Properties

Label 462.2.p.b.241.5
Level $462$
Weight $2$
Character 462.241
Analytic conductor $3.689$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 241.5
Root \(0.500000 - 3.19339i\) of defining polynomial
Character \(\chi\) \(=\) 462.241
Dual form 462.2.p.b.439.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.01555 + 1.16368i) q^{5} +1.00000 q^{6} +(1.31629 + 2.29508i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.01555 + 1.16368i) q^{5} +1.00000 q^{6} +(1.31629 + 2.29508i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.16368 + 2.01555i) q^{10} +(2.46679 + 2.21696i) q^{11} +(0.866025 - 0.500000i) q^{12} +1.44095 q^{13} +(2.28748 + 1.32945i) q^{14} -2.32736 q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.60782 - 2.78483i) q^{17} +(0.866025 + 0.500000i) q^{18} +(3.07901 + 5.33301i) q^{19} +2.32736i q^{20} +(-0.00760304 + 2.64574i) q^{21} +(3.24479 + 0.686549i) q^{22} +(-3.14645 - 5.44981i) q^{23} +(0.500000 - 0.866025i) q^{24} +(0.208304 - 0.360793i) q^{25} +(1.24790 - 0.720474i) q^{26} +1.00000i q^{27} +(2.64574 + 0.00760304i) q^{28} -3.26833i q^{29} +(-2.01555 + 1.16368i) q^{30} +(2.67692 + 1.54552i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(1.02783 + 3.15334i) q^{33} -3.21565i q^{34} +(-5.32378 - 3.09412i) q^{35} +1.00000 q^{36} +(-4.57056 - 7.91644i) q^{37} +(5.33301 + 3.07901i) q^{38} +(1.24790 + 0.720474i) q^{39} +(1.16368 + 2.01555i) q^{40} -3.41163 q^{41} +(1.31629 + 2.29508i) q^{42} -1.89247i q^{43} +(3.15334 - 1.02783i) q^{44} +(-2.01555 - 1.16368i) q^{45} +(-5.44981 - 3.14645i) q^{46} +(-9.22249 + 5.32461i) q^{47} -1.00000i q^{48} +(-3.53478 + 6.04196i) q^{49} -0.416608i q^{50} +(2.78483 - 1.60782i) q^{51} +(0.720474 - 1.24790i) q^{52} +(4.60856 - 7.98226i) q^{53} +(0.500000 + 0.866025i) q^{54} +(-7.55179 - 1.59785i) q^{55} +(2.29508 - 1.31629i) q^{56} +6.15803i q^{57} +(-1.63416 - 2.83045i) q^{58} +(-0.461345 - 0.266358i) q^{59} +(-1.16368 + 2.01555i) q^{60} +(0.233713 + 0.404803i) q^{61} +3.09104 q^{62} +(-1.32945 + 2.28748i) q^{63} -1.00000 q^{64} +(-2.90431 + 1.67680i) q^{65} +(2.46679 + 2.21696i) q^{66} +(4.61347 - 7.99077i) q^{67} +(-1.60782 - 2.78483i) q^{68} -6.29290i q^{69} +(-6.15759 - 0.0176950i) q^{70} -3.25253 q^{71} +(0.866025 - 0.500000i) q^{72} +(2.50002 - 4.33016i) q^{73} +(-7.91644 - 4.57056i) q^{74} +(0.360793 - 0.208304i) q^{75} +6.15803 q^{76} +(-1.84110 + 8.57965i) q^{77} +1.44095 q^{78} +(7.21263 - 4.16421i) q^{79} +(2.01555 + 1.16368i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.95456 + 1.70582i) q^{82} -4.56130 q^{83} +(2.28748 + 1.32945i) q^{84} +7.48397i q^{85} +(-0.946236 - 1.63893i) q^{86} +(1.63416 - 2.83045i) q^{87} +(2.21696 - 2.46679i) q^{88} +(-3.79409 + 2.19052i) q^{89} -2.32736 q^{90} +(1.89670 + 3.30709i) q^{91} -6.29290 q^{92} +(1.54552 + 2.67692i) q^{93} +(-5.32461 + 9.22249i) q^{94} +(-12.4118 - 7.16598i) q^{95} +(-0.500000 - 0.866025i) q^{96} +17.8026i q^{97} +(-0.0402313 + 6.99988i) q^{98} +(-0.686549 + 3.24479i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 12 q^{5} + 16 q^{6} + 6 q^{7} + 8 q^{9} + O(q^{10}) \) \( 16 q + 8 q^{4} + 12 q^{5} + 16 q^{6} + 6 q^{7} + 8 q^{9} - 2 q^{10} - 4 q^{11} + 8 q^{14} - 4 q^{15} - 8 q^{16} + 10 q^{19} + 4 q^{21} + 2 q^{22} - 4 q^{23} + 8 q^{24} + 10 q^{25} + 12 q^{26} + 12 q^{30} + 6 q^{31} + 4 q^{33} + 8 q^{35} + 16 q^{36} + 14 q^{37} - 12 q^{38} + 12 q^{39} + 2 q^{40} - 32 q^{41} + 6 q^{42} + 4 q^{44} + 12 q^{45} - 18 q^{46} - 24 q^{47} - 6 q^{49} - 6 q^{51} + 8 q^{54} + 14 q^{55} + 4 q^{56} - 2 q^{60} - 28 q^{61} + 8 q^{62} + 6 q^{63} - 16 q^{64} - 72 q^{65} - 4 q^{66} - 16 q^{67} - 30 q^{70} - 56 q^{71} + 44 q^{73} - 24 q^{74} - 12 q^{75} + 20 q^{76} - 52 q^{77} + 30 q^{79} - 12 q^{80} - 8 q^{81} - 12 q^{82} - 8 q^{83} + 8 q^{84} - 12 q^{86} - 2 q^{88} - 36 q^{89} - 4 q^{90} - 8 q^{91} - 8 q^{92} + 4 q^{93} - 14 q^{94} - 72 q^{95} - 8 q^{96} + 40 q^{98} - 8 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.01555 + 1.16368i −0.901383 + 0.520414i −0.877649 0.479305i \(-0.840889\pi\)
−0.0237343 + 0.999718i \(0.507556\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.31629 + 2.29508i 0.497509 + 0.867459i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −1.16368 + 2.01555i −0.367988 + 0.637374i
\(11\) 2.46679 + 2.21696i 0.743767 + 0.668439i
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) 1.44095 0.399647 0.199823 0.979832i \(-0.435963\pi\)
0.199823 + 0.979832i \(0.435963\pi\)
\(14\) 2.28748 + 1.32945i 0.611354 + 0.355312i
\(15\) −2.32736 −0.600922
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.60782 2.78483i 0.389954 0.675421i −0.602489 0.798127i \(-0.705824\pi\)
0.992443 + 0.122707i \(0.0391575\pi\)
\(18\) 0.866025 + 0.500000i 0.204124 + 0.117851i
\(19\) 3.07901 + 5.33301i 0.706374 + 1.22348i 0.966193 + 0.257819i \(0.0830038\pi\)
−0.259819 + 0.965657i \(0.583663\pi\)
\(20\) 2.32736i 0.520414i
\(21\) −0.00760304 + 2.64574i −0.00165912 + 0.577348i
\(22\) 3.24479 + 0.686549i 0.691791 + 0.146373i
\(23\) −3.14645 5.44981i −0.656080 1.13636i −0.981622 0.190836i \(-0.938880\pi\)
0.325542 0.945528i \(-0.394453\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 0.208304 0.360793i 0.0416608 0.0721586i
\(26\) 1.24790 0.720474i 0.244733 0.141297i
\(27\) 1.00000i 0.192450i
\(28\) 2.64574 + 0.00760304i 0.499998 + 0.00143684i
\(29\) 3.26833i 0.606913i −0.952845 0.303456i \(-0.901859\pi\)
0.952845 0.303456i \(-0.0981407\pi\)
\(30\) −2.01555 + 1.16368i −0.367988 + 0.212458i
\(31\) 2.67692 + 1.54552i 0.480789 + 0.277584i 0.720745 0.693200i \(-0.243800\pi\)
−0.239956 + 0.970784i \(0.577133\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 1.02783 + 3.15334i 0.178921 + 0.548927i
\(34\) 3.21565i 0.551479i
\(35\) −5.32378 3.09412i −0.899884 0.523002i
\(36\) 1.00000 0.166667
