685i 0.0411057i
\(35\) −5.82395 + 0.839603i −0.984427 + 0.141919i
\(36\) 1.00000 0.166667
\(37\) 3.67483 + 6.36499i 0.604138 + 1.04640i 0.992187 + 0.124759i \(0.0398158\pi\)
−0.388049 + 0.921639i \(0.626851\pi\)
\(38\) 0.377726 + 0.218080i 0.0612753 + 0.0353773i
\(39\) 0.0976119 + 0.0563562i 0.0156304 + 0.00902422i
\(40\) −1.11200 1.92604i −0.175823 0.304534i
\(41\) −3.14869 −0.491743 −0.245872 0.969302i \(-0.579074\pi\)
−0.245872 + 0.969302i \(0.579074\pi\)
\(42\) −2.45660 0.982398i −0.379062 0.151587i
\(43\) 10.1874i 1.55356i −0.629774 0.776779i \(-0.716852\pi\)
0.629774 0.776779i \(-0.283148\pi\)
\(44\) 0.0571978 3.31613i 0.00862289 0.499926i
\(45\) 1.92604 + 1.11200i 0.287117 + 0.165767i
\(46\) −0.695621 0.401617i −0.102564 0.0592152i
\(47\) −11.2232 + 6.47974i −1.63708 + 0.945168i −0.655246 + 0.755415i \(0.727435\pi\)
−0.981832 + 0.189753i \(0.939231\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 5.06979 + 4.82672i 0.724255 + 0.689532i
\(50\) 0.0538161i 0.00761075i
\(51\) −0.207574 + 0.119843i −0.0290661 + 0.0167813i
\(52\) 0.0563562 0.0976119i 0.00781520 0.0135363i
\(53\) 1.28196 2.22041i 0.176090 0.304997i −0.764448 0.644686i \(-0.776988\pi\)
0.940538 + 0.339688i \(0.110322\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 3.79771 6.32340i 0.512083 0.852648i
\(56\) −0.982398 + 2.45660i −0.131278 + 0.328277i
\(57\) 0.436161i 0.0577709i
\(58\) 3.75478 + 6.50347i 0.493026 + 0.853947i
\(59\) 3.27440 + 1.89048i 0.426291 + 0.246119i 0.697765 0.716326i \(-0.254178\pi\)
−0.271474 + 0.962446i \(0.587511\pi\)
\(60\) 1.11200 1.92604i 0.143559 0.248651i
\(61\) −0.525000 0.909326i −0.0672193 0.116427i 0.830457 0.557083i \(-0.188079\pi\)
−0.897676 + 0.440655i \(0.854746\pi\)
\(62\) 0.354081 0.0449683
\(63\) −0.377519 2.61868i −0.0475629 0.329923i
\(64\) −1.00000 −0.125000
\(65\) 0.217089 0.125336i 0.0269266 0.0155461i
\(66\) 2.90045 1.60853i 0.357021 0.197996i
\(67\) 2.48189 4.29875i 0.303211 0.525176i −0.673651 0.739050i \(-0.735275\pi\)
0.976861 + 0.213874i \(0.0686081\pi\)
\(68\) 0.119843 + 0.207574i 0.0145331 + 0.0251720i
\(69\) 0.803234i 0.0966980i
\(70\) −4.62388 + 3.63909i −0.552660 + 0.434955i
\(71\) −7.58067 −0.899660 −0.449830 0.893114i \(-0.648515\pi\)
−0.449830 + 0.893114i \(0.648515\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) −2.39827 + 4.15392i −0.280696 + 0.486179i −0.971556 0.236809i \(-0.923899\pi\)
0.690861 + 0.722988i \(0.257232\pi\)
\(74\) 6.36499 + 3.67483i 0.739915 + 0.427190i
\(75\) −0.0466061 + 0.0269081i −0.00538161 + 0.00310708i
\(76\) 0.436161 0.0500311
\(77\) −8.70548 + 1.10212i −0.992081 + 0.125598i
\(78\) 0.112712 0.0127622
\(79\) −0.429215 + 0.247807i −0.0482905 + 0.0278805i −0.523951 0.851748i \(-0.675542\pi\)
0.475660 + 0.879629i \(0.342209\pi\)
\(80\) −1.92604 1.11200i −0.215338 0.124325i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.72685 + 1.57435i −0.301130 + 0.173857i
\(83\) 0.569186 0.0624763 0.0312381 0.999512i \(-0.490055\pi\)
0.0312381 + 0.999512i \(0.490055\pi\)
\(84\) −2.61868 + 0.377519i −0.285721 + 0.0411907i
\(85\) 0.533061i 0.0578186i
\(86\) −5.09368 8.82251i −0.549266 0.951356i
\(87\) −3.75478 + 6.50347i −0.402554 + 0.697245i
\(88\) −1.60853 2.90045i −0.171470 0.309189i
\(89\) −12.1232 + 6.99934i −1.28506 + 0.741928i −0.977768 0.209688i \(-0.932755\pi\)
−0.307289 + 0.951616i \(0.599422\pi\)
\(90\) 2.22400 0.234430
\(91\) −0.276890 0.110729i −0.0290259 0.0116075i
\(92\) −0.803234 −0.0837429
\(93\) 0.177040 + 0.306643i 0.0183582 + 0.0317974i
\(94\) −6.47974 + 11.2232i −0.668334 + 1.15759i
\(95\) 0.840064 + 0.485011i 0.0861888 + 0.0497611i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 10.6708i 1.08345i −0.840554 0.541727i \(-0.817770\pi\)
0.840554 0.541727i \(-0.182230\pi\)
\(98\) 6.80393 + 1.64517i 0.687300 + 0.166187i
\(99\) 2.84326 + 1.70760i 0.285758 + 0.171620i
\(100\) 0.0269081 + 0.0466061i 0.00269081 + 0.00466061i
\(101\) −9.76595 + 16.9151i −0.971748 + 1.68312i −0.281474 + 0.959569i \(0.590823\pi\)
−0.690274 + 0.723548i \(0.742510\pi\)
\(102\) −0.119843 + 0.207574i −0.0118662 + 0.0205529i
\(103\) −11.0669 + 6.38947i −1.09045 + 0.629573i −0.933697 0.358064i \(-0.883437\pi\)
−0.156756 + 0.987637i \(0.550104\pi\)
\(104\) 0.112712i 0.0110524i
\(105\) −5.46349 2.18486i −0.533182 0.213220i
\(106\) 2.56391i 0.249029i
\(107\) 10.8886 6.28656i 1.05264 0.607745i 0.129256 0.991611i \(-0.458741\pi\)
0.923389 + 0.383867i \(0.125408\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 14.3351 + 8.27635i 1.37305 + 0.792730i 0.991311 0.131540i \(-0.0419921\pi\)
0.381739 + 0.924270i \(0.375325\pi\)
\(110\) 0.127208 7.37508i 0.0121288 0.703187i
\(111\) 7.34966i 0.697598i
\(112\) 0.377519 + 2.61868i 0.0356722 + 0.247442i
\(113\) −8.19898 −0.771295 −0.385647 0.922646i \(-0.626022\pi\)
−0.385647 + 0.922646i \(0.626022\pi\)
\(114\) 0.218080 + 0.377726i 0.0204251 + 0.0353773i
\(115\) −1.54706 0.893197i −0.144264 0.0832910i
\(116\) 6.50347 + 3.75478i 0.603832 + 0.348622i
\(117\) 0.0563562 + 0.0976119i 0.00521014 + 0.00902422i
\(118\) 3.78095 0.348065
\(119\) 0.498326 0.392193i 0.0456815 0.0359522i
\(120\) 2.22400i 0.203023i
\(121\) 5.82526 9.33094i 0.529569 0.848267i
