Properties

Label 462.2.p.b.241.1
Level $462$
Weight $2$
Character 462.241
Analytic conductor $3.689$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 241.1
Root \(0.500000 - 3.32851i\) of defining polynomial
Character \(\chi\) \(=\) 462.241
Dual form 462.2.p.b.439.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.13257 + 1.23124i) q^{5} +1.00000 q^{6} +(0.941950 - 2.47239i) q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.13257 + 1.23124i) q^{5} +1.00000 q^{6} +(0.941950 - 2.47239i) q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(1.23124 - 2.13257i) q^{10} +(-2.32803 + 2.36226i) q^{11} +(-0.866025 + 0.500000i) q^{12} +1.32035 q^{13} +(0.420444 + 2.61213i) q^{14} +2.46248 q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.23739 - 3.87528i) q^{17} +(-0.866025 - 0.500000i) q^{18} +(2.21589 + 3.83803i) q^{19} +2.46248i q^{20} +(-2.05195 + 1.67018i) q^{21} +(0.834997 - 3.20979i) q^{22} +(4.14497 + 7.17931i) q^{23} +(0.500000 - 0.866025i) q^{24} +(0.531907 - 0.921289i) q^{25} +(-1.14346 + 0.660177i) q^{26} -1.00000i q^{27} +(-1.67018 - 2.05195i) q^{28} +1.44409i q^{29} +(-2.13257 + 1.23124i) q^{30} +(2.34801 + 1.35562i) q^{31} +(0.866025 + 0.500000i) q^{32} +(3.19726 - 0.881768i) q^{33} +4.47479i q^{34} +(1.03534 + 6.43232i) q^{35} +1.00000 q^{36} +(2.46563 + 4.27060i) q^{37} +(-3.83803 - 2.21589i) q^{38} +(-1.14346 - 0.660177i) q^{39} +(-1.23124 - 2.13257i) q^{40} +8.18233 q^{41} +(0.941950 - 2.47239i) q^{42} +9.63797i q^{43} +(0.881768 + 3.19726i) q^{44} +(-2.13257 - 1.23124i) q^{45} +(-7.17931 - 4.14497i) q^{46} +(-0.664664 + 0.383744i) q^{47} +1.00000i q^{48} +(-5.22546 - 4.65774i) q^{49} +1.06381i q^{50} +(-3.87528 + 2.23739i) q^{51} +(0.660177 - 1.14346i) q^{52} +(0.945971 - 1.63847i) q^{53} +(0.500000 + 0.866025i) q^{54} +(2.05616 - 7.90406i) q^{55} +(2.47239 + 0.941950i) q^{56} -4.43177i q^{57} +(-0.722047 - 1.25062i) q^{58} +(6.74444 + 3.89390i) q^{59} +(1.23124 - 2.13257i) q^{60} +(2.23943 + 3.87880i) q^{61} -2.71125 q^{62} +(2.61213 - 0.420444i) q^{63} -1.00000 q^{64} +(-2.81575 + 1.62567i) q^{65} +(-2.32803 + 2.36226i) q^{66} +(0.861844 - 1.49276i) q^{67} +(-2.23739 - 3.87528i) q^{68} -8.28995i q^{69} +(-4.11279 - 5.05289i) q^{70} -10.3771 q^{71} +(-0.866025 + 0.500000i) q^{72} +(5.58622 - 9.67562i) q^{73} +(-4.27060 - 2.46563i) q^{74} +(-0.921289 + 0.531907i) q^{75} +4.43177 q^{76} +(3.64757 + 7.98093i) q^{77} +1.32035 q^{78} +(-2.53630 + 1.46433i) q^{79} +(2.13257 + 1.23124i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-7.08611 + 4.09116i) q^{82} -10.1118 q^{83} +(0.420444 + 2.61213i) q^{84} +11.0191i q^{85} +(-4.81898 - 8.34672i) q^{86} +(0.722047 - 1.25062i) q^{87} +(-2.36226 - 2.32803i) q^{88} +(-10.9590 + 6.32720i) q^{89} +2.46248 q^{90} +(1.24371 - 3.26444i) q^{91} +8.28995 q^{92} +(-1.35562 - 2.34801i) q^{93} +(0.383744 - 0.664664i) q^{94} +(-9.45107 - 5.45658i) q^{95} +(-0.500000 - 0.866025i) q^{96} +1.37808i q^{97} +(6.85425 + 1.42099i) q^{98} +(-3.20979 - 0.834997i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + 12q^{5} + 16q^{6} + 6q^{7} + 8q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 12q^{5} + 16q^{6} + 6q^{7} + 8q^{9} - 2q^{10} - 4q^{11} + 8q^{14} - 4q^{15} - 8q^{16} + 10q^{19} + 4q^{21} + 2q^{22} - 4q^{23} + 8q^{24} + 10q^{25} + 12q^{26} + 12q^{30} + 6q^{31} + 4q^{33} + 8q^{35} + 16q^{36} + 14q^{37} - 12q^{38} + 12q^{39} + 2q^{40} - 32q^{41} + 6q^{42} + 4q^{44} + 12q^{45} - 18q^{46} - 24q^{47} - 6q^{49} - 6q^{51} + 8q^{54} + 14q^{55} + 4q^{56} - 2q^{60} - 28q^{61} + 8q^{62} + 6q^{63} - 16q^{64} - 72q^{65} - 4q^{66} - 16q^{67} - 30q^{70} - 56q^{71} + 44q^{73} - 24q^{74} - 12q^{75} + 20q^{76} - 52q^{77} + 30q^{79} - 12q^{80} - 8q^{81} - 12q^{82} - 8q^{83} + 8q^{84} - 12q^{86} - 2q^{88} - 36q^{89} - 4q^{90} - 8q^{91} - 8q^{92} + 4q^{93} - 14q^{94} - 72q^{95} - 8q^{96} + 40q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.13257 + 1.23124i −0.953715 + 0.550628i −0.894233 0.447602i \(-0.852278\pi\)
−0.0594819 + 0.998229i \(0.518945\pi\)
\(6\) 1.00000 0.408248
\(7\) 0.941950 2.47239i 0.356024 0.934477i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.23124 2.13257i 0.389352 0.674378i
\(11\) −2.32803 + 2.36226i −0.701926 + 0.712250i
\(12\) −0.866025 + 0.500000i −0.250000 + 0.144338i
\(13\) 1.32035 0.366201 0.183100 0.983094i \(-0.441387\pi\)
0.183100 + 0.983094i \(0.441387\pi\)
\(14\) 0.420444 + 2.61213i 0.112369 + 0.698121i
\(15\) 2.46248 0.635810
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.23739 3.87528i 0.542647 0.939893i −0.456103 0.889927i \(-0.650755\pi\)
0.998751 0.0499662i \(-0.0159113\pi\)
\(18\) −0.866025 0.500000i −0.204124 0.117851i
\(19\) 2.21589 + 3.83803i 0.508359 + 0.880504i 0.999953 + 0.00967966i \(0.00308118\pi\)
−0.491594 + 0.870825i \(0.663585\pi\)
\(20\) 2.46248i 0.550628i
\(21\) −2.05195 + 1.67018i −0.447772 + 0.364463i
\(22\) 0.834997 3.20979i 0.178022 0.684330i
\(23\) 4.14497 + 7.17931i 0.864287 + 1.49699i 0.867754 + 0.496995i \(0.165563\pi\)
−0.00346670 + 0.999994i \(0.501103\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 0.531907 0.921289i 0.106381 0.184258i
\(26\) −1.14346 + 0.660177i −0.224251 + 0.129471i
\(27\) 1.00000i 0.192450i
\(28\) −1.67018 2.05195i −0.315635 0.387782i
\(29\) 1.44409i 0.268162i 0.990970 + 0.134081i \(0.0428082\pi\)
−0.990970 + 0.134081i \(0.957192\pi\)
\(30\) −2.13257 + 1.23124i −0.389352 + 0.224793i
\(31\) 2.34801 + 1.35562i 0.421715 + 0.243477i 0.695811 0.718225i \(-0.255045\pi\)
−0.274096 + 0.961702i \(0.588379\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 3.19726 0.881768i 0.556572 0.153496i
\(34\) 4.47479i 0.767419i
\(35\) 1.03534 + 6.43232i 0.175004 + 1.08726i
\(36\) 1.00000 0.166667
\(37\) 2.46563 + 4.27060i 0.405347 + 0.702082i 0.994362 0.106040i \(-0.0338172\pi\)
−0.589014 + 0.808122i \(0.700484\pi\)