\(37\) −4.57056 7.91644i −0.751395 1.30145i −0.947147 0.320801i \(-0.896048\pi\)
0.195752 0.980653i \(-0.437285\pi\)
\(38\) 5.33301 + 3.07901i 0.865128 + 0.499482i
\(39\) 1.24790 + 0.720474i 0.199823 + 0.115368i
\(40\) 1.16368 + 2.01555i 0.183994 + 0.318687i
\(41\) −3.41163 −0.532808 −0.266404 0.963861i \(-0.585835\pi\)
−0.266404 + 0.963861i \(0.585835\pi\)
\(42\) 1.31629 + 2.29508i 0.203107 + 0.354139i
\(43\) 1.89247i 0.288599i −0.989534 0.144300i \(-0.953907\pi\)
0.989534 0.144300i \(-0.0460929\pi\)
\(44\) 3.15334 1.02783i 0.475384 0.154951i
\(45\) −2.01555 1.16368i −0.300461 0.173471i
\(46\) −5.44981 3.14645i −0.803530 0.463919i
\(47\) −9.22249 + 5.32461i −1.34524 + 0.776674i −0.987571 0.157175i \(-0.949761\pi\)
−0.357668 + 0.933849i \(0.616428\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −3.53478 + 6.04196i −0.504969 + 0.863137i
\(50\) 0.416608i 0.0589173i
\(51\) 2.78483 1.60782i 0.389954 0.225140i
\(52\) 0.720474 1.24790i 0.0999117 0.173052i
\(53\) 4.60856 7.98226i 0.633035 1.09645i −0.353893 0.935286i \(-0.615142\pi\)
0.986928 0.161162i \(-0.0515242\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) −7.55179 1.59785i −1.01828 0.215454i
\(56\) 2.29508 1.31629i 0.306693 0.175896i
\(57\) 6.15803i 0.815651i
\(58\) −1.63416 2.83045i −0.214576 0.371657i
\(59\) −0.461345 0.266358i −0.0600620 0.0346768i 0.469668 0.882843i \(-0.344374\pi\)
−0.529730 + 0.848166i \(0.677707\pi\)
\(60\) −1.16368 + 2.01555i −0.150230 + 0.260207i
\(61\) 0.233713 + 0.404803i 0.0299239 + 0.0518298i 0.880600 0.473861i \(-0.157140\pi\)
−0.850676 + 0.525691i \(0.823807\pi\)
\(62\) 3.09104 0.392563
\(63\) −1.32945 + 2.28748i −0.167496 + 0.288195i
\(64\) −1.00000 −0.125000
\(65\) −2.90431 + 1.67680i −0.360235 + 0.207982i
\(66\) 2.46679 + 2.21696i 0.303641 + 0.272889i
\(67\) 4.61347 7.99077i 0.563625 0.976227i −0.433551 0.901129i \(-0.642740\pi\)
0.997176 0.0750984i \(-0.0239271\pi\)
\(68\) −1.60782 2.78483i −0.194977 0.337710i
\(69\) 6.29290i 0.757576i
\(70\) −6.15759 0.0176950i −0.735973 0.00211496i
\(71\) −3.25253 −0.386004 −0.193002 0.981198i \(-0.561822\pi\)
−0.193002 + 0.981198i \(0.561822\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) 2.50002 4.33016i 0.292605 0.506807i −0.681820 0.731520i \(-0.738811\pi\)
0.974425 + 0.224713i \(0.0721446\pi\)
\(74\) −7.91644 4.57056i −0.920267 0.531316i
\(75\) 0.360793 0.208304i 0.0416608 0.0240529i
\(76\) 6.15803 0.706374
\(77\) −1.84110 + 8.57965i −0.209813 + 0.977742i
\(78\) 1.44095 0.163155
\(79\) 7.21263 4.16421i 0.811484 0.468510i −0.0359870 0.999352i \(-0.511457\pi\)
0.847471 + 0.530842i \(0.178124\pi\)
\(80\) 2.01555 + 1.16368i 0.225346 + 0.130103i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.95456 + 1.70582i −0.326277 + 0.188376i
\(83\) −4.56130 −0.500668 −0.250334 0.968160i \(-0.580540\pi\)
−0.250334 + 0.968160i \(0.580540\pi\)
\(84\) 2.28748 + 1.32945i 0.249584 + 0.145055i
\(85\) 7.48397i 0.811750i
\(86\) −0.946236 1.63893i −0.102035 0.176730i
\(87\) 1.63416 2.83045i 0.175201 0.303456i
\(88\) 2.21696 2.46679i 0.236329 0.262961i
\(89\) −3.79409 + 2.19052i −0.402173 + 0.232195i −0.687421 0.726259i \(-0.741257\pi\)
0.285248 + 0.958454i \(0.407924\pi\)
\(90\) −2.32736 −0.245325
\(91\) 1.89670 + 3.30709i 0.198828 + 0.346677i
\(92\) −6.29290 −0.656080
\(93\) 1.54552 + 2.67692i 0.160263 + 0.277584i
\(94\) −5.32461 + 9.22249i −0.549191 + 0.951227i
\(95\) −12.4118 7.16598i −1.27343 0.735214i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 17.8026i 1.80758i 0.427977 + 0.903790i \(0.359226\pi\)
−0.427977 + 0.903790i \(0.640774\pi\)
\(98\) −0.0402313 + 6.99988i −0.00406398 + 0.707095i
\(99\) −0.686549 + 3.24479i −0.0690007 + 0.326113i
\(100\) −0.208304 0.360793i −0.0208304 0.0360793i
\(101\) 5.34857 9.26399i 0.532203 0.921802i −0.467091 0.884209i \(-0.654698\pi\)
0.999293 0.0375924i \(-0.0119688\pi\)
\(102\) 1.60782 2.78483i 0.159198 0.275739i
\(103\) 11.7844 6.80370i 1.16115 0.670388i 0.209568 0.977794i \(-0.432794\pi\)
0.951579 + 0.307406i \(0.0994609\pi\)
\(104\) 1.44095i 0.141297i
\(105\) −3.06347 5.34148i −0.298964 0.521275i
\(106\) 9.21712i 0.895246i
\(107\) 8.13694 4.69786i 0.786627 0.454159i −0.0521466 0.998639i \(-0.516606\pi\)
0.838774 + 0.544480i \(0.183273\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −6.18076 3.56846i −0.592009 0.341797i 0.173882 0.984766i \(-0.444369\pi\)
−0.765892 + 0.642970i \(0.777702\pi\)
\(110\) −7.33897 + 2.39212i −0.699743 + 0.228080i
\(111\) 9.14111i 0.867636i
\(112\) 1.32945 2.28748i 0.125622 0.216146i
\(113\) −3.15100 −0.296421 −0.148210 0.988956i \(-0.547351\pi\)
−0.148210 + 0.988956i \(0.547351\pi\)
\(114\) 3.07901 + 5.33301i 0.288376 + 0.499482i
\(115\) 12.6837 + 7.32292i 1.18276 + 0.682866i
\(116\) −2.83045 1.63416i −0.262801 0.151728i
\(117\) 0.720474 + 1.24790i 0.0666078 + 0.115368i
\(118\) −0.532715 −0.0490404
\(119\) 8.50776 + 0.0244487i 0.779905 + 0.00224121i
\(120\) 2.32736i 0.212458i
\(121\) 1.17015 + 10.9376i 0.106377 + 0.994326i
\(122\) 0.404803 + 0.233713i 0.0366492 + 0.0211594i
\(123\) −2.95456 1.70582i −0.266404 0.153808i
\(124\) 2.67692 1.54552i 0.240395 0.138792i
\(125\) 10.6672i 0.954104i
\(126\) −0.00760304 + 2.64574i −0.000677332 + 0.235701i
\(127\) 10.8090i 0.959143i −0.877503 0.479571i \(-0.840792\pi\)
0.877503 0.479571i \(-0.159208\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0.946236 1.63893i 0.0833115 0.144300i
\(130\) −1.67680 + 2.90431i −0.147065 + 0.254725i
\(131\) −5.48559 9.50131i −0.479278 0.830134i 0.520440 0.853898i \(-0.325768\pi\)
−0.999718 + 0.0237647i \(0.992435\pi\)
\(132\) 3.24479 + 0.686549i 0.282423 + 0.0597564i
\(133\) −8.18682 + 14.0863i −0.709887 + 1.22144i
\(134\) 9.22694i 0.797086i
\(135\) −1.16368 2.01555i −0.100154 0.173471i
\(136\) −2.78483 1.60782i −0.238797 0.137870i
\(137\) −4.83301 + 8.37102i −0.412912 + 0.715185i −0.995207 0.0977932i \(-0.968822\pi\)
