Properties

Label 462.2.p.a.439.3
Level $462$
Weight $2$
Character 462.439
Analytic conductor $3.689$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 439.3
Root \(0.500000 + 1.35798i\) of defining polynomial
Character \(\chi\) \(=\) 462.439
Dual form 462.2.p.a.241.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.92604 + 1.11200i) q^{5} -1.00000 q^{6} +(2.45660 - 0.982398i) q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.92604 + 1.11200i) q^{5} -1.00000 q^{6} +(2.45660 - 0.982398i) q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.11200 - 1.92604i) q^{10} +(-0.0571978 + 3.31613i) q^{11} +(0.866025 + 0.500000i) q^{12} -0.112712 q^{13} +(-2.61868 - 0.377519i) q^{14} +2.22400 q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.119843 + 0.207574i) q^{17} +(-0.866025 + 0.500000i) q^{18} +(-0.218080 + 0.377726i) q^{19} +2.22400i q^{20} +(1.63628 - 2.07908i) q^{21} +(1.70760 - 2.84326i) q^{22} +(-0.401617 + 0.695621i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-0.0269081 - 0.0466061i) q^{25} +(0.0976119 + 0.0563562i) q^{26} -1.00000i q^{27} +(2.07908 + 1.63628i) q^{28} +7.50955i q^{29} +(-1.92604 - 1.11200i) q^{30} +(0.306643 - 0.177040i) q^{31} +(0.866025 - 0.500000i) q^{32} +(1.60853 + 2.90045i) q^{33} -0.239685i q^{34} +(5.82395 + 0.839603i) q^{35} +1.00000 q^{36} +(3.67483 - 6.36499i) q^{37} +(0.377726 - 0.218080i) q^{38} +(-0.0976119 + 0.0563562i) q^{39} +(1.11200 - 1.92604i) q^{40} +3.14869 q^{41} +(-2.45660 + 0.982398i) q^{42} -10.1874i q^{43} +(-2.90045 + 1.60853i) q^{44} +(1.92604 - 1.11200i) q^{45} +(0.695621 - 0.401617i) q^{46} +(-11.2232 - 6.47974i) q^{47} +1.00000i q^{48} +(5.06979 - 4.82672i) q^{49} +0.0538161i q^{50} +(0.207574 + 0.119843i) q^{51} +(-0.0563562 - 0.0976119i) q^{52} +(1.28196 + 2.22041i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(-3.79771 + 6.32340i) q^{55} +(-0.982398 - 2.45660i) q^{56} +0.436161i q^{57} +(3.75478 - 6.50347i) q^{58} +(3.27440 - 1.89048i) q^{59} +(1.11200 + 1.92604i) q^{60} +(0.525000 - 0.909326i) q^{61} -0.354081 q^{62} +(0.377519 - 2.61868i) q^{63} -1.00000 q^{64} +(-0.217089 - 0.125336i) q^{65} +(0.0571978 - 3.31613i) q^{66} +(2.48189 + 4.29875i) q^{67} +(-0.119843 + 0.207574i) q^{68} +0.803234i q^{69} +(-4.62388 - 3.63909i) q^{70} -7.58067 q^{71} +(-0.866025 - 0.500000i) q^{72} +(2.39827 + 4.15392i) q^{73} +(-6.36499 + 3.67483i) q^{74} +(-0.0466061 - 0.0269081i) q^{75} -0.436161 q^{76} +(3.11725 + 8.20261i) q^{77} +0.112712 q^{78} +(0.429215 + 0.247807i) q^{79} +(-1.92604 + 1.11200i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-2.72685 - 1.57435i) q^{82} -0.569186 q^{83} +(2.61868 + 0.377519i) q^{84} +0.533061i q^{85} +(-5.09368 + 8.82251i) q^{86} +(3.75478 + 6.50347i) q^{87} +(3.31613 + 0.0571978i) q^{88} +(-12.1232 - 6.99934i) q^{89} -2.22400 q^{90} +(-0.276890 + 0.110729i) q^{91} -0.803234 q^{92} +(0.177040 - 0.306643i) q^{93} +(6.47974 + 11.2232i) q^{94} +(-0.840064 + 