\(38\) −3.83803 2.21589i −0.622611 0.359464i
\(39\) −1.14346 0.660177i −0.183100 0.105713i
\(40\) −1.23124 2.13257i −0.194676 0.337189i
\(41\) 8.18233 1.27787 0.638933 0.769263i \(-0.279376\pi\)
0.638933 + 0.769263i \(0.279376\pi\)
\(42\) 0.941950 2.47239i 0.145346 0.381499i
\(43\) 9.63797i 1.46978i 0.678188 + 0.734888i \(0.262765\pi\)
−0.678188 + 0.734888i \(0.737235\pi\)
\(44\) 0.881768 + 3.19726i 0.132932 + 0.482005i
\(45\) −2.13257 1.23124i −0.317905 0.183543i
\(46\) −7.17931 4.14497i −1.05853 0.611143i
\(47\) −0.664664 + 0.383744i −0.0969512 + 0.0559748i −0.547692 0.836680i \(-0.684493\pi\)
0.450741 + 0.892655i \(0.351160\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −5.22546 4.65774i −0.746494 0.665392i
\(50\) 1.06381i 0.150446i
\(51\) −3.87528 + 2.23739i −0.542647 + 0.313298i
\(52\) 0.660177 1.14346i 0.0915501 0.158569i
\(53\) 0.945971 1.63847i 0.129939 0.225061i −0.793714 0.608292i \(-0.791855\pi\)
0.923653 + 0.383230i \(0.125188\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 2.05616 7.90406i 0.277253 1.06578i
\(56\) 2.47239 + 0.941950i 0.330388 + 0.125873i
\(57\) 4.43177i 0.587003i
\(58\) −0.722047 1.25062i −0.0948095 0.164215i
\(59\) 6.74444 + 3.89390i 0.878051 + 0.506943i 0.870015 0.493025i \(-0.164109\pi\)
0.00803571 + 0.999968i \(0.497442\pi\)
\(60\) 1.23124 2.13257i 0.158952 0.275314i
\(61\) 2.23943 + 3.87880i 0.286729 + 0.496630i 0.973027 0.230691i \(-0.0740986\pi\)
−0.686298 + 0.727321i \(0.740765\pi\)
\(62\) −2.71125 −0.344329
\(63\) 2.61213 0.420444i 0.329098 0.0529710i
\(64\) −1.00000 −0.125000
\(65\) −2.81575 + 1.62567i −0.349251 + 0.201640i
\(66\) −2.32803 + 2.36226i −0.286560 + 0.290775i
\(67\) 0.861844 1.49276i 0.105291 0.182369i −0.808566 0.588405i \(-0.799756\pi\)
0.913857 + 0.406036i \(0.133089\pi\)
\(68\) −2.23739 3.87528i −0.271324 0.469946i
\(69\) 8.28995i 0.997992i
\(70\) −4.11279 5.05289i −0.491572 0.603935i
\(71\) −10.3771 −1.23153 −0.615766 0.787929i \(-0.711153\pi\)
−0.615766 + 0.787929i \(0.711153\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) 5.58622 9.67562i 0.653818 1.13245i −0.328371 0.944549i \(-0.606500\pi\)
0.982189 0.187897i \(-0.0601670\pi\)
\(74\) −4.27060 2.46563i −0.496447 0.286624i
\(75\) −0.921289 + 0.531907i −0.106381 + 0.0614193i
\(76\) 4.43177 0.508359
\(77\) 3.64757 + 7.98093i 0.415679 + 0.909512i
\(78\) 1.32035 0.149501
\(79\) −2.53630 + 1.46433i −0.285356 + 0.164750i −0.635846 0.771816i \(-0.719349\pi\)
0.350490 + 0.936567i \(0.386015\pi\)
\(80\) 2.13257 + 1.23124i 0.238429 + 0.137657i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −7.08611 + 4.09116i −0.782529 + 0.451794i
\(83\) −10.1118 −1.10991 −0.554957 0.831879i \(-0.687265\pi\)
−0.554957 + 0.831879i \(0.687265\pi\)
\(84\) 0.420444 + 2.61213i 0.0458742 + 0.285007i
\(85\) 11.0191i 1.19519i
\(86\) −4.81898 8.34672i −0.519644 0.900050i
\(87\) 0.722047 1.25062i 0.0774116 0.134081i
\(88\) −2.36226 2.32803i −0.251818 0.248168i
\(89\) −10.9590 + 6.32720i −1.16165 + 0.670682i −0.951700 0.307029i \(-0.900665\pi\)
−0.209955 + 0.977711i \(0.567332\pi\)
\(90\) 2.46248 0.259568
\(91\) 1.24371 3.26444i 0.130376 0.342206i
\(92\) 8.28995 0.864287
\(93\) −1.35562 2.34801i −0.140572 0.243477i
\(94\) 0.383744 0.664664i 0.0395801 0.0685548i
\(95\) −9.45107 5.45658i −0.969660 0.559833i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 1.37808i 0.139923i 0.997550 + 0.0699613i \(0.0222876\pi\)
−0.997550 + 0.0699613i \(0.977712\pi\)
\(98\) 6.85425 + 1.42099i 0.692384 + 0.143542i
\(99\) −3.20979 0.834997i −0.322596 0.0839204i
\(100\) −0.531907 0.921289i −0.0531907 0.0921289i
\(101\) 3.78361 6.55341i 0.376483 0.652089i −0.614064 0.789256i \(-0.710466\pi\)
0.990548 + 0.137167i \(0.0437998\pi\)
\(102\) 2.23739 3.87528i 0.221535 0.383710i
\(103\) 14.2858 8.24790i 1.40762 0.812690i 0.412461 0.910975i \(-0.364669\pi\)
0.995158 + 0.0982855i \(0.0313358\pi\)
\(104\) 1.32035i 0.129471i
\(105\) 2.31953 6.08822i 0.226363 0.594150i
\(106\) 1.89194i 0.183762i
\(107\) 4.99579 2.88432i 0.482961 0.278838i −0.238689 0.971096i \(-0.576718\pi\)
0.721650 + 0.692258i \(0.243384\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) −7.47550 4.31598i −0.716023 0.413396i 0.0972641 0.995259i \(-0.468991\pi\)
−0.813287 + 0.581862i \(0.802324\pi\)
\(110\) 2.17134 + 7.87320i 0.207029 + 0.750680i
\(111\) 4.93126i 0.468055i
\(112\) −2.61213 + 0.420444i −0.246823 + 0.0397283i
\(113\) 17.4933 1.64563 0.822817 0.568306i \(-0.192401\pi\)
0.822817 + 0.568306i \(0.192401\pi\)
\(114\) 2.21589 + 3.83803i 0.207537 + 0.359464i
\(115\) −17.6789 10.2069i −1.64857 0.951800i
\(116\) 1.25062 + 0.722047i 0.116117 + 0.0670404i
\(117\) 0.660177 + 1.14346i 0.0610334 + 0.105713i
\(118\) −7.78781 −0.716926
\(119\) −7.47370 9.18203i −0.685113 0.841716i
\(120\) 2.46248i 0.224793i
\(121\) −0.160590 10.9988i −0.0145991 0.999893i
\(122\) −3.87880 2.23943i −0.351170 0.202748i
\(123\) −7.08611 4.09116i −0.638933 0.368888i
\(124\) 2.34801 1.35562i 0.210858 0.121739i
\(125\) 9.69279i 0.866949i
\(126\) −2.05195 + 1.67018i −0.182802 + 0.148792i
\(127\) 12.0959i 1.07333i 0.843794 + 0.536667i \(0.180317\pi\)
−0.843794 + 0.536667i \(0.819683\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 4.81898 8.34672i 0.424288 0.734888i
\(130\) 1.62567 2.81575i 0.142581 0.246958i
\(131\) −8.62077 14.9316i −0.753200 1.30458i −0.946264 0.323394i \(-0.895176\pi\)
0.193064 0.981186i \(-0.438157\pi\)
\(132\) 0.834997 3.20979i 0.0726772 0.279377i
\(133\) 11.5764 1.86331i 1.00380 0.161570i
\(134\) 1.72369i 0.148904i
\(135\) 1.23124 + 2.13257i 0.105968 + 0.183543i
\(136\) 3.87528 + 2.23739i 0.332302 + 0.191855i
\(137\) −1.25479 + 2.17335i −0.107204 + 0.185682i −0.914636 0.404277i \(-0.867523\pi\)
0.807433 + 0.589960i \(0.200856\pi\)
\(138\) 4.14497 + 7.17931i 0.352844 + 0.611143i