0.582295 + 0.812978i \(0.302155\pi\)
\(138\) −3.14645 5.44981i −0.267843 0.463919i
\(139\) −23.3695 −1.98218 −0.991088 0.133208i \(-0.957472\pi\)
−0.991088 + 0.133208i \(0.957472\pi\)
\(140\) −5.34148 + 3.06347i −0.451437 + 0.258911i
\(141\) −10.6492 −0.896826
\(142\) −2.81677 + 1.62627i −0.236378 + 0.136473i
\(143\) 3.55452 + 3.19453i 0.297244 + 0.267140i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 3.80329 + 6.58749i 0.315846 + 0.547061i
\(146\) 5.00004i 0.413806i
\(147\) −6.08219 + 3.46510i −0.501651 + 0.285797i
\(148\) −9.14111 −0.751395
\(149\) −13.0372 + 7.52705i −1.06805 + 0.616640i −0.927648 0.373455i \(-0.878173\pi\)
−0.140403 + 0.990094i \(0.544840\pi\)
\(150\) 0.208304 0.360793i 0.0170080 0.0294586i
\(151\) 11.2506 + 6.49554i 0.915561 + 0.528599i 0.882216 0.470845i \(-0.156051\pi\)
0.0333445 + 0.999444i \(0.489384\pi\)
\(152\) 5.33301 3.07901i 0.432564 0.249741i
\(153\) 3.21565 0.259970
\(154\) 2.69538 + 8.35074i 0.217200 + 0.672922i
\(155\) −7.19397 −0.577833
\(156\) 1.24790 0.720474i 0.0999117 0.0576841i
\(157\) −9.98402 5.76428i −0.796812 0.460039i 0.0455434 0.998962i \(-0.485498\pi\)
−0.842355 + 0.538923i \(0.818831\pi\)
\(158\) 4.16421 7.21263i 0.331287 0.573806i
\(159\) 7.98226 4.60856i 0.633035 0.365483i
\(160\) 2.32736 0.183994
\(161\) 8.36612 14.3949i 0.659343 1.13447i
\(162\) 1.00000i 0.0785674i
\(163\) 4.15686 + 7.19989i 0.325590 + 0.563939i 0.981632 0.190786i \(-0.0611037\pi\)
−0.656041 + 0.754725i \(0.727770\pi\)
\(164\) −1.70582 + 2.95456i −0.133202 + 0.230713i
\(165\) −5.74112 5.15967i −0.446946 0.401680i
\(166\) −3.95020 + 2.28065i −0.306595 + 0.177013i
\(167\) 15.5338 1.20204 0.601022 0.799232i \(-0.294760\pi\)
0.601022 + 0.799232i \(0.294760\pi\)
\(168\) 2.64574 + 0.00760304i 0.204123 + 0.000586587i
\(169\) −10.9237 −0.840282
\(170\) 3.74198 + 6.48131i 0.286997 + 0.497094i
\(171\) −3.07901 + 5.33301i −0.235458 + 0.407825i
\(172\) −1.63893 0.946236i −0.124967 0.0721499i
\(173\) 6.60240 + 11.4357i 0.501971 + 0.869439i 0.999997 + 0.00227722i \(0.000724861\pi\)
−0.498027 + 0.867162i \(0.665942\pi\)
\(174\) 3.26833i 0.247771i
\(175\) 1.10224 + 0.00316749i 0.0833213 + 0.000239439i
\(176\) 0.686549 3.24479i 0.0517506 0.244585i
\(177\) −0.266358 0.461345i −0.0200207 0.0346768i
\(178\) −2.19052 + 3.79409i −0.164186 + 0.284379i
\(179\) 9.43539 16.3426i 0.705234 1.22150i −0.261373 0.965238i \(-0.584175\pi\)
0.966607 0.256263i \(-0.0824913\pi\)
\(180\) −2.01555 + 1.16368i −0.150230 + 0.0867356i
\(181\) 3.94448i 0.293191i −0.989197 0.146595i \(-0.953168\pi\)
0.989197 0.146595i \(-0.0468316\pi\)
\(182\) 3.29613 + 1.91567i 0.244326 + 0.141999i
\(183\) 0.467427i 0.0345532i
\(184\) −5.44981 + 3.14645i −0.401765 + 0.231959i
\(185\) 18.4244 + 10.6373i 1.35459 + 0.782072i
\(186\) 2.67692 + 1.54552i 0.196281 + 0.113323i
\(187\) 10.1400 3.30512i 0.741513 0.241695i
\(188\) 10.6492i 0.776674i
\(189\) −2.29508 + 1.31629i −0.166942 + 0.0957457i
\(190\) −14.3320 −1.03975
\(191\) −11.7619 20.3722i −0.851062 1.47408i −0.880251 0.474508i \(-0.842626\pi\)
0.0291897 0.999574i \(-0.490707\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 18.0103 + 10.3983i 1.29641 + 0.748484i 0.979782 0.200066i \(-0.0641156\pi\)
0.316629 + 0.948549i \(0.397449\pi\)
\(194\) 8.90130 + 15.4175i 0.639076 + 1.10691i
\(195\) −3.35360 −0.240157
\(196\) 3.46510 + 6.08219i 0.247507 + 0.434442i
\(197\) 21.3675i 1.52237i 0.648534 + 0.761186i \(0.275382\pi\)
−0.648534 + 0.761186i \(0.724618\pi\)
\(198\) 1.02783 + 3.15334i 0.0730444 + 0.224098i
\(199\) 17.3579 + 10.0216i 1.23047 + 0.710410i 0.967127 0.254293i \(-0.0818429\pi\)
0.263339 + 0.964703i \(0.415176\pi\)
\(200\) −0.360793 0.208304i −0.0255119 0.0147293i
\(201\) 7.99077 4.61347i 0.563625 0.325409i
\(202\) 10.6971i 0.752648i
\(203\) 7.50107 4.30205i 0.526472 0.301945i
\(204\) 3.21565i 0.225140i
\(205\) 6.87633 3.97005i 0.480264 0.277280i
\(206\) 6.80370 11.7844i 0.474036 0.821055i
\(207\) 3.14645 5.44981i 0.218693 0.378788i
\(208\) −0.720474 1.24790i −0.0499559 0.0865261i
\(209\) −4.22779 + 19.9815i −0.292442 + 1.38215i
\(210\) −5.32378 3.09412i −0.367376 0.213515i
\(211\) 2.04651i 0.140887i 0.997516 + 0.0704437i \(0.0224415\pi\)
−0.997516 + 0.0704437i \(0.977558\pi\)
\(212\) −4.60856 7.98226i −0.316517 0.548224i
\(213\) −2.81677 1.62627i −0.193002 0.111430i
\(214\) 4.69786 8.13694i 0.321139 0.556229i
\(215\) 2.20223 + 3.81438i 0.150191 + 0.260139i
\(216\) 1.00000 0.0680414
\(217\) −0.0235013 + 8.17809i −0.00159537 + 0.555165i
\(218\) −7.13693 −0.483374
\(219\) 4.33016 2.50002i 0.292605 0.168936i
\(220\) −5.15967 + 5.74112i −0.347865 + 0.387066i
\(221\) 2.31679 4.01279i 0.155844 0.269930i
\(222\) −4.57056 7.91644i −0.306756 0.531316i
\(223\) 23.3804i 1.56567i −0.622230 0.782835i \(-0.713773\pi\)
0.622230 0.782835i \(-0.286227\pi\)
\(224\) 0.00760304 2.64574i 0.000507999 0.176776i
\(225\) 0.416608 0.0277739
\(226\) −2.72884 + 1.57550i −0.181520 + 0.104801i
\(227\) −6.97413 + 12.0796i −0.462890 + 0.801748i −0.999104 0.0423338i \(-0.986521\pi\)
0.536214 + 0.844082i \(0.319854\pi\)
\(228\) 5.33301 + 3.07901i 0.353187 + 0.203913i
\(229\) −13.0033 + 7.50744i −0.859281 + 0.496106i −0.863771 0.503884i \(-0.831904\pi\)
0.00449072 + 0.999990i \(0.498571\pi\)
\(230\) 14.6458 0.965718
\(231\) −5.88426 + 6.50964i −0.387156 + 0.428303i
\(232\) −3.26833 −0.214576
\(233\) 14.2393 8.22109i 0.932850 0.538581i 0.0451385 0.998981i \(-0.485627\pi\)
0.887712 + 0.460399i \(0.152294\pi\)
\(234\) 1.24790 + 0.720474i 0.0815776 + 0.0470988i
\(235\) 12.3923 21.4641i 0.808384 1.40016i
\(236\) −0.461345 + 0.266358i −0.0300310 + 0.0173384i
\(237\) 8.32842 0.540989
\(238\) 7.38016 4.23271i 0.478385 0.274366i
\(239\) 24.7950i 1.60386i 0.597419 + 0.801929i \(0.296193\pi\)
−0.597419 + 0.801929i \(0.703807\pi\)
\(240\) 1.16368 + 2.01555i 0.0751152 + 0.130103i