0.485011i) q^{95} +(0.500000 - 0.866025i) q^{96} +10.6708i q^{97} +(-6.80393 + 1.64517i) q^{98} +(2.84326 + 1.70760i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + 12q^{5} - 16q^{6} - 6q^{7} + 8q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 12q^{5} - 16q^{6} - 6q^{7} + 8q^{9} + 2q^{10} - 4q^{11} + 8q^{14} - 4q^{15} - 8q^{16} - 10q^{19} - 4q^{21} + 2q^{22} - 4q^{23} - 8q^{24} + 10q^{25} + 12q^{26} - 12q^{30} + 6q^{31} + 2q^{33} - 8q^{35} + 16q^{36} + 14q^{37} - 12q^{38} - 12q^{39} - 2q^{40} + 32q^{41} + 6q^{42} + 4q^{44} + 12q^{45} + 18q^{46} - 24q^{47} - 6q^{49} + 6q^{51} - 8q^{54} - 14q^{55} + 4q^{56} - 2q^{60} + 28q^{61} - 8q^{62} - 6q^{63} - 16q^{64} + 72q^{65} + 4q^{66} - 16q^{67} - 30q^{70} - 56q^{71} - 44q^{73} + 24q^{74} - 12q^{75} - 20q^{76} + 32q^{77} - 30q^{79} - 12q^{80} - 8q^{81} - 12q^{82} + 8q^{83} - 8q^{84} - 12q^{86} + 4q^{88} - 36q^{89} + 4q^{90} - 8q^{91} - 8q^{92} + 4q^{93} + 14q^{94} + 72q^{95} + 8q^{96} - 40q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.92604 + 1.11200i 0.861352 + 0.497302i 0.864465 0.502693i \(-0.167657\pi\)
−0.00311268 + 0.999995i \(0.500991\pi\)
\(6\) −1.00000 −0.408248
\(7\) 2.45660 0.982398i 0.928508 0.371312i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.11200 1.92604i −0.351646 0.609068i
\(11\) −0.0571978 + 3.31613i −0.0172458 + 0.999851i
\(12\) 0.866025 + 0.500000i 0.250000 + 0.144338i
\(13\) −0.112712 −0.0312608 −0.0156304 0.999878i \(-0.504976\pi\)
−0.0156304 + 0.999878i \(0.504976\pi\)
\(14\) −2.61868 0.377519i −0.699871 0.100896i
\(15\) 2.22400 0.574235
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.119843 + 0.207574i 0.0290661 + 0.0503440i 0.880193 0.474617i \(-0.157413\pi\)
−0.851126 + 0.524961i \(0.824080\pi\)
\(18\) −0.866025 + 0.500000i −0.204124 + 0.117851i
\(19\) −0.218080 + 0.377726i −0.0500311 + 0.0866564i −0.889956 0.456046i \(-0.849265\pi\)
0.839925 + 0.542702i \(0.182599\pi\)
\(20\) 2.22400i 0.497302i
\(21\) 1.63628 2.07908i 0.357066 0.453693i
\(22\) 1.70760 2.84326i 0.364062 0.606184i
\(23\) −0.401617 + 0.695621i −0.0837429 + 0.145047i −0.904855 0.425720i \(-0.860021\pi\)
0.821112 + 0.570767i \(0.193354\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) −0.0269081 0.0466061i −0.00538161 0.00932123i
\(26\) 0.0976119 + 0.0563562i 0.0191433 + 0.0110524i
\(27\) 1.00000i 0.192450i
\(28\) 2.07908 + 1.63628i 0.392910 + 0.309228i
\(29\) 7.50955i 1.39449i 0.716833 + 0.697245i \(0.245591\pi\)
−0.716833 + 0.697245i \(0.754409\pi\)
\(30\) −1.92604 1.11200i −0.351646 0.203023i
\(31\) 0.306643 0.177040i 0.0550747 0.0317974i −0.472210 0.881486i \(-0.656544\pi\)
0.527285 + 0.849689i \(0.323210\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 1.60853 + 2.90045i 0.280009 + 0.504904i
\(34\) 0.239685i 0.0411057i
\(35\) 5.82395 + 0.839603i 0.984427 + 0.141919i
\(36\) 1.00000 0.166667
\(37\) 3.67483 6.36499i 0.604138 1.04640i −0.388049 0.921639i \(-0.626851\pi\)
0.992187 0.124759i \(-0.0398158\pi\)