\(139\) −19.9532 −1.69241 −0.846206 0.532856i \(-0.821119\pi\)
−0.846206 + 0.532856i \(0.821119\pi\)
\(140\) 6.08822 + 2.31953i 0.514549 + 0.196036i
\(141\) 0.767488 0.0646341
\(142\) 8.98681 5.18854i 0.754156 0.435412i
\(143\) −3.07382 + 3.11903i −0.257046 + 0.260826i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −1.77803 3.07963i −0.147657 0.255750i
\(146\) 11.1724i 0.924638i
\(147\) 2.19651 + 6.64645i 0.181165 + 0.548190i
\(148\) 4.93126 0.405347
\(149\) 8.46998 4.89014i 0.693888 0.400616i −0.111179 0.993800i \(-0.535463\pi\)
0.805067 + 0.593184i \(0.202129\pi\)
\(150\) 0.531907 0.921289i 0.0434300 0.0752229i
\(151\) −2.31521 1.33669i −0.188409 0.108778i 0.402829 0.915275i \(-0.368027\pi\)
−0.591237 + 0.806498i \(0.701360\pi\)
\(152\) −3.83803 + 2.21589i −0.311305 + 0.179732i
\(153\) 4.47479 0.361765
\(154\) −7.14935 5.08791i −0.576111 0.409995i
\(155\) −6.67640 −0.536261
\(156\) −1.14346 + 0.660177i −0.0915501 + 0.0528565i
\(157\) 13.7131 + 7.91724i 1.09442 + 0.631865i 0.934750 0.355306i \(-0.115623\pi\)
0.159671 + 0.987170i \(0.448957\pi\)
\(158\) 1.46433 2.53630i 0.116496 0.201777i
\(159\) −1.63847 + 0.945971i −0.129939 + 0.0750204i
\(160\) −2.46248 −0.194676
\(161\) 21.6544 3.48546i 1.70661 0.274693i
\(162\) 1.00000i 0.0785674i
\(163\) 10.1807 + 17.6336i 0.797418 + 1.38117i 0.921293 + 0.388870i \(0.127135\pi\)
−0.123875 + 0.992298i \(0.539532\pi\)
\(164\) 4.09116 7.08611i 0.319466 0.553332i
\(165\) −5.73272 + 5.81703i −0.446292 + 0.452855i
\(166\) 8.75707 5.05590i 0.679680 0.392414i
\(167\) −16.1119 −1.24678 −0.623389 0.781912i \(-0.714245\pi\)
−0.623389 + 0.781912i \(0.714245\pi\)
\(168\) −1.67018 2.05195i −0.128857 0.158311i
\(169\) −11.2567 −0.865897
\(170\) −5.50954 9.54280i −0.422562 0.731899i
\(171\) −2.21589 + 3.83803i −0.169453 + 0.293501i
\(172\) 8.34672 + 4.81898i 0.636432 + 0.367444i
\(173\) 3.62347 + 6.27604i 0.275487 + 0.477158i 0.970258 0.242073i \(-0.0778274\pi\)
−0.694771 + 0.719231i \(0.744494\pi\)
\(174\) 1.44409i 0.109477i
\(175\) −1.77676 2.18289i −0.134310 0.165011i
\(176\) 3.20979 + 0.834997i 0.241947 + 0.0629403i
\(177\) −3.89390 6.74444i −0.292684 0.506943i
\(178\) 6.32720 10.9590i 0.474244 0.821414i
\(179\) −5.80078 + 10.0472i −0.433571 + 0.750966i −0.997178 0.0750767i \(-0.976080\pi\)
0.563607 + 0.826043i \(0.309413\pi\)
\(180\) −2.13257 + 1.23124i −0.158952 + 0.0917713i
\(181\) 7.74423i 0.575624i 0.957687 + 0.287812i \(0.0929279\pi\)
−0.957687 + 0.287812i \(0.907072\pi\)
\(182\) 0.555136 + 3.44894i 0.0411494 + 0.255652i
\(183\) 4.47886i 0.331087i
\(184\) −7.17931 + 4.14497i −0.529265 + 0.305572i
\(185\) −10.5163 6.07157i −0.773172 0.446391i
\(186\) 2.34801 + 1.35562i 0.172164 + 0.0993992i
\(187\) 3.94572 + 14.3071i 0.288540 + 1.04624i
\(188\) 0.767488i 0.0559748i
\(189\) −2.47239 0.941950i −0.179840 0.0685168i
\(190\) 10.9132 0.791724
\(191\) 10.6157 + 18.3869i 0.768125 + 1.33043i 0.938579 + 0.345065i \(0.112143\pi\)
−0.170454 + 0.985366i \(0.554523\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) 3.04258 + 1.75664i 0.219010 + 0.126445i 0.605492 0.795852i \(-0.292976\pi\)
−0.386482 + 0.922297i \(0.626310\pi\)
\(194\) −0.689039 1.19345i −0.0494701 0.0856847i
\(195\) 3.25135 0.232834
\(196\) −6.64645 + 2.19651i −0.474747 + 0.156894i
\(197\) 21.9715i 1.56540i 0.622397 + 0.782702i \(0.286159\pi\)
−0.622397 + 0.782702i \(0.713841\pi\)
\(198\) 3.19726 0.881768i 0.227220 0.0626646i
\(199\) 1.24863 + 0.720899i 0.0885133 + 0.0511032i 0.543603 0.839342i \(-0.317060\pi\)
−0.455090 + 0.890445i \(0.650393\pi\)
\(200\) 0.921289 + 0.531907i 0.0651450 + 0.0376115i
\(201\) −1.49276 + 0.861844i −0.105291 + 0.0607898i
\(202\) 7.56722i 0.532428i
\(203\) 3.57037 + 1.36026i 0.250591 + 0.0954719i
\(204\) 4.47479i 0.313298i
\(205\) −17.4494 + 10.0744i −1.21872 + 0.703628i
\(206\) −8.24790 + 14.2858i −0.574658 + 0.995337i
\(207\) −4.14497 + 7.17931i −0.288096 + 0.498996i
\(208\) −0.660177 1.14346i −0.0457751 0.0792847i
\(209\) −14.2251 3.70052i −0.983970 0.255970i
\(210\) 1.03534 + 6.43232i 0.0714450 + 0.443872i
\(211\) 0.163763i 0.0112739i −0.999984 0.00563697i \(-0.998206\pi\)
0.999984 0.00563697i \(-0.00179431\pi\)
\(212\) −0.945971 1.63847i −0.0649695 0.112531i
\(213\) 8.98681 + 5.18854i 0.615766 + 0.355513i
\(214\) −2.88432 + 4.99579i −0.197168 + 0.341505i
\(215\) −11.8667 20.5537i −0.809299 1.40175i
\(216\) 1.00000 0.0680414
\(217\) 5.56334 4.52828i 0.377664 0.307399i
\(218\) 8.63196 0.584630
\(219\) −9.67562 + 5.58622i −0.653818 + 0.377482i
\(220\) −5.81703 5.73272i −0.392184 0.386500i
\(221\) 2.95415 5.11674i 0.198718 0.344189i
\(222\) 2.46563 + 4.27060i 0.165482 + 0.286624i
\(223\) 27.3847i 1.83382i 0.399099 + 0.916908i \(0.369323\pi\)
−0.399099 + 0.916908i \(0.630677\pi\)
\(224\) 2.05195 1.67018i 0.137102 0.111594i
\(225\) 1.06381 0.0709209
\(226\) −15.1497 + 8.74667i −1.00774 + 0.581820i
\(227\) −1.95128 + 3.37971i −0.129511 + 0.224319i −0.923487 0.383629i \(-0.874674\pi\)
0.793976 + 0.607949i \(0.208007\pi\)
\(228\) −3.83803 2.21589i −0.254180 0.146751i
\(229\) −4.36524 + 2.52028i −0.288463 + 0.166544i −0.637249 0.770658i \(-0.719928\pi\)
0.348785 + 0.937203i \(0.386594\pi\)
\(230\) 20.4138 1.34605
\(231\) 0.831582 8.73547i 0.0547141 0.574752i
\(232\) −1.44409 −0.0948095
\(233\) 18.3993 10.6229i 1.20538 0.695927i 0.243634 0.969867i \(-0.421660\pi\)
0.961747 + 0.273940i \(0.0883271\pi\)
\(234\) −1.14346 0.660177i −0.0747504 0.0431572i
\(235\) 0.944962 1.63672i 0.0616425 0.106768i
\(236\) 6.74444 3.89390i 0.439026 0.253471i
\(237\) 2.92867 0.190237
\(238\) 11.0634 + 4.21502i 0.717136 + 0.273219i
\(239\) 5.64110i 0.364893i 0.983216 + 0.182446i \(0.0584016\pi\)
−0.983216 + 0.182446i \(0.941598\pi\)
\(240\) −1.23124 2.13257i −0.0794762 0.137657i
\(241\) −3.88733 + 6.73305i −0.250405 + 0.433714i −0.963637 0.267213i \(-0.913897\pi\)