\(241\) 11.1098 19.2427i 0.715643 1.23953i −0.247068 0.968998i \(-0.579467\pi\)
0.962711 0.270532i \(-0.0871996\pi\)
\(242\) 6.48217 + 8.88715i 0.416690 + 0.571288i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0.467427 0.0299239
\(245\) 0.0936328 16.2913i 0.00598198 1.04081i
\(246\) −3.41163 −0.217518
\(247\) 4.43670 + 7.68458i 0.282300 + 0.488958i
\(248\) 1.54552 2.67692i 0.0981407 0.169985i
\(249\) −3.95020 2.28065i −0.250334 0.144530i
\(250\) −5.33360 9.23807i −0.337327 0.584267i
\(251\) 4.73415i 0.298817i −0.988776 0.149409i \(-0.952263\pi\)
0.988776 0.149409i \(-0.0477370\pi\)
\(252\) 1.31629 + 2.29508i 0.0829182 + 0.144576i
\(253\) 4.32038 20.4191i 0.271620 1.28374i
\(254\) −5.40449 9.36086i −0.339108 0.587353i
\(255\) −3.74198 + 6.48131i −0.234332 + 0.405875i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.5961 + 6.11764i −0.660965 + 0.381608i −0.792644 0.609684i \(-0.791296\pi\)
0.131680 + 0.991292i \(0.457963\pi\)
\(258\) 1.89247i 0.117820i
\(259\) 12.1527 20.9101i 0.755132 1.29929i
\(260\) 3.35360i 0.207982i
\(261\) 2.83045 1.63416i 0.175201 0.101152i
\(262\) −9.50131 5.48559i −0.586993 0.338901i
\(263\) 16.6883 + 9.63502i 1.02905 + 0.594121i 0.916712 0.399550i \(-0.130833\pi\)
0.112336 + 0.993670i \(0.464167\pi\)
\(264\) 3.15334 1.02783i 0.194075 0.0632583i
\(265\) 21.4516i 1.31776i
\(266\) −0.0468197 + 16.2925i −0.00287070 + 0.998960i
\(267\) −4.38104 −0.268115
\(268\) −4.61347 7.99077i −0.281813 0.488114i
\(269\) 19.1299 + 11.0447i 1.16637 + 0.673405i 0.952823 0.303527i \(-0.0981644\pi\)
0.213549 + 0.976932i \(0.431498\pi\)
\(270\) −2.01555 1.16368i −0.122663 0.0708193i
\(271\) −0.610555 1.05751i −0.0370886 0.0642393i 0.846885 0.531776i \(-0.178475\pi\)
−0.883974 + 0.467536i \(0.845142\pi\)
\(272\) −3.21565 −0.194977
\(273\) −0.0109556 + 3.81237i −0.000663062 + 0.230735i
\(274\) 9.66602i 0.583946i
\(275\) 1.31371 0.428200i 0.0792196 0.0258215i
\(276\) −5.44981 3.14645i −0.328040 0.189394i
\(277\) −10.8330 6.25443i −0.650891 0.375792i 0.137906 0.990445i \(-0.455963\pi\)
−0.788798 + 0.614653i \(0.789296\pi\)
\(278\) −20.2386 + 11.6848i −1.21383 + 0.700805i
\(279\) 3.09104i 0.185056i
\(280\) −3.09412 + 5.32378i −0.184909 + 0.318157i
\(281\) 25.3495i 1.51222i 0.654443 + 0.756111i \(0.272903\pi\)
−0.654443 + 0.756111i \(0.727097\pi\)
\(282\) −9.22249 + 5.32461i −0.549191 + 0.317076i
\(283\) 1.38222 2.39408i 0.0821646 0.142313i −0.822015 0.569466i \(-0.807150\pi\)
0.904179 + 0.427153i \(0.140483\pi\)
\(284\) −1.62627 + 2.81677i −0.0965011 + 0.167145i
\(285\) −7.16598 12.4118i −0.424476 0.735214i
\(286\) 4.67557 + 0.989280i 0.276472 + 0.0584974i
\(287\) −4.49069 7.82997i −0.265077 0.462189i
\(288\) 1.00000i 0.0589256i
\(289\) 3.32981 + 5.76740i 0.195871 + 0.339259i
\(290\) 6.58749 + 3.80329i 0.386831 + 0.223337i
\(291\) −8.90130 + 15.4175i −0.521803 + 0.903790i
\(292\) −2.50002 4.33016i −0.146303 0.253403i
\(293\) 9.03175 0.527640 0.263820 0.964572i \(-0.415017\pi\)
0.263820 + 0.964572i \(0.415017\pi\)
\(294\) −3.53478 + 6.04196i −0.206153 + 0.352374i
\(295\) 1.23982 0.0721851
\(296\) −7.91644 + 4.57056i −0.460134 + 0.265658i
\(297\) −2.21696 + 2.46679i −0.128641 + 0.143138i
\(298\) −7.52705 + 13.0372i −0.436030 + 0.755226i
\(299\) −4.53387 7.85289i −0.262200 0.454144i
\(300\) 0.416608i 0.0240529i
\(301\) 4.34338 2.49104i 0.250348 0.143581i
\(302\) 12.9911 0.747552
\(303\) 9.26399 5.34857i 0.532203 0.307267i
\(304\) 3.07901 5.33301i 0.176594 0.305869i
\(305\) −0.942123 0.543935i −0.0539458 0.0311456i
\(306\) 2.78483 1.60782i 0.159198 0.0919131i
\(307\) −3.52291 −0.201063 −0.100531 0.994934i \(-0.532054\pi\)
−0.100531 + 0.994934i \(0.532054\pi\)
\(308\) 6.50964 + 5.88426i 0.370921 + 0.335287i
\(309\) 13.6074 0.774098
\(310\) −6.23016 + 3.59698i −0.353849 + 0.204295i
\(311\) 4.83852 + 2.79352i 0.274367 + 0.158406i 0.630871 0.775888i \(-0.282698\pi\)
−0.356503 + 0.934294i \(0.616031\pi\)
\(312\) 0.720474 1.24790i 0.0407888 0.0706483i
\(313\) 4.57178 2.63952i 0.258412 0.149194i −0.365198 0.930930i \(-0.618999\pi\)
0.623610 + 0.781736i \(0.285665\pi\)
\(314\) −11.5286 −0.650594
\(315\) 0.0176950 6.15759i 0.000997001 0.346941i
\(316\) 8.32842i 0.468510i
\(317\) −15.8432 27.4412i −0.889843 1.54125i −0.840060 0.542493i \(-0.817480\pi\)
−0.0497829 0.998760i \(-0.515853\pi\)
\(318\) 4.60856 7.98226i 0.258435 0.447623i
\(319\) 7.24576 8.06229i 0.405685 0.451402i
\(320\) 2.01555 1.16368i 0.112673 0.0650517i
\(321\) 9.39572 0.524418
\(322\) 0.0478451 16.6494i 0.00266630 0.927833i
\(323\) 19.8020 1.10181
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 0.300155 0.519884i 0.0166496 0.0288380i
\(326\) 7.19989 + 4.15686i 0.398765 + 0.230227i
\(327\) −3.56846 6.18076i −0.197336 0.341797i
\(328\) 3.41163i 0.188376i
\(329\) −24.3598 14.1577i −1.34300 0.780537i
\(330\) −7.55179 1.59785i −0.415713 0.0879586i
\(331\) 1.95793 + 3.39124i 0.107618 + 0.186399i 0.914805 0.403896i \(-0.132344\pi\)
−0.807187 + 0.590296i \(0.799011\pi\)
\(332\) −2.28065 + 3.95020i −0.125167 + 0.216796i
\(333\) 4.57056 7.91644i 0.250465 0.433818i
\(334\) 13.4527 7.76692i 0.736099 0.424987i
\(335\) 21.4744i 1.17327i
\(336\) 2.29508 1.31629i 0.125207 0.0718093i
\(337\) 20.0534i 1.09238i 0.837662 + 0.546189i \(0.183922\pi\)
−0.837662 + 0.546189i \(0.816078\pi\)
\(338\) −9.46018 + 5.46184i −0.514566 + 0.297085i
\(339\) −2.72884 1.57550i −0.148210 0.0855694i
\(340\) 6.48131 + 3.74198i 0.351498 + 0.202938i
\(341\) 3.17705 + 9.74711i 0.172047 + 0.527836i
\(342\) 6.15803i 0.332988i
\(343\) −18.5196 0.159662i −0.999963 0.00862094i
\(344\) −1.89247 −0.102035
\(345\) 7.32292 + 12.6837i 0.394253 + 0.682866i
\(346\) 11.4357 + 6.60240i 0.614786 + 0.354947i
\(347\) 24.6999 + 14.2605i 1.32596 + 0.765545i 0.984673 0.174413i \(-0.0558029\pi\)
0.341290 + 0.939958i \(0.389136\pi\)