\(122\) −0.909326 0.525000i −0.0823265 0.0475312i
\(123\) −2.72685 1.57435i −0.245872 0.141954i
\(124\) 0.306643 0.177040i 0.0275374 0.0158987i
\(125\) 11.2397i 1.00531i
\(126\) −1.63628 2.07908i −0.145771 0.185219i
\(127\) 5.11237i 0.453650i −0.973936 0.226825i \(-0.927166\pi\)
0.973936 0.226825i \(-0.0728345\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 5.09368 8.82251i 0.448473 0.776779i
\(130\) 0.125336 0.217089i 0.0109927 0.0190400i
\(131\) 1.02912 + 1.78250i 0.0899150 + 0.155737i 0.907475 0.420106i \(-0.138007\pi\)
−0.817560 + 0.575843i \(0.804674\pi\)
\(132\) 1.70760 2.84326i 0.148628 0.247474i
\(133\) −0.164659 1.14217i −0.0142778 0.0990383i
\(134\) 4.96377i 0.428804i
\(135\) 1.11200 + 1.92604i 0.0957058 + 0.165767i
\(136\) 0.207574 + 0.119843i 0.0177993 + 0.0102764i
\(137\) 9.42545 16.3254i 0.805271 1.39477i −0.110838 0.993839i \(-0.535353\pi\)
0.916108 0.400931i \(-0.131313\pi\)
\(138\) −0.401617 0.695621i −0.0341879 0.0592152i
\(139\) 10.5033 0.890880 0.445440 0.895312i \(-0.353047\pi\)
0.445440 + 0.895312i \(0.353047\pi\)
\(140\) −2.18486 + 5.46349i −0.184654 + 0.461749i
\(141\) −12.9595 −1.09139
\(142\) −6.56505 + 3.79033i −0.550927 + 0.318078i
\(143\) 0.326917 0.181302i 0.0273382 0.0151612i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 8.35063 + 14.4637i 0.693482 + 1.20115i
\(146\) 4.79653i 0.396964i
\(147\) 1.97720 + 6.71496i 0.163077 + 0.553840i
\(148\) 7.34966 0.604138
\(149\) 12.6570 7.30752i 1.03690 0.598656i 0.117948 0.993020i \(-0.462369\pi\)
0.918954 + 0.394364i \(0.129035\pi\)
\(150\) −0.0269081 + 0.0466061i −0.00219703 + 0.00380538i
\(151\) 1.57663 + 0.910267i 0.128304 + 0.0740764i 0.562778 0.826608i \(-0.309732\pi\)
−0.434474 + 0.900684i \(0.643066\pi\)
\(152\) 0.377726 0.218080i 0.0306377 0.0176887i
\(153\) −0.239685 −0.0193774
\(154\) −6.98810 + 5.30720i −0.563117 + 0.427667i
\(155\) 0.787477 0.0632516
\(156\) 0.0976119 0.0563562i 0.00781520 0.00451211i
\(157\) 15.1388 + 8.74037i 1.20821 + 0.697558i 0.962367 0.271753i \(-0.0876034\pi\)
0.245839 + 0.969311i \(0.420937\pi\)
\(158\) −0.247807 + 0.429215i −0.0197145 + 0.0341465i
\(159\) 2.22041 1.28196i 0.176090 0.101666i
\(160\) −2.22400 −0.175823
\(161\) 0.303236 + 2.10341i 0.0238984 + 0.165772i
\(162\) 1.00000i 0.0785674i
\(163\) −5.84566 10.1250i −0.457867 0.793049i 0.540981 0.841035i \(-0.318053\pi\)
−0.998848 + 0.0479858i \(0.984720\pi\)
\(164\) −1.57435 + 2.72685i −0.122936 + 0.212931i
\(165\) 6.45061 3.57738i 0.502180 0.278498i
\(166\) 0.492929 0.284593i 0.0382587 0.0220887i
\(167\) −18.4885 −1.43068 −0.715341 0.698775i \(-0.753729\pi\)
−0.715341 + 0.698775i \(0.753729\pi\)
\(168\) −2.07908 + 1.63628i −0.160405 + 0.126242i
\(169\) −12.9873 −0.999023
\(170\) 0.266530 + 0.461644i 0.0204419 + 0.0354065i
\(171\) −0.218080 + 0.377726i −0.0166770 + 0.0288855i
\(172\) −8.82251 5.09368i −0.672710 0.388389i
\(173\) −8.59437 14.8859i −0.653418 1.13175i −0.982288 0.187378i \(-0.940001\pi\)
0.328870 0.944375i \(-0.393332\pi\)
\(174\) 7.50955i 0.569298i
\(175\) 0.111888 0.0880583i 0.00845795 0.00665658i
\(176\) −2.84326 1.70760i −0.214318 0.128715i
\(177\) 1.89048 + 3.27440i 0.142097 + 0.246119i
\(178\) −6.99934 + 12.1232i −0.524622 + 0.908673i
\(179\) −5.81838 + 10.0777i −0.434886 + 0.753244i −0.997286 0.0736206i \(-0.976545\pi\)
0.562400 + 0.826865i \(0.309878\pi\)
\(180\) 1.92604 1.11200i 0.143559 0.0828837i
\(181\) 21.9534i 1.63179i −0.578203 0.815893i \(-0.696246\pi\)
0.578203 0.815893i \(-0.303754\pi\)
\(182\) −0.295158 + 0.0425511i −0.0218785 + 0.00315410i
\(183\) 1.05000i 0.0776182i
\(184\) −0.695621 + 0.401617i −0.0512818 + 0.0296076i
\(185\) 14.1557 + 8.17282i 1.04075 + 0.600878i
\(186\) 0.306643 + 0.177040i 0.0224842 + 0.0129812i
\(187\) −0.0137095 + 0.794828i −0.00100254 + 0.0581236i
\(188\) 12.9595i 0.945168i
\(189\) 0.982398 2.45660i 0.0714590 0.178692i
\(190\) 0.970023 0.0703728
\(191\) 2.99269 + 5.18349i 0.216543 + 0.375064i 0.953749 0.300604i \(-0.0971884\pi\)
−0.737205 + 0.675669i \(0.763855\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 7.35467 + 4.24622i 0.529401 + 0.305650i 0.740772 0.671756i \(-0.234460\pi\)
−0.211372 + 0.977406i \(0.567793\pi\)
\(194\) −5.33540 9.24118i −0.383059 0.663478i
\(195\) 0.250673 0.0179510
\(196\) 6.71496 1.97720i 0.479640 0.141229i
\(197\) 3.71109i 0.264404i −0.991223 0.132202i \(-0.957795\pi\)
0.991223 0.132202i \(-0.0422048\pi\)
\(198\) 3.31613 + 0.0571978i 0.235667 + 0.00406487i
\(199\) 4.99176 + 2.88199i 0.353857 + 0.204299i 0.666383 0.745610i \(-0.267842\pi\)
−0.312526 + 0.949909i \(0.601175\pi\)
\(200\) 0.0466061 + 0.0269081i 0.00329555 + 0.00190269i
\(201\) 4.29875 2.48189i 0.303211 0.175059i
\(202\) 19.5319i 1.37426i
\(203\) 7.37737 18.4480i 0.517790 1.29479i
\(204\) 0.239685i 0.0167813i
\(205\) −6.06451 + 3.50135i −0.423564 + 0.244545i
\(206\) −6.38947 + 11.0669i −0.445176 + 0.771067i
\(207\) 0.401617 0.695621i 0.0279143 0.0483490i
\(208\) −0.0563562 0.0976119i −0.00390760 0.00676816i
\(209\) 1.24012 + 0.744789i 0.0857807 + 0.0515181i
\(210\) −5.82395 + 0.839603i −0.401890 + 0.0579381i
\(211\) 23.1201i 1.59165i −0.605524 0.795827i \(-0.707037\pi\)
0.605524 0.795827i \(-0.292963\pi\)