0.713232 + 0.700928i \(0.247230\pi\)
\(242\) 5.63849 + 9.44497i 0.362456 + 0.607146i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 4.47886 0.286729
\(245\) 16.8785 + 3.49917i 1.07833 + 0.223553i
\(246\) 8.18233 0.521686
\(247\) 2.92576 + 5.06756i 0.186162 + 0.322441i
\(248\) −1.35562 + 2.34801i −0.0860822 + 0.149099i
\(249\) 8.75707 + 5.05590i 0.554957 + 0.320404i
\(250\) 4.84639 + 8.39420i 0.306513 + 0.530896i
\(251\) 22.5045i 1.42047i −0.703963 0.710236i \(-0.748588\pi\)
0.703963 0.710236i \(-0.251412\pi\)
\(252\) 0.941950 2.47239i 0.0593373 0.155746i
\(253\) −26.6090 6.92208i −1.67290 0.435188i
\(254\) −6.04793 10.4753i −0.379481 0.657281i
\(255\) 5.50954 9.54280i 0.345021 0.597593i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 2.61175 1.50789i 0.162916 0.0940597i −0.416325 0.909216i \(-0.636682\pi\)
0.579241 + 0.815156i \(0.303349\pi\)
\(258\) 9.63797i 0.600034i
\(259\) 12.8811 2.07332i 0.800393 0.128830i
\(260\) 3.25135i 0.201640i
\(261\) −1.25062 + 0.722047i −0.0774116 + 0.0446936i
\(262\) 14.9316 + 8.62077i 0.922478 + 0.532593i
\(263\) −24.4063 14.0910i −1.50496 0.868887i −0.999983 0.00575106i \(-0.998169\pi\)
−0.504972 0.863136i \(-0.668497\pi\)
\(264\) 0.881768 + 3.19726i 0.0542691 + 0.196778i
\(265\) 4.65887i 0.286192i
\(266\) −9.09378 + 7.40187i −0.557575 + 0.453837i
\(267\) 12.6544 0.774437
\(268\) −0.861844 1.49276i −0.0526455 0.0911847i
\(269\) −0.523552 0.302273i −0.0319215 0.0184299i 0.483954 0.875093i \(-0.339200\pi\)
−0.515876 + 0.856663i \(0.672533\pi\)
\(270\) −2.13257 1.23124i −0.129784 0.0749309i
\(271\) 9.89654 + 17.1413i 0.601172 + 1.04126i 0.992644 + 0.121071i \(0.0386327\pi\)
−0.391472 + 0.920190i \(0.628034\pi\)
\(272\) −4.47479 −0.271324
\(273\) −2.70930 + 2.20523i −0.163974 + 0.133467i
\(274\) 2.50957i 0.151609i
\(275\) 0.938037 + 3.40129i 0.0565657 + 0.205105i
\(276\) −7.17931 4.14497i −0.432143 0.249498i
\(277\) −1.87448 1.08223i −0.112626 0.0650249i 0.442629 0.896705i \(-0.354046\pi\)
−0.555255 + 0.831680i \(0.687379\pi\)
\(278\) 17.2800 9.97662i 1.03639 0.598358i
\(279\) 2.71125i 0.162318i
\(280\) −6.43232 + 1.03534i −0.384405 + 0.0618732i
\(281\) 29.4916i 1.75932i −0.475601 0.879661i \(-0.657769\pi\)
0.475601 0.879661i \(-0.342231\pi\)
\(282\) −0.664664 + 0.383744i −0.0395801 + 0.0228516i
\(283\) 14.1940 24.5847i 0.843745 1.46141i −0.0429613 0.999077i \(-0.513679\pi\)
0.886707 0.462333i \(-0.152987\pi\)
\(284\) −5.18854 + 8.98681i −0.307883 + 0.533269i
\(285\) 5.45658 + 9.45107i 0.323220 + 0.559833i
\(286\) 1.10249 4.23807i 0.0651918 0.250602i
\(287\) 7.70734 20.2299i 0.454950 1.19414i
\(288\) 1.00000i 0.0589256i
\(289\) −1.51185 2.61860i −0.0889324 0.154036i
\(290\) 3.07963 + 1.77803i 0.180842 + 0.104409i
\(291\) 0.689039 1.19345i 0.0403922 0.0699613i
\(292\) −5.58622 9.67562i −0.326909 0.566223i
\(293\) −9.39403 −0.548805 −0.274403 0.961615i \(-0.588480\pi\)
−0.274403 + 0.961615i \(0.588480\pi\)
\(294\) −5.22546 4.65774i −0.304755 0.271645i
\(295\) −19.1773 −1.11655
\(296\) −4.27060 + 2.46563i −0.248224 + 0.143312i
\(297\) 2.36226 + 2.32803i 0.137073 + 0.135086i
\(298\) −4.89014 + 8.46998i −0.283278 + 0.490653i
\(299\) 5.47284 + 9.47923i 0.316502 + 0.548198i
\(300\) 1.06381i 0.0614193i
\(301\) 23.8288 + 9.07848i 1.37347 + 0.523275i
\(302\) 2.67337 0.153835
\(303\) −6.55341 + 3.78361i −0.376483 + 0.217363i
\(304\) 2.21589 3.83803i 0.127090 0.220126i
\(305\) −9.55148 5.51455i −0.546916 0.315762i
\(306\) −3.87528 + 2.23739i −0.221535 + 0.127903i
\(307\) 26.9732 1.53944 0.769722 0.638380i \(-0.220395\pi\)
0.769722 + 0.638380i \(0.220395\pi\)
\(308\) 8.73547 + 0.831582i 0.497750 + 0.0473838i
\(309\) −16.4958 −0.938413
\(310\) 5.78193 3.33820i 0.328392 0.189597i
\(311\) 0.108539 + 0.0626652i 0.00615470 + 0.00355342i 0.503074 0.864243i \(-0.332202\pi\)
−0.496919 + 0.867797i \(0.665536\pi\)
\(312\) 0.660177 1.14346i 0.0373752 0.0647357i
\(313\) −6.69427 + 3.86494i −0.378382 + 0.218459i −0.677114 0.735878i \(-0.736770\pi\)
0.298732 + 0.954337i \(0.403436\pi\)
\(314\) −15.8345 −0.893591
\(315\) −5.05289 + 4.11279i −0.284698 + 0.231729i
\(316\) 2.92867i 0.164750i
\(317\) −12.1901 21.1139i −0.684665 1.18587i −0.973542 0.228508i \(-0.926615\pi\)
0.288877 0.957366i \(-0.406718\pi\)
\(318\) 0.945971 1.63847i 0.0530474 0.0918808i
\(319\) −3.41133 3.36189i −0.190998 0.188230i
\(320\) 2.13257 1.23124i 0.119214 0.0688284i
\(321\) −5.76864 −0.321974
\(322\) −17.0106 + 13.8457i −0.947961 + 0.771591i
\(323\) 19.8312 1.10344
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 0.702305 1.21643i 0.0389569 0.0674753i
\(326\) −17.6336 10.1807i −0.976633 0.563859i
\(327\) 4.31598 + 7.47550i 0.238674 + 0.413396i
\(328\) 8.18233i 0.451794i
\(329\) 0.322686 + 2.00478i 0.0177902 + 0.110527i
\(330\) 2.05616 7.90406i 0.113188 0.435104i
\(331\) 10.7266 + 18.5790i 0.589588 + 1.02120i 0.994286 + 0.106746i \(0.0340432\pi\)
−0.404698 + 0.914450i \(0.632623\pi\)
\(332\) −5.05590 + 8.75707i −0.277478 + 0.480607i
\(333\) −2.46563 + 4.27060i −0.135116 + 0.234027i
\(334\) 13.9533 8.05596i 0.763493 0.440803i
\(335\) 4.24455i 0.231905i
\(336\) 2.47239 + 0.941950i 0.134880 + 0.0513876i
\(337\) 30.0086i 1.63467i −0.576163 0.817335i \(-0.695451\pi\)
0.576163 0.817335i \(-0.304549\pi\)
\(338\) 9.74856 5.62833i 0.530252 0.306141i
\(339\) −15.1497 8.74667i −0.822817 0.475054i
\(340\) 9.54280 + 5.50954i 0.517531 + 0.298797i
\(341\) −8.66857 + 2.39069i −0.469429 + 0.129463i
\(342\) 4.43177i 0.239643i
\(343\) −16.4379 + 8.53204i −0.887563 + 0.460687i
\(344\) −9.63797 −0.519644
\(345\) 10.2069 + 17.6789i 0.549522 + 0.951800i
\(346\) −6.27604 3.62347i −0.337402 0.194799i
\(347\) 29.9073 + 17.2670i 1.60551 + 0.926942i 0.990358 + 0.138533i \(0.0442389\pi\)
0.615152 + 0.788408i \(0.289094\pi\)
\(348\) −0.722047 1.25062i −0.0387058 0.0670404i