\(348\) −1.63416 2.83045i −0.0876003 0.151728i
\(349\) −15.3941 −0.824027 −0.412014 0.911178i \(-0.635174\pi\)
−0.412014 + 0.911178i \(0.635174\pi\)
\(350\) 0.956149 0.548375i 0.0511083 0.0293119i
\(351\) 1.44095i 0.0769121i
\(352\) −1.02783 3.15334i −0.0547833 0.168074i
\(353\) 4.80016 + 2.77137i 0.255487 + 0.147505i 0.622274 0.782800i \(-0.286209\pi\)
−0.366787 + 0.930305i \(0.619542\pi\)
\(354\) −0.461345 0.266358i −0.0245202 0.0141567i
\(355\) 6.55565 3.78491i 0.347938 0.200882i
\(356\) 4.38104i 0.232195i
\(357\) 7.35572 + 4.27506i 0.389306 + 0.226260i
\(358\) 18.8708i 0.997351i
\(359\) −17.9527 + 10.3650i −0.947508 + 0.547044i −0.892306 0.451431i \(-0.850914\pi\)
−0.0552018 + 0.998475i \(0.517580\pi\)
\(360\) −1.16368 + 2.01555i −0.0613313 + 0.106229i
\(361\) −9.46065 + 16.3863i −0.497929 + 0.862439i
\(362\) −1.97224 3.41602i −0.103659 0.179542i
\(363\) −4.45541 + 10.0573i −0.233848 + 0.527871i
\(364\) 3.81237 + 0.0109556i 0.199823 + 0.000574228i
\(365\) 11.6369i 0.609103i
\(366\) 0.233713 + 0.404803i 0.0122164 + 0.0211594i
\(367\) −30.3880 17.5445i −1.58624 0.915816i −0.993919 0.110113i \(-0.964879\pi\)
−0.592320 0.805703i \(-0.701788\pi\)
\(368\) −3.14645 + 5.44981i −0.164020 + 0.284091i
\(369\) −1.70582 2.95456i −0.0888013 0.153808i
\(370\) 21.2747 1.10602
\(371\) 24.3861 + 0.0700781i 1.26606 + 0.00363827i
\(372\) 3.09104 0.160263
\(373\) −21.2225 + 12.2528i −1.09886 + 0.634427i −0.935921 0.352210i \(-0.885430\pi\)
−0.162938 + 0.986636i \(0.552097\pi\)
\(374\) 7.12897 7.93234i 0.368630 0.410171i
\(375\) 5.33360 9.23807i 0.275426 0.477052i
\(376\) 5.32461 + 9.22249i 0.274596 + 0.475614i
\(377\) 4.70949i 0.242551i
\(378\) −1.32945 + 2.28748i −0.0683798 + 0.117655i
\(379\) −3.42705 −0.176036 −0.0880179 0.996119i \(-0.528053\pi\)
−0.0880179 + 0.996119i \(0.528053\pi\)
\(380\) −12.4118 + 7.16598i −0.636714 + 0.367607i
\(381\) 5.40449 9.36086i 0.276881 0.479571i
\(382\) −20.3722 11.7619i −1.04233 0.601791i
\(383\) −28.2806 + 16.3278i −1.44507 + 0.834312i −0.998182 0.0602779i \(-0.980801\pi\)
−0.446889 + 0.894590i \(0.647468\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −6.27313 19.4352i −0.319708 0.990509i
\(386\) 20.7965 1.05852
\(387\) 1.63893 0.946236i 0.0833115 0.0480999i
\(388\) 15.4175 + 8.90130i 0.782705 + 0.451895i
\(389\) −9.28386 + 16.0801i −0.470711 + 0.815295i −0.999439 0.0334965i \(-0.989336\pi\)
0.528728 + 0.848791i \(0.322669\pi\)
\(390\) −2.90431 + 1.67680i −0.147065 + 0.0849082i
\(391\) −20.2357 −1.02336
\(392\) 6.04196 + 3.53478i 0.305165 + 0.178534i
\(393\) 10.9712i 0.553422i
\(394\) 10.6837 + 18.5048i 0.538239 + 0.932258i
\(395\) −9.69162 + 16.7864i −0.487639 + 0.844615i
\(396\) 2.46679 + 2.21696i 0.123961 + 0.111407i
\(397\) −4.84409 + 2.79674i −0.243118 + 0.140364i −0.616609 0.787270i \(-0.711494\pi\)
0.373491 + 0.927634i \(0.378161\pi\)
\(398\) 20.0431 1.00467
\(399\) −14.1332 + 8.10572i −0.707543 + 0.405794i
\(400\) −0.416608 −0.0208304
\(401\) 5.17676 + 8.96641i 0.258515 + 0.447761i 0.965844 0.259123i \(-0.0834335\pi\)
−0.707329 + 0.706884i \(0.750100\pi\)
\(402\) 4.61347 7.99077i 0.230099 0.398543i
\(403\) 3.85730 + 2.22701i 0.192146 + 0.110935i
\(404\) −5.34857 9.26399i −0.266101 0.460901i
\(405\) 2.32736i 0.115647i
\(406\) 4.34509 7.47622i 0.215643 0.371039i
\(407\) 6.27582 29.6610i 0.311081 1.47024i
\(408\) −1.60782 2.78483i −0.0795991 0.137870i
\(409\) −10.4458 + 18.0927i −0.516512 + 0.894625i 0.483304 + 0.875452i \(0.339436\pi\)
−0.999816 + 0.0191723i \(0.993897\pi\)
\(410\) 3.97005 6.87633i 0.196067 0.339598i
\(411\) −8.37102 + 4.83301i −0.412912 + 0.238395i
\(412\) 13.6074i 0.670388i
\(413\) 0.00405025 1.40943i 0.000199300 0.0693533i
\(414\) 6.29290i 0.309279i
\(415\) 9.19355 5.30790i 0.451293 0.260554i
\(416\) −1.24790 0.720474i −0.0611832 0.0353241i
\(417\) −20.2386 11.6848i −0.991088 0.572205i
\(418\) 6.32938 + 19.4184i 0.309580 + 0.949784i
\(419\) 7.59471i 0.371026i 0.982642 + 0.185513i \(0.0593946\pi\)
−0.982642 + 0.185513i \(0.940605\pi\)
\(420\) −6.15759 0.0176950i −0.300460 0.000863428i
\(421\) −29.9360 −1.45899 −0.729496 0.683985i \(-0.760246\pi\)
−0.729496 + 0.683985i \(0.760246\pi\)
\(422\) 1.02325 + 1.77233i 0.0498112 + 0.0862756i
\(423\) −9.22249 5.32461i −0.448413 0.258891i
\(424\) −7.98226 4.60856i −0.387653 0.223812i
\(425\) −0.669832 1.16018i −0.0324916 0.0562771i
\(426\) −3.25253 −0.157586
\(427\) −0.621422 + 1.06923i −0.0300727 + 0.0517435i
\(428\) 9.39572i 0.454159i
\(429\) 1.48104 + 4.54380i 0.0715054 + 0.219377i
\(430\) 3.81438 + 2.20223i 0.183946 + 0.106201i
\(431\) −28.8852 16.6769i −1.39135 0.803297i −0.397886 0.917435i \(-0.630256\pi\)
−0.993465 + 0.114138i \(0.963590\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 27.7837i 1.33520i −0.744521 0.667599i \(-0.767322\pi\)
0.744521 0.667599i \(-0.232678\pi\)
\(434\) 4.06869 + 7.09419i 0.195304 + 0.340532i
\(435\) 7.60657i 0.364707i
\(436\) −6.18076 + 3.56846i −0.296005 + 0.170898i
\(437\) 19.3759 33.5601i 0.926876 1.60540i
\(438\) 2.50002 4.33016i 0.119456 0.206903i
\(439\) −15.5488 26.9314i −0.742105 1.28536i −0.951535 0.307541i \(-0.900494\pi\)
0.209429 0.977824i \(-0.432839\pi\)
\(440\) −1.59785 + 7.55179i −0.0761743 + 0.360018i
\(441\) −6.99988 0.0402313i −0.333328 0.00191578i
\(442\) 4.63358i 0.220397i
\(443\) 2.50430 + 4.33757i 0.118983 + 0.206084i 0.919365 0.393406i \(-0.128703\pi\)
−0.800382 + 0.599490i \(0.795370\pi\)
\(444\) −7.91644 4.57056i −0.375697 0.216909i
\(445\) 5.09813 8.83022i 0.241675 0.418593i
\(446\) −11.6902 20.2480i −0.553548 0.958773i
\(447\) −15.0541 −0.712034
\(448\) −1.31629 2.29508i −0.0621887 0.108432i
\(449\) 24.8715 1.17376 0.586880 0.809674i \(-0.300356\pi\)
0.586880 + 0.809674i \(0.300356\pi\)
\(450\) 0.360793 0.208304i 0.0170080 0.00981954i
\(451\) −8.41580 7.56347i −0.396285 0.356150i