\(212\) −1.28196 2.22041i −0.0880451 0.152499i
\(213\) −6.56505 3.79033i −0.449830 0.259709i
\(214\) 6.28656 10.8886i 0.429740 0.744332i
\(215\) −11.3284 19.6213i −0.772587 1.33816i
\(216\) 1.00000 0.0680414
\(217\) −0.579376 0.736164i −0.0393306 0.0499740i
\(218\) 16.5527 1.12109
\(219\) −4.15392 + 2.39827i −0.280696 + 0.162060i
\(220\) −3.57738 6.45061i −0.241187 0.434900i
\(221\) −0.0135078 + 0.0233961i −0.000908631 + 0.00157379i
\(222\) 3.67483 + 6.36499i 0.246638 + 0.427190i
\(223\) 11.3233i 0.758267i −0.925342 0.379134i \(-0.876222\pi\)
0.925342 0.379134i \(-0.123778\pi\)
\(224\) 1.63628 + 2.07908i 0.109329 + 0.138915i
\(225\) −0.0538161 −0.00358774
\(226\) −7.10052 + 4.09949i −0.472320 + 0.272694i
\(227\) −2.66623 + 4.61805i −0.176964 + 0.306510i −0.940839 0.338853i \(-0.889961\pi\)
0.763875 + 0.645364i \(0.223294\pi\)
\(228\) 0.377726 + 0.218080i 0.0250155 + 0.0144427i
\(229\) 15.6189 9.01755i 1.03212 0.595897i 0.114531 0.993420i \(-0.463463\pi\)
0.917592 + 0.397523i \(0.130130\pi\)
\(230\) −1.78639 −0.117791
\(231\) −8.09022 3.39827i −0.532298 0.223590i
\(232\) 7.50955 0.493026
\(233\) 13.5770 7.83866i 0.889456 0.513528i 0.0156917 0.999877i \(-0.495005\pi\)
0.873765 + 0.486349i \(0.161672\pi\)
\(234\) 0.0976119 + 0.0563562i 0.00638109 + 0.00368412i
\(235\) −14.4110 + 24.9605i −0.940067 + 1.62824i
\(236\) 3.27440 1.89048i 0.213145 0.123060i
\(237\) −0.495615 −0.0321936
\(238\) 0.235467 0.588812i 0.0152630 0.0381670i
\(239\) 19.6987i 1.27420i −0.770780 0.637101i \(-0.780133\pi\)
0.770780 0.637101i \(-0.219867\pi\)
\(240\) −1.11200 1.92604i −0.0717793 0.124325i
\(241\) −3.85279 + 6.67323i −0.248180 + 0.429861i −0.963021 0.269427i \(-0.913166\pi\)
0.714841 + 0.699287i \(0.246499\pi\)
\(242\) 0.379351 10.9935i 0.0243856 0.706686i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −1.05000 −0.0672193
\(245\) 15.1319 + 3.65886i 0.966744 + 0.233756i
\(246\) −3.14869 −0.200753
\(247\) 0.0245804 + 0.0425745i 0.00156401 + 0.00270895i
\(248\) 0.177040 0.306643i 0.0112421 0.0194719i
\(249\) 0.492929 + 0.284593i 0.0312381 + 0.0180353i
\(250\) 5.61985 + 9.73386i 0.355430 + 0.615624i
\(251\) 11.3888i 0.718857i −0.933173 0.359428i \(-0.882972\pi\)
0.933173 0.359428i \(-0.117028\pi\)
\(252\) −2.45660 0.982398i −0.154751 0.0618853i
\(253\) −2.28380 1.37160i −0.143581 0.0862319i
\(254\) −2.55619 4.42744i −0.160389 0.277803i
\(255\) −0.266530 + 0.461644i −0.0166908 + 0.0289093i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 13.9973 8.08134i 0.873127 0.504100i 0.00474110 0.999989i \(-0.498491\pi\)
0.868386 + 0.495888i \(0.165158\pi\)
\(258\) 10.1874i 0.634237i
\(259\) −2.77464 19.2464i −0.172407 1.19591i
\(260\) 0.250673i 0.0155461i
\(261\) −6.50347 + 3.75478i −0.402554 + 0.232415i
\(262\) 1.78250 + 1.02912i 0.110123 + 0.0635795i
\(263\) 7.43191 + 4.29081i 0.458271 + 0.264583i 0.711317 0.702871i \(-0.248099\pi\)
−0.253046 + 0.967454i \(0.581432\pi\)
\(264\) 0.0571978 3.31613i 0.00352028 0.204094i
\(265\) 5.70215i 0.350280i
\(266\) −0.713682 0.906815i −0.0437586 0.0556004i
\(267\) −13.9987 −0.856705
\(268\) −2.48189 4.29875i −0.151605 0.262588i
\(269\) 3.58587 + 2.07030i 0.218634 + 0.126229i 0.605318 0.795984i \(-0.293046\pi\)
−0.386683 + 0.922213i \(0.626379\pi\)
\(270\) 1.92604 + 1.11200i 0.117215 + 0.0676742i
\(271\) −1.71583 2.97190i −0.104229 0.180530i 0.809194 0.587542i \(-0.199904\pi\)
−0.913423 + 0.407012i \(0.866571\pi\)
\(272\) 0.239685 0.0145331
\(273\) −0.184429 0.234339i −0.0111622 0.0141828i
\(274\) 18.8509i 1.13882i
\(275\) −0.00307816 + 0.178461i −0.000185620 + 0.0107616i
\(276\) −0.695621 0.401617i −0.0418714 0.0241745i
\(277\) 1.35959 + 0.784960i 0.0816899 + 0.0471637i 0.540289 0.841480i \(-0.318315\pi\)
−0.458599 + 0.888643i \(0.651648\pi\)
\(278\) 9.09614 5.25166i 0.545550 0.314974i
\(279\) 0.354081i 0.0211983i
\(280\) 0.839603 + 5.82395i 0.0501759 + 0.348047i
\(281\) 3.49877i 0.208719i 0.994540 + 0.104360i \(0.0332793\pi\)
−0.994540 + 0.104360i \(0.966721\pi\)
\(282\) −11.2232 + 6.47974i −0.668334 + 0.385863i
\(283\) 11.1106 19.2440i 0.660454 1.14394i −0.320043 0.947403i \(-0.603697\pi\)
0.980496 0.196537i \(-0.0629694\pi\)
\(284\) −3.79033 + 6.56505i −0.224915 + 0.389564i
\(285\) 0.485011 + 0.840064i 0.0287296 + 0.0497611i
\(286\) 0.192468 0.320470i 0.0113809 0.0189498i
\(287\) 7.73508 + 3.09327i 0.456588 + 0.182590i
\(288\) 1.00000i 0.0589256i
\(289\) 8.47128 + 14.6727i 0.498310 + 0.863099i
\(290\) 14.4637 + 8.35063i 0.849339 + 0.490366i
\(291\) 5.33540 9.24118i 0.312766 0.541727i
\(292\) 2.39827 + 4.15392i 0.140348 + 0.243090i
\(293\) 6.85562 0.400510 0.200255 0.979744i \(-0.435823\pi\)
0.200255 + 0.979744i \(0.435823\pi\)
\(294\) 5.06979 + 4.82672i 0.295676 + 0.281500i
\(295\) 8.40885 0.489582
\(296\) 6.36499 3.67483i 0.369957 0.213595i
\(297\) 1.60853 + 2.90045i 0.0933364 + 0.168301i
\(298\) 7.30752 12.6570i 0.423313 0.733200i
\(299\) −0.0452672 0.0784051i −0.00261787 0.00453429i
\(300\) 0.0538161i 0.00310708i
\(301\) −10.0080 + 25.0263i −0.576854 + 1.44249i
\(302\) 1.82053 0.104760
\(303\) −16.9151 + 9.76595i −0.971748 + 0.561039i
\(304\) 0.218080 0.377726i 0.0125078 0.0216641i
\(305\) −2.02234 1.16760i −0.115799 0.0668566i