\(349\) 4.77961 0.255847 0.127923 0.991784i \(-0.459169\pi\)
0.127923 + 0.991784i \(0.459169\pi\)
\(350\) 2.63016 + 1.00206i 0.140588 + 0.0535623i
\(351\) 1.32035i 0.0704753i
\(352\) −3.19726 + 0.881768i −0.170415 + 0.0469984i
\(353\) 11.7581 + 6.78853i 0.625819 + 0.361317i 0.779131 0.626861i \(-0.215661\pi\)
−0.153312 + 0.988178i \(0.548994\pi\)
\(354\) 6.74444 + 3.89390i 0.358463 + 0.206959i
\(355\) 22.1298 12.7767i 1.17453 0.678115i
\(356\) 12.6544i 0.670682i
\(357\) 1.88140 + 11.6887i 0.0995742 + 0.618633i
\(358\) 11.6016i 0.613161i
\(359\) 1.49631 0.863893i 0.0789720 0.0455945i −0.459994 0.887922i \(-0.652148\pi\)
0.538966 + 0.842328i \(0.318815\pi\)
\(360\) 1.23124 2.13257i 0.0648921 0.112396i
\(361\) −0.320313 + 0.554798i −0.0168586 + 0.0291999i
\(362\) −3.87212 6.70670i −0.203514 0.352496i
\(363\) −5.36034 + 9.60556i −0.281345 + 0.504161i
\(364\) −2.20523 2.70930i −0.115586 0.142006i
\(365\) 27.5119i 1.44004i
\(366\) 2.23943 + 3.87880i 0.117057 + 0.202748i
\(367\) −22.0716 12.7430i −1.15213 0.665182i −0.202724 0.979236i \(-0.564979\pi\)
−0.949405 + 0.314054i \(0.898313\pi\)
\(368\) 4.14497 7.17931i 0.216072 0.374247i
\(369\) 4.09116 + 7.08611i 0.212978 + 0.368888i
\(370\) 12.1431 0.631292
\(371\) −3.15988 3.88217i −0.164053 0.201552i
\(372\) −2.71125 −0.140572
\(373\) −28.8675 + 16.6667i −1.49470 + 0.862968i −0.999982 0.00608223i \(-0.998064\pi\)
−0.494723 + 0.869051i \(0.664731\pi\)
\(374\) −10.5706 10.4174i −0.546594 0.538672i
\(375\) −4.84639 + 8.39420i −0.250267 + 0.433475i
\(376\) −0.383744 0.664664i −0.0197901 0.0342774i
\(377\) 1.90672i 0.0982010i
\(378\) 2.61213 0.420444i 0.134354 0.0216253i
\(379\) −19.2656 −0.989610 −0.494805 0.869004i \(-0.664760\pi\)
−0.494805 + 0.869004i \(0.664760\pi\)
\(380\) −9.45107 + 5.45658i −0.484830 + 0.279917i
\(381\) 6.04793 10.4753i 0.309845 0.536667i
\(382\) −18.3869 10.6157i −0.940757 0.543146i
\(383\) 4.46444 2.57755i 0.228122 0.131706i −0.381583 0.924334i \(-0.624621\pi\)
0.609705 + 0.792628i \(0.291288\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −17.6051 12.5289i −0.897241 0.638531i
\(386\) −3.51327 −0.178821
\(387\) −8.34672 + 4.81898i −0.424288 + 0.244963i
\(388\) 1.19345 + 0.689039i 0.0605882 + 0.0349806i
\(389\) 2.58228 4.47264i 0.130927 0.226772i −0.793107 0.609082i \(-0.791538\pi\)
0.924034 + 0.382310i \(0.124871\pi\)
\(390\) −2.81575 + 1.62567i −0.142581 + 0.0823192i
\(391\) 37.0957 1.87601
\(392\) 4.65774 5.22546i 0.235251 0.263926i
\(393\) 17.2415i 0.869720i
\(394\) −10.9857 19.0279i −0.553454 0.958610i
\(395\) 3.60589 6.24559i 0.181432 0.314250i
\(396\) −2.32803 + 2.36226i −0.116988 + 0.118708i
\(397\) 5.49312 3.17146i 0.275692 0.159171i −0.355780 0.934570i \(-0.615785\pi\)
0.631472 + 0.775399i \(0.282451\pi\)
\(398\) −1.44180 −0.0722708
\(399\) −10.9571 4.17451i −0.548541 0.208987i
\(400\) −1.06381 −0.0531907
\(401\) −11.0008 19.0539i −0.549351 0.951504i −0.998319 0.0579565i \(-0.981542\pi\)
0.448968 0.893548i \(-0.351792\pi\)
\(402\) 0.861844 1.49276i 0.0429849 0.0744520i
\(403\) 3.10021 + 1.78991i 0.154432 + 0.0891615i
\(404\) −3.78361 6.55341i −0.188242 0.326044i
\(405\) 2.46248i 0.122362i
\(406\) −3.77216 + 0.607162i −0.187209 + 0.0301329i
\(407\) −15.8283 4.11759i −0.784582 0.204101i
\(408\) −2.23739 3.87528i −0.110767 0.191855i
\(409\) 7.05947 12.2274i 0.349068 0.604604i −0.637016 0.770851i \(-0.719831\pi\)
0.986084 + 0.166247i \(0.0531648\pi\)
\(410\) 10.0744 17.4494i 0.497540 0.861764i
\(411\) 2.17335 1.25479i 0.107204 0.0618940i
\(412\) 16.4958i 0.812690i
\(413\) 15.9802 13.0070i 0.786333 0.640035i
\(414\) 8.28995i 0.407429i
\(415\) 21.5641 12.4500i 1.05854 0.611149i
\(416\) 1.14346 + 0.660177i 0.0560628 + 0.0323679i
\(417\) 17.2800 + 9.97662i 0.846206 + 0.488557i
\(418\) 14.1695 3.90780i 0.693055 0.191137i
\(419\) 22.7760i 1.11268i −0.830955 0.556340i \(-0.812205\pi\)
0.830955 0.556340i \(-0.187795\pi\)
\(420\) −4.11279 5.05289i −0.200684 0.246556i
\(421\) −6.80960 −0.331880 −0.165940 0.986136i \(-0.553066\pi\)
−0.165940 + 0.986136i \(0.553066\pi\)
\(422\) 0.0818817 + 0.141823i 0.00398594 + 0.00690385i
\(423\) −0.664664 0.383744i −0.0323171 0.0186583i
\(424\) 1.63847 + 0.945971i 0.0795711 + 0.0459404i
\(425\) −2.38017 4.12257i −0.115455 0.199974i
\(426\) −10.3771 −0.502771
\(427\) 11.6994 1.88311i 0.566172 0.0911301i
\(428\) 5.76864i 0.278838i
\(429\) 4.22152 1.16425i 0.203817 0.0562104i
\(430\) 20.5537 + 11.8667i 0.991185 + 0.572261i
\(431\) 26.7290 + 15.4320i 1.28749 + 0.743334i 0.978206 0.207635i \(-0.0665767\pi\)
0.309286 + 0.950969i \(0.399910\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 32.2967i 1.55208i −0.630683 0.776040i \(-0.717225\pi\)
0.630683 0.776040i \(-0.282775\pi\)
\(434\) −2.55386 + 6.70327i −0.122589 + 0.321767i
\(435\) 3.55606i 0.170500i
\(436\) −7.47550 + 4.31598i −0.358012 + 0.206698i
\(437\) −18.3696 + 31.8171i −0.878737 + 1.52202i
\(438\) 5.58622 9.67562i 0.266920 0.462319i
\(439\) −14.3357 24.8302i −0.684208 1.18508i −0.973685 0.227898i \(-0.926815\pi\)
0.289478 0.957185i \(-0.406518\pi\)
\(440\) 7.90406 + 2.05616i 0.376811 + 0.0980238i
\(441\) 1.42099 6.85425i 0.0676663 0.326393i
\(442\) 5.90830i 0.281029i
\(443\) −17.4908 30.2949i −0.831013 1.43936i −0.897236 0.441552i \(-0.854428\pi\)
0.0662231 0.997805i \(-0.478905\pi\)
\(444\) −4.27060 2.46563i −0.202674 0.117014i
\(445\) 15.5806 26.9864i 0.738592 1.27928i
\(446\) −13.6924 23.7159i −0.648352 1.12298i
\(447\) −9.78029 −0.462592
\(448\) −0.941950 + 2.47239i −0.0445029 + 0.116810i
\(449\) −3.57926 −0.168916 −0.0844579 0.996427i \(-0.526916\pi\)
−0.0844579 + 0.996427i \(0.526916\pi\)
\(450\) −0.921289 + 0.531907i −0.0434300 + 0.0250743i
\(451\) −19.0487 + 19.3288i −0.896967 + 0.910159i
\(452\) 8.74667 15.1497i 0.411409 0.712581i
\(453\) 1.33669 + 2.31521i 0.0628030 + 0.108778i