\(452\) −1.57550 + 2.72884i −0.0741052 + 0.128354i
\(453\) 6.49554 + 11.2506i 0.305187 + 0.528599i
\(454\) 13.9483i 0.654625i
\(455\) −7.67129 4.45846i −0.359636 0.209016i
\(456\) 6.15803 0.288376
\(457\) 6.59453 3.80735i 0.308479 0.178100i −0.337767 0.941230i \(-0.609671\pi\)
0.646246 + 0.763129i \(0.276338\pi\)
\(458\) −7.50744 + 13.0033i −0.350800 + 0.607603i
\(459\) 2.78483 + 1.60782i 0.129985 + 0.0750467i
\(460\) 12.6837 7.32292i 0.591379 0.341433i
\(461\) −8.56061 −0.398707 −0.199354 0.979928i \(-0.563884\pi\)
−0.199354 + 0.979928i \(0.563884\pi\)
\(462\) −1.84110 + 8.57965i −0.0856557 + 0.399161i
\(463\) −2.87221 −0.133483 −0.0667415 0.997770i \(-0.521260\pi\)
−0.0667415 + 0.997770i \(0.521260\pi\)
\(464\) −2.83045 + 1.63416i −0.131401 + 0.0758641i
\(465\) −6.23016 3.59698i −0.288917 0.166806i
\(466\) 8.22109 14.2393i 0.380835 0.659625i
\(467\) −7.84052 + 4.52673i −0.362816 + 0.209472i −0.670315 0.742076i \(-0.733841\pi\)
0.307499 + 0.951548i \(0.400508\pi\)
\(468\) 1.44095 0.0666078
\(469\) 24.4121 + 0.0701528i 1.12725 + 0.00323935i
\(470\) 24.7846i 1.14323i
\(471\) −5.76428 9.98402i −0.265604 0.460039i
\(472\) −0.266358 + 0.461345i −0.0122601 + 0.0212351i
\(473\) 4.19554 4.66834i 0.192911 0.214651i
\(474\) 7.21263 4.16421i 0.331287 0.191269i
\(475\) 2.56548 0.117712
\(476\) 4.27506 7.35572i 0.195947 0.337149i
\(477\) 9.21712 0.422023
\(478\) 12.3975 + 21.4731i 0.567050 + 0.982159i
\(479\) −15.5977 + 27.0160i −0.712677 + 1.23439i 0.251172 + 0.967943i \(0.419184\pi\)
−0.963849 + 0.266450i \(0.914149\pi\)
\(480\) 2.01555 + 1.16368i 0.0919970 + 0.0531145i
\(481\) −6.58593 11.4072i −0.300293 0.520122i
\(482\) 22.2195i 1.01207i
\(483\) 14.4427 8.28325i 0.657166 0.376901i
\(484\) 10.0573 + 4.45541i 0.457150 + 0.202519i
\(485\) −20.7165 35.8821i −0.940689 1.62932i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −18.0368 + 31.2407i −0.817327 + 1.41565i 0.0903185 + 0.995913i \(0.471211\pi\)
−0.907645 + 0.419738i \(0.862122\pi\)
\(488\) 0.404803 0.233713i 0.0183246 0.0105797i
\(489\) 8.31371i 0.375959i
\(490\) −8.06454 14.1555i −0.364319 0.639478i
\(491\) 26.7561i 1.20749i −0.797179 0.603744i \(-0.793675\pi\)
0.797179 0.603744i \(-0.206325\pi\)
\(492\) −2.95456 + 1.70582i −0.133202 + 0.0769042i
\(493\) −9.10174 5.25489i −0.409922 0.236668i
\(494\) 7.68458 + 4.43670i 0.345746 + 0.199616i
\(495\) −2.39212 7.33897i −0.107518 0.329862i
\(496\) 3.09104i 0.138792i
\(497\) −4.28126 7.46482i −0.192041 0.334843i
\(498\) −4.56130 −0.204397
\(499\) −14.0487 24.3330i −0.628906 1.08930i −0.987772 0.155907i \(-0.950170\pi\)
0.358866 0.933389i \(-0.383164\pi\)
\(500\) −9.23807 5.33360i −0.413139 0.238526i
\(501\) 13.4527 + 7.76692i 0.601022 + 0.347000i
\(502\) −2.36708 4.09990i −0.105648 0.182987i
\(503\) 16.3197 0.727660 0.363830 0.931465i \(-0.381469\pi\)
0.363830 + 0.931465i \(0.381469\pi\)
\(504\) 2.28748 + 1.32945i 0.101892 + 0.0592186i
\(505\) 24.8961i 1.10786i
\(506\) −6.46800 19.8437i −0.287538 0.882159i
\(507\) −9.46018 5.46184i −0.420141 0.242569i
\(508\) −9.36086 5.40449i −0.415321 0.239786i
\(509\) 3.92989 2.26892i 0.174189 0.100568i −0.410370 0.911919i \(-0.634601\pi\)
0.584560 + 0.811351i \(0.301267\pi\)
\(510\) 7.48397i 0.331396i
\(511\) 13.2288 + 0.0380155i 0.585208 + 0.00168171i
\(512\) 1.00000i 0.0441942i
\(513\) −5.33301 + 3.07901i −0.235458 + 0.135942i
\(514\) −6.11764 + 10.5961i −0.269838 + 0.467373i
\(515\) −15.8347 + 27.4264i −0.697758 + 1.20855i
\(516\) −0.946236 1.63893i −0.0416557 0.0721499i
\(517\) −34.5545 7.31121i −1.51970 0.321546i
\(518\) 0.0695002 24.1850i 0.00305366 1.06263i
\(519\) 13.2048i 0.579626i
\(520\) 1.67680 + 2.90431i 0.0735326 + 0.127362i
\(521\) −0.675518 0.390011i −0.0295950 0.0170867i 0.485130 0.874442i \(-0.338772\pi\)
−0.514725 + 0.857356i \(0.672106\pi\)
\(522\) 1.63416 2.83045i 0.0715254 0.123886i
\(523\) −5.88383 10.1911i −0.257282 0.445626i 0.708231 0.705981i \(-0.249494\pi\)
−0.965513 + 0.260355i \(0.916160\pi\)
\(524\) −10.9712 −0.479278
\(525\) 0.952981 + 0.553861i 0.0415915 + 0.0241725i
\(526\) 19.2700 0.840214
\(527\) 8.60803 4.96985i 0.374972 0.216490i
\(528\) 2.21696 2.46679i 0.0964809 0.107353i
\(529\) −8.30028 + 14.3765i −0.360882 + 0.625065i
\(530\) 10.7258 + 18.5776i 0.465898 + 0.806959i
\(531\) 0.532715i 0.0231179i
\(532\) 8.10572 + 14.1332i 0.351428 + 0.612750i
\(533\) −4.91598 −0.212935
\(534\) −3.79409 + 2.19052i −0.164186 + 0.0947931i
\(535\) −10.9336 + 18.9376i −0.472702 + 0.818743i
\(536\) −7.99077 4.61347i −0.345149 0.199272i
\(537\) 16.3426 9.43539i 0.705234 0.407167i
\(538\) 22.0893 0.952338
\(539\) −22.1144 + 7.06780i −0.952534 + 0.304432i
\(540\) −2.32736 −0.100154
\(541\) 9.27327 5.35393i 0.398689 0.230183i −0.287229 0.957862i \(-0.592734\pi\)
0.685918 + 0.727679i \(0.259401\pi\)
\(542\) −1.05751 0.610555i −0.0454240 0.0262256i
\(543\) 1.97224 3.41602i 0.0846369 0.146595i
\(544\) −2.78483 + 1.60782i −0.119399 + 0.0689348i
\(545\) 16.6102 0.711503
\(546\) 1.89670 + 3.30709i 0.0811712 + 0.141530i
\(547\) 19.5154i 0.834419i −0.908810 0.417210i \(-0.863008\pi\)
0.908810 0.417210i \(-0.136992\pi\)
\(548\) 4.83301 + 8.37102i 0.206456 + 0.357592i
\(549\) −0.233713 + 0.404803i −0.00997464 + 0.0172766i
\(550\) 0.923604 1.02769i 0.0393826 0.0438207i
\(551\) 17.4300 10.0632i 0.742544 0.428708i
\(552\) −6.29290 −0.267843
\(553\) 19.0511 + 11.0723i 0.810134 + 0.470841i
\(554\) −12.5089 −0.531450
\(555\) 10.6373 + 18.4244i 0.451530 + 0.782072i
\(556\) −11.6848 + 20.2386i −0.495544 + 0.858308i
\(557\) 5.25260 + 3.03259i 0.222560 + 0.128495i 0.607135 0.794599i \(-0.292319\pi\)
−0.384575 + 0.923094i \(0.625652\pi\)
\(558\) 1.54552 + 2.67692i 0.0654271 + 0.113323i
\(559\) 2.72695i 0.115338i
\(560\) −0.0176950 + 6.15759i −0.000747751 + 0.260206i
\(561\) 10.4341 + 2.20770i 0.440528 + 0.0932091i
\(562\) 12.6747 + 21.9533i 0.534651 + 0.926043i