\(306\) −0.207574 + 0.119843i −0.0118662 + 0.00685095i
\(307\) −25.3466 −1.44661 −0.723303 0.690531i \(-0.757377\pi\)
−0.723303 + 0.690531i \(0.757377\pi\)
\(308\) −3.39827 + 8.09022i −0.193635 + 0.460983i
\(309\) −12.7789 −0.726969
\(310\) 0.681975 0.393738i 0.0387336 0.0223628i
\(311\) 12.0093 + 6.93356i 0.680984 + 0.393166i 0.800226 0.599699i \(-0.204713\pi\)
−0.119242 + 0.992865i \(0.538046\pi\)
\(312\) 0.0563562 0.0976119i 0.00319054 0.00552618i
\(313\) 10.4414 6.02834i 0.590183 0.340742i −0.174987 0.984571i \(-0.555988\pi\)
0.765170 + 0.643829i \(0.222655\pi\)
\(314\) 17.4807 0.986496
\(315\) −3.63909 4.62388i −0.205040 0.260526i
\(316\) 0.495615i 0.0278805i
\(317\) 3.77629 + 6.54073i 0.212098 + 0.367364i 0.952371 0.304942i \(-0.0986372\pi\)
−0.740273 + 0.672306i \(0.765304\pi\)
\(318\) 1.28196 2.22041i 0.0718885 0.124515i
\(319\) 12.0794 + 21.7811i 0.676314 + 1.21951i
\(320\) −1.92604 + 1.11200i −0.107669 + 0.0621627i
\(321\) 12.5731 0.701763
\(322\) 1.31432 + 1.66999i 0.0732439 + 0.0930649i
\(323\) −0.104541 −0.00581684
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) −0.00303287 + 0.00525309i −0.000168234 + 0.000291389i
\(326\) −10.1250 5.84566i −0.560770 0.323761i
\(327\) 8.27635 + 14.3351i 0.457683 + 0.792730i
\(328\) 3.14869i 0.173857i
\(329\) 33.9367 4.89245i 1.87099 0.269730i
\(330\) 3.79771 6.32340i 0.209057 0.348092i
\(331\) −11.2835 19.5435i −0.620195 1.07421i −0.989449 0.144880i \(-0.953720\pi\)
0.369255 0.929328i \(-0.379613\pi\)
\(332\) 0.284593 0.492929i 0.0156191 0.0270530i
\(333\) −3.67483 + 6.36499i −0.201379 + 0.348799i
\(334\) −16.0115 + 9.24425i −0.876111 + 0.505823i
\(335\) 11.0394i 0.603149i
\(336\) −0.982398 + 2.45660i −0.0535942 + 0.134019i
\(337\) 32.4695i 1.76872i 0.466801 + 0.884362i \(0.345406\pi\)
−0.466801 + 0.884362i \(0.654594\pi\)
\(338\) −11.2473 + 6.49365i −0.611774 + 0.353208i
\(339\) −7.10052 4.09949i −0.385647 0.222654i
\(340\) 0.461644 + 0.266530i 0.0250362 + 0.0144546i
\(341\) 1.17418 + 0.0202526i 0.0635854 + 0.00109674i
\(342\) 0.436161i 0.0235849i
\(343\) −7.71269 16.8379i −0.416446 0.909161i
\(344\) −10.1874 −0.549266
\(345\) −0.893197 1.54706i −0.0480881 0.0832910i
\(346\) −14.8859 8.59437i −0.800270 0.462036i
\(347\) 26.6239 + 15.3713i 1.42924 + 0.825174i 0.997061 0.0766119i \(-0.0244102\pi\)
0.432183 + 0.901786i \(0.357744\pi\)
\(348\) 3.75478 + 6.50347i 0.201277 + 0.348622i
\(349\) −24.5576 −1.31454 −0.657269 0.753656i \(-0.728288\pi\)
−0.657269 + 0.753656i \(0.728288\pi\)
\(350\) 0.0528689 0.132205i 0.00282596 0.00706665i
\(351\) 0.112712i 0.00601615i
\(352\) −3.31613 0.0571978i −0.176750 0.00304865i
\(353\) 3.74418 + 2.16170i 0.199283 + 0.115056i 0.596321 0.802746i \(-0.296629\pi\)
−0.397038 + 0.917802i \(0.629962\pi\)
\(354\) 3.27440 + 1.89048i 0.174033 + 0.100478i
\(355\) −14.6007 + 8.42971i −0.774924 + 0.447402i
\(356\) 13.9987i 0.741928i
\(357\) 0.627659 0.0904858i 0.0332192 0.00478902i
\(358\) 11.6368i 0.615021i
\(359\) 13.7848 7.95866i 0.727534 0.420042i −0.0899854 0.995943i \(-0.528682\pi\)
0.817519 + 0.575901i \(0.195349\pi\)
\(360\) 1.11200 1.92604i 0.0586076 0.101511i
\(361\) 9.40488 16.2897i 0.494994 0.857354i
\(362\) −10.9767 19.0122i −0.576923 0.999260i
\(363\) 9.71029 5.16820i 0.509658 0.271260i
\(364\) −0.234339 + 0.184429i −0.0122827 + 0.00966672i
\(365\) 10.6675i 0.558362i
\(366\) −0.525000 0.909326i −0.0274422 0.0475312i
\(367\) −22.2966 12.8729i −1.16387 0.671962i −0.211643 0.977347i \(-0.567881\pi\)
−0.952229 + 0.305385i \(0.901215\pi\)
\(368\) −0.401617 + 0.695621i −0.0209357 + 0.0362617i
\(369\) −1.57435 2.72685i −0.0819572 0.141954i
\(370\) 16.3456 0.849770
\(371\) −5.33059 + 4.19528i −0.276750 + 0.217808i
\(372\) 0.354081 0.0183582
\(373\) −25.2676 + 14.5882i −1.30831 + 0.755350i −0.981813 0.189850i \(-0.939200\pi\)
−0.326492 + 0.945200i \(0.605867\pi\)
\(374\) 0.385541 + 0.695196i 0.0199359 + 0.0359477i
\(375\) −5.61985 + 9.73386i −0.290208 + 0.502654i
\(376\) 6.47974 + 11.2232i 0.334167 + 0.578795i
\(377\) 0.846420i 0.0435929i
\(378\) −0.377519 2.61868i −0.0194175 0.134690i
\(379\) −28.8200 −1.48039 −0.740193 0.672395i \(-0.765266\pi\)
−0.740193 + 0.672395i \(0.765266\pi\)
\(380\) 0.840064 0.485011i 0.0430944 0.0248806i
\(381\) 2.55619 4.42744i 0.130957 0.226825i
\(382\) 5.18349 + 2.99269i 0.265210 + 0.153119i
\(383\) −6.12468 + 3.53608i −0.312956 + 0.180685i −0.648249 0.761429i \(-0.724498\pi\)
0.335292 + 0.942114i \(0.391165\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −15.5416 + 11.8032i −0.792071 + 0.601548i
\(386\) 8.49244 0.432254
\(387\) 8.82251 5.09368i 0.448473 0.258926i
\(388\) −9.24118 5.33540i −0.469150 0.270864i
\(389\) −6.18937 + 10.7203i −0.313813 + 0.543541i −0.979185 0.202972i \(-0.934940\pi\)
0.665371 + 0.746513i \(0.268273\pi\)
\(390\) 0.217089 0.125336i 0.0109927 0.00634665i
\(391\) 0.192523 0.00973633
\(392\) 4.82672 5.06979i 0.243786 0.256063i
\(393\) 2.05825i 0.103825i
\(394\) −1.85555 3.21390i −0.0934811 0.161914i
\(395\) −0.551124 + 0.954575i −0.0277301 + 0.0480299i
\(396\) 2.90045 1.60853i 0.145753 0.0808317i
\(397\) 17.2980 9.98702i 0.868163 0.501234i 0.00142581 0.999999i \(-0.499546\pi\)
0.866737 + 0.498765i \(0.166213\pi\)