\(454\) 3.90255i 0.183156i
\(455\) 1.36701 + 8.49295i 0.0640865 + 0.398156i
\(456\) 4.43177 0.207537
\(457\) −17.6664 + 10.1997i −0.826398 + 0.477121i −0.852618 0.522535i \(-0.824986\pi\)
0.0262200 + 0.999656i \(0.491653\pi\)
\(458\) 2.52028 4.36524i 0.117765 0.203974i
\(459\) −3.87528 2.23739i −0.180882 0.104433i
\(460\) −17.6789 + 10.2069i −0.824283 + 0.475900i
\(461\) −13.9967 −0.651892 −0.325946 0.945388i \(-0.605683\pi\)
−0.325946 + 0.945388i \(0.605683\pi\)
\(462\) 3.64757 + 7.98093i 0.169700 + 0.371307i
\(463\) 33.6499 1.56384 0.781922 0.623376i \(-0.214239\pi\)
0.781922 + 0.623376i \(0.214239\pi\)
\(464\) 1.25062 0.722047i 0.0580587 0.0335202i
\(465\) 5.78193 + 3.33820i 0.268131 + 0.154805i
\(466\) −10.6229 + 18.3993i −0.492095 + 0.852333i
\(467\) 7.87190 4.54484i 0.364268 0.210310i −0.306683 0.951812i \(-0.599219\pi\)
0.670951 + 0.741501i \(0.265886\pi\)
\(468\) 1.32035 0.0610334
\(469\) −2.87887 3.53692i −0.132934 0.163320i
\(470\) 1.88992i 0.0871757i
\(471\) −7.91724 13.7131i −0.364807 0.631865i
\(472\) −3.89390 + 6.74444i −0.179231 + 0.310438i
\(473\) −22.7674 22.4374i −1.04685 1.03167i
\(474\) −2.53630 + 1.46433i −0.116496 + 0.0672591i
\(475\) 4.71458 0.216320
\(476\) −11.6887 + 1.88140i −0.535752 + 0.0862338i
\(477\) 1.89194 0.0866260
\(478\) −2.82055 4.88534i −0.129009 0.223450i
\(479\) −19.7827 + 34.2647i −0.903897 + 1.56560i −0.0815054 + 0.996673i \(0.525973\pi\)
−0.822391 + 0.568922i \(0.807361\pi\)
\(480\) 2.13257 + 1.23124i 0.0973381 + 0.0561982i
\(481\) 3.25551 + 5.63871i 0.148438 + 0.257103i
\(482\) 7.77466i 0.354126i
\(483\) −20.4960 7.80871i −0.932601 0.355309i
\(484\) −9.60556 5.36034i −0.436616 0.243652i
\(485\) −1.69674 2.93885i −0.0770452 0.133446i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) 1.60461 2.77927i 0.0727120 0.125941i −0.827377 0.561647i \(-0.810168\pi\)
0.900089 + 0.435706i \(0.143501\pi\)
\(488\) −3.87880 + 2.23943i −0.175585 + 0.101374i
\(489\) 20.3615i 0.920779i
\(490\) −16.3668 + 5.40887i −0.739375 + 0.244348i
\(491\) 19.0209i 0.858401i 0.903209 + 0.429200i \(0.141205\pi\)
−0.903209 + 0.429200i \(0.858795\pi\)
\(492\) −7.08611 + 4.09116i −0.319466 + 0.184444i
\(493\) 5.59627 + 3.23101i 0.252043 + 0.145517i
\(494\) −5.06756 2.92576i −0.228000 0.131636i
\(495\) 7.87320 2.17134i 0.353874 0.0975944i
\(496\) 2.71125i 0.121739i
\(497\) −9.77468 + 25.6562i −0.438454 + 1.15084i
\(498\) −10.1118 −0.453120
\(499\) −12.8041 22.1774i −0.573190 0.992795i −0.996236 0.0866862i \(-0.972372\pi\)
0.423045 0.906108i \(-0.360961\pi\)
\(500\) −8.39420 4.84639i −0.375400 0.216737i
\(501\) 13.9533 + 8.05596i 0.623389 + 0.359914i
\(502\) 11.2523 + 19.4895i 0.502213 + 0.869858i
\(503\) 2.73335 0.121874 0.0609370 0.998142i \(-0.480591\pi\)
0.0609370 + 0.998142i \(0.480591\pi\)
\(504\) 0.420444 + 2.61213i 0.0187281 + 0.116354i
\(505\) 18.6341i 0.829209i
\(506\) 26.5051 7.30981i 1.17830 0.324961i
\(507\) 9.74856 + 5.62833i 0.432949 + 0.249963i
\(508\) 10.4753 + 6.04793i 0.464768 + 0.268334i
\(509\) −14.5574 + 8.40471i −0.645245 + 0.372532i −0.786632 0.617422i \(-0.788177\pi\)
0.141387 + 0.989954i \(0.454844\pi\)
\(510\) 11.0191i 0.487933i
\(511\) −18.6600 22.9253i −0.825470 1.01415i
\(512\) 1.00000i 0.0441942i
\(513\) 3.83803 2.21589i 0.169453 0.0978338i
\(514\) −1.50789 + 2.61175i −0.0665103 + 0.115199i
\(515\) −20.3103 + 35.1785i −0.894979 + 1.55015i
\(516\) −4.81898 8.34672i −0.212144 0.367444i
\(517\) 0.640850 2.46348i 0.0281845 0.108344i
\(518\) −10.1187 + 8.23610i −0.444590 + 0.361874i
\(519\) 7.24694i 0.318105i
\(520\) −1.62567 2.81575i −0.0712905 0.123479i
\(521\) 30.8004 + 17.7826i 1.34939 + 0.779071i 0.988163 0.153407i \(-0.0490245\pi\)
0.361227 + 0.932478i \(0.382358\pi\)
\(522\) 0.722047 1.25062i 0.0316032 0.0547383i
\(523\) −1.90926 3.30694i −0.0834863 0.144603i 0.821259 0.570556i \(-0.193272\pi\)
−0.904745 + 0.425953i \(0.859939\pi\)
\(524\) −17.2415 −0.753200
\(525\) 0.447274 + 2.77882i 0.0195206 + 0.121278i
\(526\) 28.1819 1.22879
\(527\) 10.5068 6.06613i 0.457685 0.264245i
\(528\) −2.36226 2.32803i −0.102804 0.101314i
\(529\) −22.8616 + 39.5975i −0.993984 + 1.72163i
\(530\) −2.32943 4.03470i −0.101184 0.175256i
\(531\) 7.78781i 0.337962i
\(532\) 4.17451 10.9571i 0.180988 0.475050i
\(533\) 10.8036 0.467955
\(534\) −10.9590 + 6.32720i −0.474244 + 0.273805i
\(535\) −7.10258 + 12.3020i −0.307071 + 0.531863i
\(536\) 1.49276 + 0.861844i 0.0644773 + 0.0372260i
\(537\) 10.0472 5.80078i 0.433571 0.250322i
\(538\) 0.604546 0.0260638
\(539\) 23.1678 1.50058i 0.997909 0.0646346i
\(540\) 2.46248 0.105968
\(541\) 21.5152 12.4218i 0.925011 0.534055i 0.0397805 0.999208i \(-0.487334\pi\)
0.885230 + 0.465153i \(0.154001\pi\)
\(542\) −17.1413 9.89654i −0.736283 0.425093i
\(543\) 3.87212 6.70670i 0.166168 0.287812i
\(544\) 3.87528 2.23739i 0.166151 0.0959274i
\(545\) 21.2560 0.910509
\(546\) 1.24371 3.26444i 0.0532258 0.139705i
\(547\) 44.4066i 1.89869i −0.314237 0.949345i \(-0.601749\pi\)
0.314237 0.949345i \(-0.398251\pi\)
\(548\) 1.25479 + 2.17335i 0.0536018 + 0.0928411i
\(549\) −2.23943 + 3.87880i −0.0955765 + 0.165543i
\(550\) −2.51301 2.47658i −0.107155 0.105602i
\(551\) −5.54248 + 3.19995i −0.236118 + 0.136323i
\(552\) 8.28995 0.352844
\(553\) 1.23134 + 7.65006i 0.0523620 + 0.325314i
\(554\) 2.16446 0.0919590
\(555\) 6.07157 + 10.5163i 0.257724 + 0.446391i
\(556\) −9.97662 + 17.2800i −0.423103 + 0.732836i
\(557\) 23.9736 + 13.8412i 1.01579 + 0.586469i 0.912883 0.408222i \(-0.133851\pi\)
0.102911 + 0.994691i \(0.467184\pi\)
\(558\) −1.35562 2.34801i −0.0573881 0.0993992i
\(559\) 12.7255i 0.538233i
\(560\) 5.05289 4.11279i 0.213523 0.173797i
\(561\) 3.73643 14.3631i 0.157752 0.606412i
\(562\) 14.7458 + 25.5405i 0.622014 + 1.07736i
\(563\) −5.51765 + 9.55686i −0.232541 + 0.402773i −0.958555 0.284907i \(-0.908037\pi\)