\(563\) 0.122186 0.211633i 0.00514953 0.00891925i −0.863439 0.504453i \(-0.831694\pi\)
0.868589 + 0.495534i \(0.165028\pi\)
\(564\) −5.32461 + 9.22249i −0.224206 + 0.388337i
\(565\) 6.35100 3.66675i 0.267189 0.154262i
\(566\) 2.76444i 0.116198i
\(567\) −2.64574 0.00760304i −0.111111 0.000319298i
\(568\) 3.25253i 0.136473i
\(569\) −7.44979 + 4.30114i −0.312311 + 0.180313i −0.647960 0.761674i \(-0.724378\pi\)
0.335649 + 0.941987i \(0.391044\pi\)
\(570\) −12.4118 7.16598i −0.519875 0.300150i
\(571\) 26.9418 + 15.5548i 1.12748 + 0.650950i 0.943299 0.331943i \(-0.107704\pi\)
0.184178 + 0.982893i \(0.441038\pi\)
\(572\) 4.54380 1.48104i 0.189986 0.0619255i
\(573\) 23.5238i 0.982721i
\(574\) −7.80403 4.53561i −0.325734 0.189313i
\(575\) −2.62167 −0.109331
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −35.4669 20.4768i −1.47651 0.852462i −0.476859 0.878980i \(-0.658225\pi\)
−0.999648 + 0.0265176i \(0.991558\pi\)
\(578\) 5.76740 + 3.32981i 0.239892 + 0.138502i
\(579\) 10.3983 + 18.0103i 0.432137 + 0.748484i
\(580\) 7.60657 0.315846
\(581\) −6.00398 10.4686i −0.249087 0.434309i
\(582\) 17.8026i 0.737941i
\(583\) 29.0648 9.47359i 1.20374 0.392356i
\(584\) −4.33016 2.50002i −0.179183 0.103451i
\(585\) −2.90431 1.67680i −0.120078 0.0693272i
\(586\) 7.82172 4.51587i 0.323112 0.186549i
\(587\) 33.6048i 1.38702i 0.720449 + 0.693508i \(0.243936\pi\)
−0.720449 + 0.693508i \(0.756064\pi\)
\(588\) −0.0402313 + 6.99988i −0.00165911 + 0.288670i
\(589\) 19.0347i 0.784312i
\(590\) 1.07372 0.619910i 0.0442042 0.0255213i
\(591\) −10.6837 + 18.5048i −0.439471 + 0.761186i
\(592\) −4.57056 + 7.91644i −0.187849 + 0.325364i
\(593\) −13.3626 23.1448i −0.548738 0.950442i −0.998361 0.0572237i \(-0.981775\pi\)
0.449624 0.893218i \(-0.351558\pi\)
\(594\) −0.686549 + 3.24479i −0.0281694 + 0.133135i
\(595\) −17.1763 + 9.85104i −0.704160 + 0.403853i
\(596\) 15.0541i 0.616640i
\(597\) 10.0216 + 17.3579i 0.410155 + 0.710410i
\(598\) −7.85289 4.53387i −0.321128 0.185404i
\(599\) −12.4072 + 21.4899i −0.506945 + 0.878055i 0.493022 + 0.870017i \(0.335892\pi\)
−0.999968 + 0.00803859i \(0.997441\pi\)
\(600\) −0.208304 0.360793i −0.00850398 0.0147293i
\(601\) 17.8950 0.729952 0.364976 0.931017i \(-0.381077\pi\)
0.364976 + 0.931017i \(0.381077\pi\)
\(602\) 2.51596 4.32899i 0.102543 0.176436i
\(603\) 9.22694 0.375750
\(604\) 11.2506 6.49554i 0.457780 0.264300i
\(605\) −15.0864 20.6836i −0.613348 0.840908i
\(606\) 5.34857 9.26399i 0.217271 0.376324i
\(607\) 16.4712 + 28.5290i 0.668546 + 1.15796i 0.978311 + 0.207142i \(0.0664162\pi\)
−0.309765 + 0.950813i \(0.600250\pi\)
\(608\) 6.15803i 0.249741i
\(609\) 8.64714 + 0.0248492i 0.350400 + 0.00100694i
\(610\) −1.08787 −0.0440466
\(611\) −13.2891 + 7.67248i −0.537620 + 0.310395i
\(612\) 1.60782 2.78483i 0.0649924 0.112570i
\(613\) 7.51244 + 4.33731i 0.303425 + 0.175182i 0.643980 0.765042i \(-0.277282\pi\)
−0.340556 + 0.940224i \(0.610615\pi\)
\(614\) −3.05093 + 1.76145i −0.123125 + 0.0710865i
\(615\) 7.94010 0.320176
\(616\) 8.57965 + 1.84110i 0.345684 + 0.0741800i
\(617\) 32.6421 1.31412 0.657061 0.753837i \(-0.271799\pi\)
0.657061 + 0.753837i \(0.271799\pi\)
\(618\) 11.7844 6.80370i 0.474036 0.273685i
\(619\) −13.6975 7.90825i −0.550549 0.317859i 0.198795 0.980041i \(-0.436297\pi\)
−0.749343 + 0.662182i \(0.769631\pi\)
\(620\) −3.59698 + 6.23016i −0.144458 + 0.250209i
\(621\) 5.44981 3.14645i 0.218693 0.126263i
\(622\) 5.58704 0.224020
\(623\) −10.0215 5.82439i −0.401504 0.233349i
\(624\) 1.44095i 0.0576841i
\(625\) 13.4547 + 23.3043i 0.538190 + 0.932172i
\(626\) 2.63952 4.57178i 0.105496 0.182725i
\(627\) −13.6521 + 15.1906i −0.545213 + 0.606654i
\(628\) −9.98402 + 5.76428i −0.398406 + 0.230020i
\(629\) −29.3946 −1.17204
\(630\) −3.06347 5.34148i −0.122052 0.212810i
\(631\) 40.7984 1.62416 0.812080 0.583546i \(-0.198335\pi\)
0.812080 + 0.583546i \(0.198335\pi\)
\(632\) −4.16421 7.21263i −0.165643 0.286903i
\(633\) −1.02325 + 1.77233i −0.0406707 + 0.0704437i
\(634\) −27.4412 15.8432i −1.08983 0.629214i
\(635\) 12.5782 + 21.7861i 0.499151 + 0.864555i
\(636\) 9.21712i 0.365483i
\(637\) −5.09344 + 8.70615i −0.201809 + 0.344950i
\(638\) 2.24387 10.6050i 0.0888355 0.419857i
\(639\) −1.62627 2.81677i −0.0643341 0.111430i
\(640\) 1.16368 2.01555i 0.0459985 0.0796717i
\(641\) −11.9591 + 20.7137i −0.472354 + 0.818142i −0.999500 0.0316335i \(-0.989929\pi\)
0.527145 + 0.849775i \(0.323262\pi\)
\(642\) 8.13694 4.69786i 0.321139 0.185410i
\(643\) 19.6140i 0.773502i −0.922184 0.386751i \(-0.873597\pi\)
0.922184 0.386751i \(-0.126403\pi\)
\(644\) −8.28325 14.4427i −0.326406 0.569122i
\(645\) 4.40447i 0.173426i
\(646\) 17.1491 9.90102i 0.674721 0.389550i
\(647\) 22.5941 + 13.0447i 0.888267 + 0.512841i 0.873375 0.487048i \(-0.161926\pi\)
0.0148918 + 0.999889i \(0.495260\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) −0.547538 1.67983i −0.0214928 0.0659392i
\(650\) 0.600310i 0.0235461i
\(651\) −4.10940 + 7.07068i −0.161060 + 0.277122i
\(652\) 8.31371 0.325590
\(653\) 10.8589 + 18.8082i 0.424942 + 0.736020i 0.996415 0.0846002i \(-0.0269613\pi\)
−0.571473 + 0.820621i \(0.693628\pi\)
\(654\) −6.18076 3.56846i −0.241687 0.139538i
\(655\) 22.1130 + 12.7669i 0.864026 + 0.498846i
\(656\) 1.70582 + 2.95456i 0.0666010 + 0.115356i
\(657\) 5.00004 0.195070
\(658\) −28.1751 0.0809664i −1.09838 0.00315640i
\(659\) 12.7596i 0.497044i −0.968626 0.248522i \(-0.920055\pi\)
0.968626 0.248522i \(-0.0799448\pi\)
\(660\) −7.33897 + 2.39212i −0.285669 + 0.0931132i
\(661\) −19.9646 11.5266i −0.776533 0.448332i 0.0586670 0.998278i \(-0.481315\pi\)
−0.835200 + 0.549946i \(0.814648\pi\)
\(662\) 3.39124 + 1.95793i 0.131804 + 0.0760972i
\(663\) 4.01279 2.31679i 0.155844 0.0899766i
\(664\) 4.56130i 0.177013i
\(665\) 0.108966 37.9186i 0.00422553 1.47042i
\(666\) 9.14111i 0.354211i