\(398\) 5.76399 0.288923
\(399\) 0.428484 1.07147i 0.0214510 0.0536408i
\(400\) 0.0538161 0.00269081
\(401\) −5.27945 9.14428i −0.263643 0.456643i 0.703564 0.710632i \(-0.251591\pi\)
−0.967207 + 0.253988i \(0.918257\pi\)
\(402\) 2.48189 4.29875i 0.123785 0.214402i
\(403\) 0.0345625 + 0.0199547i 0.00172168 + 0.000994013i
\(404\) 9.76595 + 16.9151i 0.485874 + 0.841558i
\(405\) 2.22400i 0.110512i
\(406\) −2.83500 19.6651i −0.140699 0.975963i
\(407\) 20.8969 + 12.5503i 1.03582 + 0.622094i
\(408\) 0.119843 + 0.207574i 0.00593310 + 0.0102764i
\(409\) 11.2457 19.4781i 0.556065 0.963132i −0.441755 0.897136i \(-0.645644\pi\)
0.997820 0.0659967i \(-0.0210227\pi\)
\(410\) −3.50135 + 6.06451i −0.172919 + 0.299505i
\(411\) 16.3254 9.42545i 0.805271 0.464923i
\(412\) 12.7789i 0.629573i
\(413\) −6.18670 7.86092i −0.304428 0.386811i
\(414\) 0.803234i 0.0394768i
\(415\) 1.09628 0.632935i 0.0538141 0.0310696i
\(416\) −0.0976119 0.0563562i −0.00478582 0.00276309i
\(417\) 9.09614 + 5.25166i 0.445440 + 0.257175i
\(418\) 1.44637 + 0.0249474i 0.0707441 + 0.00122022i
\(419\) 25.5522i 1.24831i 0.781302 + 0.624154i \(0.214556\pi\)
−0.781302 + 0.624154i \(0.785444\pi\)
\(420\) −4.62388 + 3.63909i −0.225622 + 0.177569i
\(421\) −2.88784 −0.140745 −0.0703723 0.997521i \(-0.522419\pi\)
−0.0703723 + 0.997521i \(0.522419\pi\)
\(422\) −11.5601 20.0226i −0.562735 0.974685i
\(423\) −11.2232 6.47974i −0.545693 0.315056i
\(424\) −2.22041 1.28196i −0.107833 0.0622573i
\(425\) −0.00644947 0.0111708i −0.000312845 0.000541864i
\(426\) −7.58067 −0.367285
\(427\) 0.396395 + 2.74961i 0.0191829 + 0.133063i
\(428\) 12.5731i 0.607745i
\(429\) 0.373769 + 0.00644690i 0.0180458 + 0.000311259i
\(430\) −19.6213 11.3284i −0.946222 0.546302i
\(431\) −28.7727 16.6119i −1.38593 0.800168i −0.393077 0.919505i \(-0.628590\pi\)
−0.992854 + 0.119338i \(0.961923\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 0.741961i 0.0356564i −0.999841 0.0178282i \(-0.994325\pi\)
0.999841 0.0178282i \(-0.00567519\pi\)
\(434\) −0.869836 0.347849i −0.0417535 0.0166973i
\(435\) 16.7013i 0.800764i
\(436\) 14.3351 8.27635i 0.686525 0.396365i
\(437\) 0.175170 0.303403i 0.00837950 0.0145137i
\(438\) −2.39827 + 4.15392i −0.114594 + 0.198482i
\(439\) 8.11637 + 14.0580i 0.387373 + 0.670950i 0.992095 0.125486i \(-0.0400492\pi\)
−0.604722 + 0.796437i \(0.706716\pi\)
\(440\) −6.32340 3.79771i −0.301456 0.181049i
\(441\) −1.64517 + 6.80393i −0.0783415 + 0.323996i
\(442\) 0.0270155i 0.00128500i
\(443\) 5.45671 + 9.45129i 0.259256 + 0.449044i 0.966043 0.258382i \(-0.0831893\pi\)
−0.706787 + 0.707427i \(0.749856\pi\)
\(444\) 6.36499 + 3.67483i 0.302069 + 0.174400i
\(445\) −15.5665 + 26.9620i −0.737925 + 1.27812i
\(446\) −5.66167 9.80630i −0.268088 0.464342i
\(447\) 14.6150 0.691268
\(448\) 2.45660 + 0.982398i 0.116064 + 0.0464140i
\(449\) −23.6594 −1.11656 −0.558278 0.829654i \(-0.688538\pi\)
−0.558278 + 0.829654i \(0.688538\pi\)
\(450\) −0.0466061 + 0.0269081i −0.00219703 + 0.00126846i
\(451\) −9.13263 + 5.06477i −0.430039 + 0.238491i
\(452\) −4.09949 + 7.10052i −0.192824 + 0.333980i
\(453\) 0.910267 + 1.57663i 0.0427681 + 0.0740764i
\(454\) 5.33246i 0.250265i
\(455\) −0.656431 + 0.0946338i −0.0307740 + 0.00443650i
\(456\) 0.436161 0.0204251
\(457\) −21.2115 + 12.2465i −0.992233 + 0.572866i −0.905941 0.423404i \(-0.860835\pi\)
−0.0862919 + 0.996270i \(0.527502\pi\)
\(458\) 9.01755 15.6189i 0.421363 0.729821i
\(459\) −0.207574 0.119843i −0.00968871 0.00559378i
\(460\) −1.54706 + 0.893197i −0.0721321 + 0.0416455i
\(461\) −8.01773 −0.373423 −0.186712 0.982415i \(-0.559783\pi\)
−0.186712 + 0.982415i \(0.559783\pi\)
\(462\) −8.70548 + 1.10212i −0.405015 + 0.0512753i
\(463\) 32.2209 1.49743 0.748716 0.662891i \(-0.230671\pi\)
0.748716 + 0.662891i \(0.230671\pi\)
\(464\) 6.50347 3.75478i 0.301916 0.174311i
\(465\) 0.681975 + 0.393738i 0.0316258 + 0.0182592i
\(466\) 7.83866 13.5770i 0.363119 0.628941i
\(467\) 11.5836 6.68782i 0.536027 0.309475i −0.207440 0.978248i \(-0.566513\pi\)
0.743467 + 0.668772i \(0.233180\pi\)
\(468\) 0.112712 0.00521014
\(469\) −10.3201 + 8.12212i −0.476538 + 0.375045i
\(470\) 28.8219i 1.32946i
\(471\) 8.74037 + 15.1388i 0.402735 + 0.697558i
\(472\) 1.89048 3.27440i 0.0870163 0.150717i
\(473\) −16.3867 29.5480i −0.753460 1.35862i
\(474\) −0.429215 + 0.247807i −0.0197145 + 0.0113822i
\(475\) −0.0234725 −0.00107699
\(476\) −0.0904858 0.627659i −0.00414741 0.0287687i
\(477\) 2.56391 0.117393
\(478\) −9.84934 17.0596i −0.450498 0.780286i
\(479\) −17.3629 + 30.0734i −0.793330 + 1.37409i 0.130564 + 0.991440i \(0.458321\pi\)
−0.923894 + 0.382648i \(0.875012\pi\)
\(480\) −1.92604 1.11200i −0.0879114 0.0507557i
\(481\) 0.414199 + 0.717414i 0.0188858 + 0.0327112i
\(482\) 7.70558i 0.350980i
\(483\) −0.789095 + 1.97323i −0.0359051 + 0.0897849i
\(484\) −5.16820 9.71029i −0.234918 0.441377i
\(485\) −11.8659 20.5524i −0.538804 0.933236i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −9.83069 + 17.0272i −0.445471 + 0.771578i −0.998085 0.0618591i \(-0.980297\pi\)
0.552614 + 0.833437i \(0.313630\pi\)
\(488\) −0.909326 + 0.525000i −0.0411633 + 0.0237656i
\(489\) 11.6913i 0.528699i
\(490\) 14.9341 4.39730i 0.674653 0.198650i