0.726014 + 0.687680i \(0.241371\pi\)
\(564\) 0.383744 0.664664i 0.0161585 0.0279874i
\(565\) −37.3058 + 21.5385i −1.56947 + 0.906132i
\(566\) 28.3880i 1.19324i
\(567\) 1.67018 + 2.05195i 0.0701410 + 0.0861738i
\(568\) 10.3771i 0.435412i
\(569\) 35.2007 20.3231i 1.47569 0.851989i 0.476065 0.879410i \(-0.342063\pi\)
0.999624 + 0.0274209i \(0.00872944\pi\)
\(570\) −9.45107 5.45658i −0.395862 0.228551i
\(571\) 15.3762 + 8.87748i 0.643476 + 0.371511i 0.785952 0.618287i \(-0.212173\pi\)
−0.142476 + 0.989798i \(0.545506\pi\)
\(572\) 1.16425 + 4.22152i 0.0486796 + 0.176511i
\(573\) 21.2314i 0.886954i
\(574\) 3.44022 + 21.3733i 0.143592 + 0.892105i
\(575\) 8.81895 0.367776
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −1.50303 0.867773i −0.0625718 0.0361259i 0.468388 0.883523i \(-0.344835\pi\)
−0.530960 + 0.847397i \(0.678168\pi\)
\(578\) 2.61860 + 1.51185i 0.108920 + 0.0628847i
\(579\) −1.75664 3.04258i −0.0730033 0.126445i
\(580\) −3.55606 −0.147657
\(581\) −9.52480 + 25.0003i −0.395155 + 1.03719i
\(582\) 1.37808i 0.0571231i
\(583\) 1.66825 + 6.04903i 0.0690920 + 0.250525i
\(584\) 9.67562 + 5.58622i 0.400380 + 0.231159i
\(585\) −2.81575 1.62567i −0.116417 0.0672134i
\(586\) 8.13547 4.69702i 0.336073 0.194032i
\(587\) 0.837774i 0.0345786i 0.999851 + 0.0172893i \(0.00550363\pi\)
−0.999851 + 0.0172893i \(0.994496\pi\)
\(588\) 6.85425 + 1.42099i 0.282665 + 0.0586007i
\(589\) 12.0156i 0.495096i
\(590\) 16.6081 9.58866i 0.683743 0.394759i
\(591\) 10.9857 19.0279i 0.451893 0.782702i
\(592\) 2.46563 4.27060i 0.101337 0.175521i
\(593\) −13.0100 22.5339i −0.534255 0.925357i −0.999199 0.0400166i \(-0.987259\pi\)
0.464944 0.885340i \(-0.346074\pi\)
\(594\) −3.20979 0.834997i −0.131699 0.0342603i
\(595\) 27.2435 + 10.3794i 1.11687 + 0.425514i
\(596\) 9.78029i 0.400616i
\(597\) −0.720899 1.24863i −0.0295044 0.0511032i
\(598\) −9.47923 5.47284i −0.387635 0.223801i
\(599\) −5.62081 + 9.73552i −0.229660 + 0.397783i −0.957707 0.287744i \(-0.907095\pi\)
0.728047 + 0.685527i \(0.240428\pi\)
\(600\) −0.531907 0.921289i −0.0217150 0.0376115i
\(601\) −11.4274 −0.466134 −0.233067 0.972461i \(-0.574876\pi\)
−0.233067 + 0.972461i \(0.574876\pi\)
\(602\) −25.1756 + 4.05223i −1.02608 + 0.165157i
\(603\) 1.72369 0.0701940
\(604\) −2.31521 + 1.33669i −0.0942045 + 0.0543890i
\(605\) 13.8847 + 23.2581i 0.564492 + 0.945574i
\(606\) 3.78361 6.55341i 0.153699 0.266214i
\(607\) −5.09027 8.81661i −0.206608 0.357855i 0.744036 0.668139i \(-0.232909\pi\)
−0.950644 + 0.310284i \(0.899576\pi\)
\(608\) 4.43177i 0.179732i
\(609\) −2.41190 2.96321i −0.0977351 0.120075i
\(610\) 11.0291 0.446555
\(611\) −0.877592 + 0.506678i −0.0355036 + 0.0204980i
\(612\) 2.23739 3.87528i 0.0904412 0.156649i
\(613\) −21.6335 12.4901i −0.873770 0.504471i −0.00517055 0.999987i \(-0.501646\pi\)
−0.868599 + 0.495515i \(0.834979\pi\)
\(614\) −23.3595 + 13.4866i −0.942713 + 0.544275i
\(615\) 20.1488 0.812479
\(616\) −7.98093 + 3.64757i −0.321561 + 0.146965i
\(617\) −28.5114 −1.14783 −0.573914 0.818916i \(-0.694576\pi\)
−0.573914 + 0.818916i \(0.694576\pi\)
\(618\) 14.2858 8.24790i 0.574658 0.331779i
\(619\) −21.1014 12.1829i −0.848137 0.489672i 0.0118852 0.999929i \(-0.496217\pi\)
−0.860022 + 0.510258i \(0.829550\pi\)
\(620\) −3.33820 + 5.78193i −0.134065 + 0.232208i
\(621\) 7.17931 4.14497i 0.288096 0.166332i
\(622\) −0.125330 −0.00502529
\(623\) 5.32047 + 33.0549i 0.213160 + 1.32432i
\(624\) 1.32035i 0.0528565i
\(625\) 14.5937 + 25.2770i 0.583747 + 1.01108i
\(626\) 3.86494 6.69427i 0.154474 0.267557i
\(627\) 10.4690 + 10.3173i 0.418093 + 0.412033i
\(628\) 13.7131 7.91724i 0.547211 0.315932i
\(629\) 22.0663 0.879843
\(630\) 2.31953 6.08822i 0.0924124 0.242561i
\(631\) −18.2463 −0.726374 −0.363187 0.931716i \(-0.618311\pi\)
−0.363187 + 0.931716i \(0.618311\pi\)
\(632\) −1.46433 2.53630i −0.0582481 0.100889i
\(633\) −0.0818817 + 0.141823i −0.00325451 + 0.00563697i
\(634\) 21.1139 + 12.1901i 0.838540 + 0.484131i
\(635\) −14.8929 25.7953i −0.591008 1.02366i
\(636\) 1.89194i 0.0750204i
\(637\) −6.89946 6.14987i −0.273367 0.243667i
\(638\) 4.63525 + 1.20582i 0.183511 + 0.0477387i
\(639\) −5.18854 8.98681i −0.205255 0.355513i
\(640\) −1.23124 + 2.13257i −0.0486691 + 0.0842973i
\(641\) 9.69935 16.7998i 0.383101 0.663551i −0.608403 0.793628i \(-0.708189\pi\)
0.991504 + 0.130078i \(0.0415228\pi\)
\(642\) 4.99579 2.88432i 0.197168 0.113835i
\(643\) 11.3901i 0.449182i 0.974453 + 0.224591i \(0.0721047\pi\)
−0.974453 + 0.224591i \(0.927895\pi\)
\(644\) 7.80871 20.4960i 0.307706 0.807656i
\(645\) 23.7333i 0.934498i
\(646\) −17.1744 + 9.91562i −0.675716 + 0.390125i
\(647\) 14.8745 + 8.58781i 0.584778 + 0.337621i 0.763030 0.646363i \(-0.223711\pi\)
−0.178252 + 0.983985i \(0.557044\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) −24.8997 + 6.86704i −0.977397 + 0.269555i
\(650\) 1.40461i 0.0550934i
\(651\) −7.08214 + 1.13993i −0.277571 + 0.0446774i
\(652\) 20.3615 0.797418
\(653\) 16.1982 + 28.0561i 0.633884 + 1.09792i 0.986750 + 0.162246i \(0.0518737\pi\)
−0.352866 + 0.935674i \(0.614793\pi\)
\(654\) −7.47550 4.31598i −0.292315 0.168768i
\(655\) 36.7688 + 21.2285i 1.43668 + 0.829465i
\(656\) −4.09116 7.08611i −0.159733 0.276666i
\(657\) 11.1724 0.435878
\(658\) −1.28184 1.57485i −0.0499714 0.0613939i
\(659\) 8.52103i 0.331932i 0.986131 + 0.165966i \(0.0530742\pi\)
−0.986131 + 0.165966i \(0.946926\pi\)
\(660\) 2.17134 + 7.87320i 0.0845192 + 0.306464i
\(661\) 34.1086 + 19.6926i 1.32667 + 0.765953i 0.984783 0.173788i \(-0.0556009\pi\)
0.341886 + 0.939741i \(0.388934\pi\)
\(662\) −18.5790 10.7266i −0.722095 0.416902i
\(663\) −5.11674 + 2.95415i −0.198718 + 0.114730i
\(664\) 10.1118i 0.392414i
\(665\) −22.3933 + 18.2270i −0.868373 + 0.706811i
\(666\) 4.93126i 0.191083i
\(667\) −10.3676 + 5.98574i −0.401435 + 0.231769i