\(667\) −17.8118 + 10.2836i −0.689674 + 0.398183i
\(668\) 7.76692 13.4527i 0.300511 0.520500i
\(669\) 11.6902 20.2480i 0.451970 0.782835i
\(670\) 10.7372 + 18.5974i 0.414815 + 0.718480i
\(671\) −0.320911 + 1.51670i −0.0123886 + 0.0585516i
\(672\) 1.32945 2.28748i 0.0512848 0.0882413i
\(673\) 10.4212i 0.401709i −0.979621 0.200854i \(-0.935628\pi\)
0.979621 0.200854i \(-0.0643718\pi\)
\(674\) 10.0267 + 17.3668i 0.386214 + 0.668942i
\(675\) 0.360793 + 0.208304i 0.0138869 + 0.00801762i
\(676\) −5.46184 + 9.46018i −0.210071 + 0.363853i
\(677\) −7.14285 12.3718i −0.274522 0.475486i 0.695492 0.718534i \(-0.255186\pi\)
−0.970014 + 0.243047i \(0.921853\pi\)
\(678\) −3.15100 −0.121013
\(679\) −40.8584 + 23.4333i −1.56800 + 0.899287i
\(680\) 7.48397 0.286997
\(681\) −12.0796 + 6.97413i −0.462890 + 0.267249i
\(682\) 7.62496 + 6.85272i 0.291975 + 0.262404i
\(683\) 17.3671 30.0806i 0.664532 1.15100i −0.314880 0.949132i \(-0.601964\pi\)
0.979412 0.201872i \(-0.0647025\pi\)
\(684\) 3.07901 + 5.33301i 0.117729 + 0.203913i
\(685\) 22.4963i 0.859540i
\(686\) −16.1182 + 9.12151i −0.615398 + 0.348261i
\(687\) −15.0149 −0.572854
\(688\) −1.63893 + 0.946236i −0.0624836 + 0.0360749i
\(689\) 6.64069 11.5020i 0.252990 0.438192i
\(690\) 12.6837 + 7.32292i 0.482859 + 0.278779i
\(691\) 7.08434 4.09015i 0.269501 0.155596i −0.359160 0.933276i \(-0.616937\pi\)
0.628661 + 0.777680i \(0.283603\pi\)
\(692\) 13.2048 0.501971
\(693\) −8.35074 + 2.69538i −0.317218 + 0.102389i
\(694\) 28.5210 1.08264
\(695\) 47.1025 27.1946i 1.78670 1.03155i
\(696\) −2.83045 1.63416i −0.107288 0.0619428i
\(697\) −5.48530 + 9.50082i −0.207771 + 0.359869i
\(698\) −13.3317 + 7.69705i −0.504612 + 0.291338i
\(699\) 16.4422 0.621900
\(700\) 0.553861 0.952981i 0.0209340 0.0360193i
\(701\) 15.9970i 0.604198i 0.953277 + 0.302099i \(0.0976874\pi\)
−0.953277 + 0.302099i \(0.902313\pi\)
\(702\) 0.720474 + 1.24790i 0.0271925 + 0.0470988i
\(703\) 28.1456 48.7496i 1.06153 1.83863i
\(704\) −2.46679 2.21696i −0.0929708 0.0835549i
\(705\) 21.4641 12.3923i 0.808384 0.466720i
\(706\) 5.54275 0.208604
\(707\) 28.3019 + 0.0813307i 1.06440 + 0.00305876i
\(708\) −0.532715 −0.0200207
\(709\) 4.39355 + 7.60985i 0.165003 + 0.285794i 0.936656 0.350250i \(-0.113903\pi\)
−0.771653 + 0.636043i \(0.780570\pi\)
\(710\) 3.78491 6.55565i 0.142045 0.246029i
\(711\) 7.21263 + 4.16421i 0.270495 + 0.156170i
\(712\) 2.19052 + 3.79409i 0.0820932 + 0.142190i
\(713\) 19.4516i 0.728468i
\(714\) 8.50776 + 0.0244487i 0.318395 + 0.000914969i
\(715\) −10.8817 2.30241i −0.406954 0.0861053i
\(716\) −9.43539 16.3426i −0.352617 0.610750i
\(717\) −12.3975 + 21.4731i −0.462994 + 0.801929i
\(718\) −10.3650 + 17.9527i −0.386818 + 0.669989i
\(719\) −27.2393 + 15.7266i −1.01585 + 0.586503i −0.912900 0.408183i \(-0.866163\pi\)
−0.102953 + 0.994686i \(0.532829\pi\)
\(720\) 2.32736i 0.0867356i
\(721\) 31.1266 + 18.0904i 1.15922 + 0.673722i
\(722\) 18.9213i 0.704178i
\(723\) 19.2427 11.1098i 0.715643 0.413177i
\(724\) −3.41602 1.97224i −0.126955 0.0732977i
\(725\) −1.17919 0.680805i −0.0437940 0.0252845i
\(726\) 1.17015 + 10.9376i 0.0434284 + 0.405932i
\(727\) 50.7040i 1.88051i 0.340475 + 0.940254i \(0.389412\pi\)
−0.340475 + 0.940254i \(0.610588\pi\)
\(728\) 3.30709 1.89670i 0.122569 0.0702963i
\(729\) −1.00000 −0.0370370
\(730\) 5.81844 + 10.0778i 0.215350 + 0.372998i
\(731\) −5.27022 3.04276i −0.194926 0.112541i
\(732\) 0.404803 + 0.233713i 0.0149620 + 0.00863829i
\(733\) −3.99023 6.91128i −0.147382 0.255274i 0.782877 0.622177i \(-0.213751\pi\)
−0.930259 + 0.366903i \(0.880418\pi\)
\(734\) −35.0890 −1.29516
\(735\) 8.22672 14.0618i 0.303447 0.518678i
\(736\) 6.29290i 0.231959i
\(737\) 29.0957 9.48369i 1.07175 0.349336i
\(738\) −2.95456 1.70582i −0.108759 0.0627920i
\(739\) 38.2867 + 22.1048i 1.40840 + 0.813140i 0.995234 0.0975161i \(-0.0310898\pi\)
0.413166 + 0.910656i \(0.364423\pi\)
\(740\) 18.4244 10.6373i 0.677295 0.391036i
\(741\) 8.87339i 0.325972i
\(742\) 21.1540 12.1324i 0.776589 0.445393i
\(743\) 17.1346i 0.628607i −0.949323 0.314304i \(-0.898229\pi\)
0.949323 0.314304i \(-0.101771\pi\)
\(744\) 2.67692 1.54552i 0.0981407 0.0566615i
\(745\) 17.5182 30.3423i 0.641815 1.11166i
\(746\) −12.2528 + 21.2225i −0.448607 + 0.777011i
\(747\) −2.28065 3.95020i −0.0834446 0.144530i
\(748\) 2.20770 10.4341i 0.0807214 0.381508i
\(749\) 21.4925 + 12.4912i 0.785319 + 0.456418i
\(750\) 10.6672i 0.389511i
\(751\) 20.4417 + 35.4061i 0.745928 + 1.29199i 0.949760 + 0.312979i \(0.101327\pi\)
−0.203832 + 0.979006i \(0.565340\pi\)
\(752\) 9.22249 + 5.32461i 0.336310 + 0.194168i
\(753\) 2.36708 4.09990i 0.0862611 0.149409i
\(754\) −2.35474 4.07853i −0.0857547 0.148531i
\(755\) −30.2349 −1.10036
\(756\) −0.00760304 + 2.64574i −0.000276520 + 0.0962246i
\(757\) −20.2420 −0.735709 −0.367855 0.929883i \(-0.619908\pi\)
−0.367855 + 0.929883i \(0.619908\pi\)
\(758\) −2.96791 + 1.71353i −0.107799 + 0.0622380i
\(759\) 13.9511 15.5233i 0.506394 0.563460i
\(760\) −7.16598 + 12.4118i −0.259937 + 0.450225i
\(761\) 22.7554 + 39.4136i 0.824884 + 1.42874i 0.902008 + 0.431719i \(0.142093\pi\)
−0.0771248 + 0.997021i \(0.524574\pi\)
\(762\) 10.8090i 0.391568i
\(763\) 0.0542623 18.8825i 0.00196443 0.683591i
\(764\) −23.5238 −0.851062
\(765\) −6.48131 + 3.74198i −0.234332 + 0.135292i
\(766\) −16.3278 + 28.2806i −0.589947 + 1.02182i
\(767\) −0.664773 0.383807i −0.0240036 0.0138585i
\(768\) −0.866025 + 0.500000i −0.0312500 + 0.0180422i
\(769\) −2.76998 −0.0998881 −0.0499440 0.998752i \(-0.515904\pi\)
−0.0499440 + 0.998752i \(0.515904\pi\)
\(770\) −15.1503 13.6948i −0.545978 0.493526i
\(771\) −12.2353 −0.440643
\(772\) 18.0103 10.3983i 0.648206 0.374242i
\(773\) −9.93494 5.73594i −0.357335 0.206307i 0.310576 0.950548i \(-0.399478\pi\)
−0.667911 + 0.744241i \(0.732811\pi\)
\(774\) 0.946236 1.63893i 0.0340118