\(491\) 31.6334i 1.42760i 0.700352 + 0.713798i \(0.253026\pi\)
−0.700352 + 0.713798i \(0.746974\pi\)
\(492\) −2.72685 + 1.57435i −0.122936 + 0.0709770i
\(493\) −1.55879 0.899965i −0.0702042 0.0405324i
\(494\) 0.0425745 + 0.0245804i 0.00191552 + 0.00110592i
\(495\) 7.37508 + 0.127208i 0.331485 + 0.00571757i
\(496\) 0.354081i 0.0158987i
\(497\) 18.6227 + 7.44723i 0.835341 + 0.334054i
\(498\) 0.569186 0.0255058
\(499\) 18.1190 + 31.3830i 0.811118 + 1.40490i 0.912082 + 0.410007i \(0.134474\pi\)
−0.100965 + 0.994890i \(0.532193\pi\)
\(500\) 9.73386 + 5.61985i 0.435312 + 0.251327i
\(501\) −16.0115 9.24425i −0.715341 0.413003i
\(502\) −5.69442 9.86302i −0.254154 0.440208i
\(503\) −28.3530 −1.26420 −0.632098 0.774889i \(-0.717806\pi\)
−0.632098 + 0.774889i \(0.717806\pi\)
\(504\) −2.61868 + 0.377519i −0.116645 + 0.0168160i
\(505\) 43.4390i 1.93301i
\(506\) −2.66363 0.0459432i −0.118413 0.00204242i
\(507\) −11.2473 6.49365i −0.499511 0.288393i
\(508\) −4.42744 2.55619i −0.196436 0.113412i
\(509\) −31.4337 + 18.1483i −1.39328 + 0.804408i −0.993676 0.112281i \(-0.964184\pi\)
−0.399600 + 0.916690i \(0.630851\pi\)
\(510\) 0.533061i 0.0236043i
\(511\) 9.97239 7.84847i 0.441152 0.347196i
\(512\) 1.00000i 0.0441942i
\(513\) −0.377726 + 0.218080i −0.0166770 + 0.00962849i
\(514\) 8.08134 13.9973i 0.356453 0.617394i
\(515\) −14.2102 + 24.6128i −0.626176 + 1.08457i
\(516\) −5.09368 8.82251i −0.224237 0.388389i
\(517\) −22.1296 + 36.8471i −0.973260 + 1.62053i
\(518\) −12.0261 15.2805i −0.528396 0.671389i
\(519\) 17.1887i 0.754502i
\(520\) −0.125336 0.217089i −0.00549636 0.00951998i
\(521\) −7.10021 4.09931i −0.311066 0.179594i 0.336338 0.941741i \(-0.390812\pi\)
−0.647403 + 0.762148i \(0.724145\pi\)
\(522\) −3.75478 + 6.50347i −0.164342 + 0.284649i
\(523\) −16.8849 29.2456i −0.738327 1.27882i −0.953248 0.302188i \(-0.902283\pi\)
0.214921 0.976631i \(-0.431050\pi\)
\(524\) 2.05825 0.0899150
\(525\) 0.140927 0.0203166i 0.00615057 0.000886690i
\(526\) 8.58163 0.374177
\(527\) −0.0734979 + 0.0424340i −0.00320162 + 0.00184845i
\(528\) −1.60853 2.90045i −0.0700023 0.126226i
\(529\) 11.1774 19.3598i 0.485974 0.841732i
\(530\) −2.85107 4.93820i −0.123843 0.214502i
\(531\) 3.78095i 0.164079i
\(532\) −1.07147 0.428484i −0.0464543 0.0185771i
\(533\) −0.354897 −0.0153723
\(534\) −12.1232 + 6.99934i −0.524622 + 0.302891i
\(535\) 13.9813 24.2164i 0.604465 1.04696i
\(536\) −4.29875 2.48189i −0.185678 0.107201i
\(537\) −10.0777 + 5.81838i −0.434886 + 0.251081i
\(538\) 4.14061 0.178514
\(539\) 22.4686 + 5.84477i 0.967792 + 0.251752i
\(540\) 2.22400 0.0957058
\(541\) 19.6218 11.3286i 0.843607 0.487057i −0.0148819 0.999889i \(-0.504737\pi\)
0.858489 + 0.512833i \(0.171404\pi\)
\(542\) −2.97190 1.71583i −0.127654 0.0737011i
\(543\) 10.9767 19.0122i 0.471056 0.815893i
\(544\) 0.207574 0.119843i 0.00889965 0.00513821i
\(545\) 36.8132 1.57691
\(546\) −0.276890 0.110729i −0.0118498 0.00473874i
\(547\) 11.4499i 0.489563i 0.969578 + 0.244782i \(0.0787163\pi\)
−0.969578 + 0.244782i \(0.921284\pi\)
\(548\) −9.42545 16.3254i −0.402635 0.697385i
\(549\) 0.525000 0.909326i 0.0224064 0.0388091i
\(550\) 0.0865649 + 0.156091i 0.00369114 + 0.00665575i
\(551\) −2.83656 + 1.63769i −0.120841 + 0.0697678i
\(552\) −0.803234 −0.0341879
\(553\) 1.29786 0.187104i 0.0551904 0.00795647i
\(554\) 1.56992 0.0666995
\(555\) 8.17282 + 14.1557i 0.346917 + 0.600878i
\(556\) 5.25166 9.09614i 0.222720 0.385762i
\(557\) −39.2147 22.6406i −1.66158 0.959314i −0.971961 0.235141i \(-0.924445\pi\)
−0.689619 0.724173i \(-0.742222\pi\)
\(558\) 0.177040 + 0.306643i 0.00749472 + 0.0129812i
\(559\) 1.14824i 0.0485655i
\(560\) 3.63909 + 4.62388i 0.153780 + 0.195395i
\(561\) −0.409287 + 0.681487i −0.0172801 + 0.0287724i
\(562\) 1.74939 + 3.03003i 0.0737934 + 0.127814i
\(563\) −13.8636 + 24.0125i −0.584283 + 1.01201i 0.410682 + 0.911779i \(0.365291\pi\)
−0.994964 + 0.100228i \(0.968043\pi\)
\(564\) −6.47974 + 11.2232i −0.272846 + 0.472584i
\(565\) −15.7916 + 9.11727i −0.664356 + 0.383566i
\(566\) 22.2211i 0.934023i
\(567\) 2.07908 1.63628i 0.0873133 0.0687173i
\(568\) 7.58067i 0.318078i
\(569\) 13.9061 8.02868i 0.582973 0.336580i −0.179341 0.983787i \(-0.557397\pi\)
0.762314 + 0.647207i \(0.224063\pi\)
\(570\) 0.840064 + 0.485011i 0.0351864 + 0.0203149i
\(571\) 8.42022 + 4.86141i 0.352375 + 0.203444i 0.665731 0.746192i \(-0.268120\pi\)
−0.313356 + 0.949636i \(0.601453\pi\)
\(572\) 0.00644690 0.373769i 0.000269559 0.0156281i
\(573\) 5.98538i 0.250043i
\(574\) 8.24541 1.18869i 0.344157 0.0496150i
\(575\) 0.0432269 0.00180269
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 2.22544 + 1.28486i 0.0926462 + 0.0534893i 0.545607 0.838041i \(-0.316299\pi\)
−0.452961 + 0.891530i \(0.649632\pi\)
\(578\) 14.6727 + 8.47128i 0.610303 + 0.352359i
\(579\) 4.24622 + 7.35467i 0.176467 + 0.305650i
\(580\) 16.7013 0.693482
\(581\) −1.39826 0.559167i −0.0580097 0.0231982i
\(582\) 10.6708i 0.442319i
\(583\) 0.146650 8.50227i 0.00607363 0.352128i
\(584\) 4.15392 + 2.39827i 0.171890 + 0.0992409i
\(585\) 0.217089 + 0.125336i 0.00897552 + 0.00518202i
\(586\) 5.93714 3.42781i 0.245261 0.141602i
\(587\) 25.9150i 1.06963i −0.844970 0.534814i \(-0.820382\pi\)