\(668\) −8.05596 + 13.9533i −0.311695 + 0.539871i
\(669\) 13.6924 23.7159i 0.529377 0.916908i
\(670\) −2.12228 3.67589i −0.0819906 0.142012i
\(671\) −14.3762 3.73983i −0.554987 0.144375i
\(672\) −2.61213 + 0.420444i −0.100765 + 0.0162190i
\(673\) 23.4185i 0.902716i −0.892343 0.451358i \(-0.850940\pi\)
0.892343 0.451358i \(-0.149060\pi\)
\(674\) 15.0043 + 25.9882i 0.577943 + 1.00103i
\(675\) −0.921289 0.531907i −0.0354604 0.0204731i
\(676\) −5.62833 + 9.74856i −0.216474 + 0.374944i
\(677\) −14.8410 25.7054i −0.570388 0.987940i −0.996526 0.0832822i \(-0.973460\pi\)
0.426138 0.904658i \(-0.359874\pi\)
\(678\) 17.4933 0.671828
\(679\) 3.40715 + 1.29808i 0.130754 + 0.0498157i
\(680\) −11.0191 −0.422562
\(681\) 3.37971 1.95128i 0.129511 0.0747731i
\(682\) 6.31186 6.40469i 0.241693 0.245248i
\(683\) −14.4728 + 25.0677i −0.553787 + 0.959188i 0.444209 + 0.895923i \(0.353485\pi\)
−0.997997 + 0.0632649i \(0.979849\pi\)
\(684\) 2.21589 + 3.83803i 0.0847266 + 0.146751i
\(685\) 6.17977i 0.236117i
\(686\) 9.96961 15.6079i 0.380642 0.595913i
\(687\) 5.04055 0.192309
\(688\) 8.34672 4.81898i 0.318216 0.183722i
\(689\) 1.24902 2.16336i 0.0475838 0.0824175i
\(690\) −17.6789 10.2069i −0.673024 0.388571i
\(691\) 24.2055 13.9750i 0.920820 0.531636i 0.0369236 0.999318i \(-0.488244\pi\)
0.883897 + 0.467682i \(0.154911\pi\)
\(692\) 7.24694 0.275487
\(693\) −5.08791 + 7.14935i −0.193274 + 0.271581i
\(694\) −34.5340 −1.31089
\(695\) 42.5517 24.5672i 1.61408 0.931888i
\(696\) 1.25062 + 0.722047i 0.0474047 + 0.0273691i
\(697\) 18.3071 31.7088i 0.693430 1.20106i
\(698\) −4.13927 + 2.38981i −0.156674 + 0.0904555i
\(699\) −21.2457 −0.803587
\(700\) −2.77882 + 0.447274i −0.105029 + 0.0169054i
\(701\) 13.2062i 0.498793i −0.968401 0.249397i \(-0.919768\pi\)
0.968401 0.249397i \(-0.0802323\pi\)
\(702\) 0.660177 + 1.14346i 0.0249168 + 0.0431572i
\(703\) −10.9271 + 18.9263i −0.412124 + 0.713820i
\(704\) 2.32803 2.36226i 0.0877408 0.0890312i
\(705\) −1.63672 + 0.944962i −0.0616425 + 0.0355893i
\(706\) −13.5771 −0.510979
\(707\) −12.6386 15.5276i −0.475325 0.583974i
\(708\) −7.78781 −0.292684
\(709\) −7.39039 12.8005i −0.277552 0.480734i 0.693224 0.720722i \(-0.256190\pi\)
−0.970776 + 0.239988i \(0.922856\pi\)
\(710\) −12.7767 + 22.1298i −0.479500 + 0.830518i
\(711\) −2.53630 1.46433i −0.0951187 0.0549168i
\(712\) −6.32720 10.9590i −0.237122 0.410707i
\(713\) 22.4761i 0.841737i
\(714\) −7.47370 9.18203i −0.279696 0.343629i
\(715\) 2.71487 10.4362i 0.101530 0.390290i
\(716\) 5.80078 + 10.0472i 0.216785 + 0.375483i
\(717\) 2.82055 4.88534i 0.105335 0.182446i
\(718\) −0.863893 + 1.49631i −0.0322402 + 0.0558416i
\(719\) 3.21343 1.85527i 0.119841 0.0691900i −0.438881 0.898545i \(-0.644625\pi\)
0.558722 + 0.829355i \(0.311292\pi\)
\(720\) 2.46248i 0.0917713i
\(721\) −6.93557 43.0892i −0.258294 1.60472i
\(722\) 0.640626i 0.0238416i
\(723\) 6.73305 3.88733i 0.250405 0.144571i
\(724\) 6.70670 + 3.87212i 0.249253 + 0.143906i
\(725\) 1.33043 + 0.768123i 0.0494109 + 0.0285274i
\(726\) −0.160590 10.9988i −0.00596007 0.408205i
\(727\) 16.9392i 0.628241i 0.949383 + 0.314120i \(0.101710\pi\)
−0.949383 + 0.314120i \(0.898290\pi\)
\(728\) 3.26444 + 1.24371i 0.120988 + 0.0460949i
\(729\) −1.00000 −0.0370370
\(730\) −13.7560 23.8260i −0.509131 0.881841i
\(731\) 37.3498 + 21.5639i 1.38143 + 0.797570i
\(732\) −3.87880 2.23943i −0.143365 0.0827716i
\(733\) 5.69951 + 9.87183i 0.210516 + 0.364624i 0.951876 0.306483i \(-0.0991523\pi\)
−0.741360 + 0.671107i \(0.765819\pi\)
\(734\) 25.4861 0.940709
\(735\) −12.8676 11.4696i −0.474629 0.423063i
\(736\) 8.28995i 0.305572i
\(737\) 1.51989 + 5.51108i 0.0559860 + 0.203003i
\(738\) −7.08611 4.09116i −0.260843 0.150598i
\(739\) −4.89454 2.82586i −0.180049 0.103951i 0.407267 0.913309i \(-0.366482\pi\)
−0.587315 + 0.809358i \(0.699815\pi\)
\(740\) −10.5163 + 6.07157i −0.386586 + 0.223195i
\(741\) 5.85152i 0.214961i
\(742\) 4.67762 + 1.78211i 0.171721 + 0.0654235i
\(743\) 2.21080i 0.0811065i 0.999177 + 0.0405533i \(0.0129120\pi\)
−0.999177 + 0.0405533i \(0.987088\pi\)
\(744\) 2.34801 1.35562i 0.0860822 0.0496996i
\(745\) −12.0419 + 20.8572i −0.441181 + 0.764147i
\(746\) 16.6667 28.8675i 0.610211 1.05692i
\(747\) −5.05590 8.75707i −0.184986 0.320404i
\(748\) 14.3631 + 3.73643i 0.525168 + 0.136618i
\(749\) −2.42539 15.0684i −0.0886219 0.550589i
\(750\) 9.69279i 0.353930i
\(751\) −2.93707 5.08715i −0.107175 0.185633i 0.807450 0.589936i \(-0.200847\pi\)
−0.914625 + 0.404304i \(0.867514\pi\)
\(752\) 0.664664 + 0.383744i 0.0242378 + 0.0139937i
\(753\) −11.2523 + 19.4895i −0.410055 + 0.710236i
\(754\) −0.953359 1.65127i −0.0347193 0.0601356i
\(755\) 6.58313 0.239585
\(756\) −2.05195 + 1.67018i −0.0746287 + 0.0607439i
\(757\) 15.3568 0.558152 0.279076 0.960269i \(-0.409972\pi\)
0.279076 + 0.960269i \(0.409972\pi\)
\(758\) 16.6845 9.63282i 0.606010 0.349880i
\(759\) 19.5831 + 19.2992i 0.710820 + 0.700517i
\(760\) 5.45658 9.45107i 0.197931 0.342827i
\(761\) 11.2463 + 19.4792i 0.407680 + 0.706122i 0.994629 0.103501i \(-0.0330047\pi\)
−0.586950 + 0.809623i \(0.699671\pi\)
\(762\) 12.0959i 0.438187i
\(763\) −17.7124 + 14.4169i −0.641230 + 0.521928i
\(764\) 21.2314 0.768125
\(765\) −9.54280 + 5.50954i −0.345021 + 0.199198i
\(766\) −2.57755 + 4.46444i −0.0931305 + 0.161307i
\(767\) 8.90505 + 5.14133i 0.321543 + 0.185643i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) −39.6302 −1.42910 −0.714551 0.699583i \(-0.753369\pi\)
−0.714551 + 0.699583i \(0.753369\pi\)
\(770\) 21.5109 + 2.04775i 0.775200 + 0.0737959i
\(771\) −3.01578 −0.108611
\(772\) 3.04258 1.75664i 0.109505 0.0632227i
\(773\) −13.6011 7.85260i −0.489198 0.282438i 0.235044 0.971985i \(-0.424477\pi\)
−0.724242 + 0.689546i \(0.757810\pi\)
\(774\) 4.81898 8.34672i 0.173215 0.300017i
\(775\) 2.49784 &