0.844970 0.534814i \(-0.179618\pi\)
\(588\) 6.80393 + 1.64517i 0.280589 + 0.0678457i
\(589\) 0.154436i 0.00636344i
\(590\) 7.28228 4.20443i 0.299807 0.173093i
\(591\) 1.85555 3.21390i 0.0763270 0.132202i
\(592\) 3.67483 6.36499i 0.151034 0.261599i
\(593\) −3.72204 6.44677i −0.152846 0.264737i 0.779427 0.626494i \(-0.215511\pi\)
−0.932273 + 0.361756i \(0.882177\pi\)
\(594\) 2.84326 + 1.70760i 0.116660 + 0.0700637i
\(595\) 0.523678 1.30952i 0.0214687 0.0536850i
\(596\) 14.6150i 0.598656i
\(597\) 2.88199 + 4.99176i 0.117952 + 0.204299i
\(598\) −0.0784051 0.0452672i −0.00320622 0.00185111i
\(599\) −12.3177 + 21.3348i −0.503286 + 0.871717i 0.496707 + 0.867918i \(0.334542\pi\)
−0.999993 + 0.00379841i \(0.998791\pi\)
\(600\) 0.0269081 + 0.0466061i 0.00109852 + 0.00190269i
\(601\) −6.75417 −0.275508 −0.137754 0.990466i \(-0.543988\pi\)
−0.137754 + 0.990466i \(0.543988\pi\)
\(602\) 3.84592 + 26.6774i 0.156748 + 1.08729i
\(603\) 4.96377 0.202140
\(604\) 1.57663 0.910267i 0.0641521 0.0370382i
\(605\) 0.843677 24.4495i 0.0343003 0.994012i
\(606\) −9.76595 + 16.9151i −0.396714 + 0.687130i
\(607\) 18.7854 + 32.5373i 0.762476 + 1.32065i 0.941571 + 0.336815i \(0.109350\pi\)
−0.179095 + 0.983832i \(0.557317\pi\)
\(608\) 0.436161i 0.0176887i
\(609\) 15.6130 12.2877i 0.632670 0.497924i
\(610\) −2.33520 −0.0945495
\(611\) −1.26500 + 0.730348i −0.0511764 + 0.0295467i
\(612\) −0.119843 + 0.207574i −0.00484435 + 0.00839067i
\(613\) −32.3937 18.7025i −1.30837 0.755387i −0.326544 0.945182i \(-0.605884\pi\)
−0.981824 + 0.189795i \(0.939218\pi\)
\(614\) −21.9508 + 12.6733i −0.885861 + 0.511452i
\(615\) −7.00270 −0.282376
\(616\) 1.10212 + 8.70548i 0.0444057 + 0.350754i
\(617\) −12.6245 −0.508243 −0.254122 0.967172i \(-0.581786\pi\)
−0.254122 + 0.967172i \(0.581786\pi\)
\(618\) −11.0669 + 6.38947i −0.445176 + 0.257022i
\(619\) −5.03418 2.90648i −0.202341 0.116821i 0.395406 0.918506i \(-0.370604\pi\)
−0.597747 + 0.801685i \(0.703937\pi\)
\(620\) 0.393738 0.681975i 0.0158129 0.0273888i
\(621\) 0.695621 0.401617i 0.0279143 0.0161163i
\(622\) 13.8671 0.556021
\(623\) 36.6580 5.28477i 1.46867 0.211730i
\(624\) 0.112712i 0.00451211i
\(625\) 12.3640 + 21.4151i 0.494560 + 0.856604i
\(626\) 6.02834 10.4414i 0.240941 0.417322i
\(627\) 0.701578 + 1.26506i 0.0280183 + 0.0505218i
\(628\) 15.1388 8.74037i 0.604103 0.348779i
\(629\) −1.76161 −0.0702398
\(630\) −5.46349 2.18486i −0.217671 0.0870467i
\(631\) 45.0951 1.79521 0.897604 0.440804i \(-0.145307\pi\)
0.897604 + 0.440804i \(0.145307\pi\)
\(632\) 0.247807 + 0.429215i 0.00985725 + 0.0170733i
\(633\) 11.5601 20.0226i 0.459471 0.795827i
\(634\) 6.54073 + 3.77629i 0.259766 + 0.149976i
\(635\) −5.68496 9.84664i −0.225601 0.390752i
\(636\) 2.56391i 0.101666i
\(637\) 0.571428 + 0.544032i 0.0226408 + 0.0215553i
\(638\) 21.3516 + 12.8233i 0.845317 + 0.507680i
\(639\) −3.79033 6.56505i −0.149943 0.259709i
\(640\) −1.11200 + 1.92604i −0.0439557 + 0.0761335i
\(641\) 9.27227 16.0600i 0.366233 0.634333i −0.622741 0.782428i \(-0.713981\pi\)
0.988973 + 0.148095i \(0.0473141\pi\)
\(642\) 10.8886 6.28656i 0.429740 0.248111i
\(643\) 9.80715i 0.386756i 0.981124 + 0.193378i \(0.0619444\pi\)
−0.981124 + 0.193378i \(0.938056\pi\)
\(644\) 1.97323 + 0.789095i 0.0777560 + 0.0310947i
\(645\) 22.6567i 0.892107i
\(646\) −0.0905355 + 0.0522707i −0.00356207 + 0.00205656i
\(647\) −16.4510 9.49800i −0.646756 0.373405i 0.140456 0.990087i \(-0.455143\pi\)
−0.787212 + 0.616682i \(0.788476\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) 12.5381 + 0.216262i 0.492165 + 0.00848903i
\(650\) 0.00606575i 0.000237918i
\(651\) −0.133672 0.927224i −0.00523903 0.0363408i
\(652\) −11.6913 −0.457867
\(653\) −7.65833 13.2646i −0.299694 0.519084i 0.676372 0.736560i \(-0.263551\pi\)
−0.976066 + 0.217476i \(0.930218\pi\)
\(654\) 14.3351 + 8.27635i 0.560545 + 0.323631i
\(655\) 3.96427 + 2.28877i 0.154897 + 0.0894298i
\(656\) 1.57435 + 2.72685i 0.0614679 + 0.106465i
\(657\) −4.79653 −0.187131
\(658\) 26.9438 21.2054i 1.05038 0.826671i
\(659\) 50.6179i 1.97179i 0.167358 + 0.985896i \(0.446476\pi\)
−0.167358 + 0.985896i \(0.553524\pi\)
\(660\) 0.127208 7.37508i 0.00495156 0.287075i
\(661\) 33.9093 + 19.5776i 1.31892 + 0.761478i 0.983555 0.180610i \(-0.0578072\pi\)
0.335365 + 0.942088i \(0.391141\pi\)
\(662\) −19.5435 11.2835i −0.759580 0.438544i
\(663\) −0.0233961 + 0.0135078i −0.000908631 + 0.000524598i
\(664\) 0.569186i 0.0220887i
\(665\) −1.58723 2.01676i −0.0615501 0.0782065i
\(666\) 7.34966i 0.284793i
\(667\) 5.22380 3.01596i 0.202266 0.116779i
\(668\) −9.24425 + 16.0115i −0.357671 + 0.619504i
\(669\) 5.66167 9.80630i 0.218893 0.379134i
\(670\) −5.51972 9.56043i −0.213245 0.369352i
\(671\) −2.98542 1.79298i −0.115251 0.0692172i
\(672\) 0.377519 + 2.61868i 0.0145631 + 0.101018i
\(673\) 25.0173i 0.964345i −0.876076 0.482172i \(-0.839848\pi\)
0.876076 0.482172i \(-0.160152\pi\)
\(674\) 16.2347 + 28.1194i 0.625339 + 1.08312i
\(675\) −0.0466061 0.0269081i −0.00179387 0.00103569i
\(676\) −6.49365 + 11.2473i −0.249756 + 0.432590i
\(677\) −24.2515 42.0048i −0.932059 1.61437i −0.779796 0.626034i \(-0.784677\pi\)
−0.152263 0.988340i \(-0.548656\pi\)
\(678\) −8.19898 −0.314880
\(679\) −10.4830 + 26.2139i −0.402299 + 1.00600i
\(680\) 0.533061 0.0204419
\(681\) −4.61805 + 2.66623i −0.176964 + 0.102170i
\(682\) 1.02700 0.569550i 0.0393257 0.0218092i
\(683\) 3.55626 6.15962i 0.136076 0.235691i −0.789932 0.613195i \(-0.789884\pi\)
0.926008 + 0.377504i \(0.123217\pi\)
\(684\) 0.218080 + 0.377726i 0.00833851 + 0.0144427i
\(685\) 41.9244i 1.60185i
\(686\) −15.0983 10.7257i −0.576457 0.409509i
\(687\) 18.0351 0.688082
\(688\) −8.82251 + 5.09368i −0.336355 + 0.194195i
\(689\) 0.144492 0.250268i 0.00550472 0.00953446i
\(690\) −1.54706 0.893197i −0.0588956 0.0340034i
\(691\) 37.8547 21.8554i 1.44006 0.831420i 0.442209 0.896912i \(-0.354195\pi\)
0.997853 + 0.0654915i \(0.0208615\pi\)
\(692\) −17.1887 −0.653418
\(693\) −5.30720 6.98810i −0.201604 0.265456i
\(694\) 30.7426 1.16697
\(695\) 20.2298 11.6797i 0.767361 0.443036i
\(696\) 6.50347 + 3.75478i 0.246513 + 0.142324i
\(697\) 0.377348 0.653585i 0.0142931 0.0247563i
\(698\) −21.2675 + 12.2788i −0.804986 + 0.464759i
\(699\) 15.6773 0.592971
\(700\) −0.0203166 0.140927i −0.000767896 0.00532655i
\(701\) 31.5402i 1.19126i −0.803260 0.595628i \(-0.796903\pi\)
0.803260 0.595628i \(-0.203097\pi\)
\(702\) 0.0563562 + 0.0976119i 0.00212703 + 0.00368412i
\(703\) −1.60282 + 2.77616i −0.0604514 + 0.104705i
\(704\) −2.90045 + 1.60853i −0.109315 + 0.0606238i
\(705\) −24.9605 + 14.4110i −0.940067 + 0.542748i
\(706\) 4.32341 0.162714
\(707\) 40.6084 31.9597i 1.52724 1.20197i
\(708\) 3.78095 0.142097
\(709\) 20.1759 + 34.9457i 0.757723 + 1.31241i 0.944009 + 0.329919i \(0.107021\pi\)
−0.186287 + 0.982495i \(0.559645\pi\)
\(710\) −8.42971 + 14.6007i −0.316361 + 0.547954i
\(711\) −0.429215 0.247807i −0.0160968 0.00929350i
\(712\) 6.99934 + 12.1232i 0.262311 + 0.454336i
\(713\) 0.284410i 0.0106512i
\(714\) 0.498326 0.392193i 0.0186494 0.0146774i
\(715\) 0.428049 0.712727i 0.0160081 0.0266545i
\(716\) 5.81838 + 10.0777i 0.217443 + 0.376622i
\(717\) 9.84934 17.0596i 0.367830 0.637101i
\(718\) 7.95866 13.7848i 0.297014 0.514444i
\(719\) −5.72561 + 3.30568i −0.213529 + 0.123281i −0.602950 0.797779i \(-0.706008\pi\)
0.389421 + 0.921060i \(0.372675\pi\)
\(720\) 2.22400i 0.0828837i
\(721\) 33.4639 4.82430i 1.24626 0.179666i
\(722\) 18.8098i 0.700027i
\(723\) −6.67323 + 3.85279i −0.248180 + 0.143287i
\(724\) −19.0122 10.9767i −0.706584 0.407946i
\(725\) −0.349991 0.202068i −0.0129984 0.00750460i
\(726\) 5.82526 9.33094i 0.216196 0.346304i
\(727\) 37.4392i 1.38854i −0.719714 0.694271i \(-0.755727\pi\)
0.719714 0.694271i \(-0.244273\pi\)
\(728\) −0.110729 + 0.276890i −0.00410387 + 0.0102622i
\(729\) −1.00000 −0.0370370
\(730\) 5.33375 + 9.23832i 0.197411 + 0.341926i
\(731\) 2.11463 + 1.22088i 0.0782123 + 0.0451559i
\(732\) −0.909326 0.525000i −0.0336097 0.0194046i
\(733\) −11.5556 20.0149i −0.426816 0.739266i 0.569772 0.821803i \(-0.307031\pi\)
−0.996588 + 0.0825361i \(0.973698\pi\)
\(734\) −25.7459 −0.950297
\(735\) 11.2752 + 10.7346i 0.415893 + 0.395953i
\(736\) 0.803234i 0.0296076i
\(737\) 0.283917 16.4605i 0.0104582 0.606331i
\(738\) −2.72685 1.57435i −0.100377 0.0579525i
\(739\) −24.3934 14.0836i −0.897327 0.518072i −0.0209949 0.999780i \(-0.506683\pi\)
−0.876332 + 0.481708i \(0.840017\pi\)
\(740\) 14.1557 8.17282i 0.520376 0.300439i
\(741\) 0.0491608i 0.00180597i
\(742\) −2.51878 + 6.29851i −0.0924674 + 0.231226i
\(743\) 0.655454i 0.0240463i 0.999928 + 0.0120231i \(0.00382718\pi\)
−0.999928 + 0.0120231i \(0.996173\pi\)
\(744\) 0.306643 0.177040i 0.0112421 0.00649062i
\(745\) 16.2519 28.1492i 0.595425 1.03131i
\(746\) −14.5882 + 25.2676i −0.534113 + 0.925112i
\(747\) 0.284593 + 0.492929i 0.0104127 + 0.0180353i
\(748\) 0.681487 + 0.409287i 0.0249176 + 0.0149650i
\(749\) −32.9250 + 4.74659i −1.20305 + 0.173437i
\(750\) 11.2397i 0.410416i
\(751\) −2.65126 4.59211i −0.0967457 0.167568i 0.813590 0.581439i \(-0.197510\pi\)
−0.910336 + 0.413870i \(0.864177\pi\)
\(752\) 11.2232 + 6.47974i 0.409270 + 0.236292i
\(753\) 5.69442 9.86302i 0.207516 0.359428i
\(754\) 0.423210 + 0.733022i 0.0154124 + 0.0266951i
\(755\) 4.04887 0.147353
\(756\) −1.63628 2.07908i −0.0595110 0.0756155i
\(757\) −5.79544 −0.210639 −0.105319 0.994438i \(-0.533586\pi\)
−0.105319 + 0.994438i \(0.533586\pi\)
\(758\) −24.9589 + 14.4100i −0.906547 + 0.523395i
\(759\) −1.29203 2.32974i −0.0468976 0.0845643i
\(760\) 0.485011 0.840064i 0.0175932 0.0304723i
\(761\) 21.5347 + 37.2992i 0.780632 + 1.35209i 0.931574 + 0.363552i \(0.118436\pi\)
−0.150942 + 0.988543i \(0.548231\pi\)
\(762\) 5.11237i 0.185202i
\(763\) −27.0849 34.4144i −0.980538 1.24589i
\(764\) 5.98538 0.216543
\(765\) −0.461644 + 0.266530i −0.0166908 + 0.00963643i
\(766\) −3.53608 + 6.12468i −0.127764 + 0.221294i
\(767\) 0.369066 + 0.213080i 0.0133262 + 0.00769389i
\(768\) −0.866025 + 0.500000i −0.0312500 + 0.0180422i
\(769\) 41.6527 1.50204 0.751018 0.660282i \(-0.229563\pi\)
0.751018 + 0.660282i \(0.229563\pi\)
\(770\) −7.55777 + 17.9927i −0.272363 + 0.648411i
\(771\) 16.1627 0.582085
\(772\) 7.35467 4.24622i 0.264700 0.152825i
\(773\) −18.5314 10.6991i −0.666527 0.384820i 0.128232 0.991744i \(-0.459070\pi\)
−0.794759 + 0.606925i \(0.792403\pi\)
\(774\) 5.09368 8.82251i 0.183089 0.317119i