\(38\) 0.377726 0.218080i 0.0612753 0.0353773i
\(39\) −0.0976119 + 0.0563562i −0.0156304 + 0.00902422i
\(40\) 1.11200 1.92604i 0.175823 0.304534i
\(41\) 3.14869 0.491743 0.245872 0.969302i \(-0.420926\pi\)
0.245872 + 0.969302i \(0.420926\pi\)
\(42\) −2.45660 + 0.982398i −0.379062 + 0.151587i
\(43\) 10.1874i 1.55356i −0.629774 0.776779i \(-0.716852\pi\)
0.629774 0.776779i \(-0.283148\pi\)
\(44\) −2.90045 + 1.60853i −0.437260 + 0.242495i
\(45\) 1.92604 1.11200i 0.287117 0.165767i
\(46\) 0.695621 0.401617i 0.102564 0.0592152i
\(47\) −11.2232 6.47974i −1.63708 0.945168i −0.981832 0.189753i \(-0.939231\pi\)
−0.655246 0.755415i \(-0.727435\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 5.06979 4.82672i 0.724255 0.689532i
\(50\) 0.0538161i 0.00761075i
\(51\) 0.207574 + 0.119843i 0.0290661 + 0.0167813i
\(52\) −0.0563562 0.0976119i −0.00781520 0.0135363i
\(53\) 1.28196 + 2.22041i 0.176090 + 0.304997i 0.940538 0.339688i \(-0.110322\pi\)
−0.764448 + 0.644686i \(0.776988\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) −3.79771 + 6.32340i −0.512083 + 0.852648i
\(56\) −0.982398 2.45660i −0.131278 0.328277i
\(57\) 0.436161i 0.0577709i
\(58\) 3.75478 6.50347i 0.493026 0.853947i
\(59\) 3.27440 1.89048i 0.426291 0.246119i −0.271474 0.962446i \(-0.587511\pi\)
0.697765 + 0.716326i \(0.254178\pi\)
\(60\) 1.11200 + 1.92604i 0.143559 + 0.248651i
\(61\) 0.525000 0.909326i 0.0672193 0.116427i −0.830457 0.557083i \(-0.811921\pi\)
0.897676 + 0.440655i \(0.145254\pi\)
\(62\) −0.354081 −0.0449683
\(63\) 0.377519 2.61868i 0.0475629 0.329923i
\(64\) −1.00000 −0.125000
\(65\) −0.217089 0.125336i −0.0269266 0.0155461i
\(66\) 0.0571978 3.31613i 0.00704056 0.408188i
\(67\) 2.48189 + 4.29875i 0.303211 + 0.525176i 0.976861 0.213874i \(-0.0686081\pi\)
−0.673651 + 0.739050i \(0.735275\pi\)
\(68\) −0.119843 + 0.207574i −0.0145331 + 0.0251720i
\(69\) 0.803234i 0.0966980i
\(70\) −4.62388 3.63909i −0.552660 0.434955i
\(71\) −7.58067 −0.899660 −0.449830 0.893114i \(-0.648515\pi\)
−0.449830 + 0.893114i \(0.648515\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 2.39827 + 4.15392i 0.280696 + 0.486179i 0.971556 0.236809i \(-0.0761015\pi\)
−0.690861 + 0.722988i \(0.742768\pi\)
\(74\) −6.36499 + 3.67483i −0.739915 + 0.427190i
\(75\) −0.0466061 0.0269081i −0.00538161 0.00310708i
\(76\) −0.436161 −0.0500311
\(77\) 3.11725 + 8.20261i 0.355244 + 0.934774i
\(78\) 0.112712 0.0127622
\(79\) 0.429215 + 0.247807i 0.0482905 + 0.0278805i 0.523951 0.851748i \(-0.324458\pi\)
−0.475660 + 0.879629i \(0.657791\pi\)
\(80\) −1.92604 + 1.11200i −0.215338 + 0.124325i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −2.72685 1.57435i −0.301130 0.173857i
\(83\) −0.569186 −0.0624763 −0.0312381 0.999512i \(-0.509945\pi\)
−0.0312381 + 0.999512i \(0.509945\pi\)
\(84\) 2.61868 + 0.377519i 0.285721 + 0.0411907i
\(85\) 0.533061i 0.0578186i
\(86\) −5.09368 + 8.82251i −0.549266 + 0.951356i
\(87\) 3.75478 + 6.50347i 0.402554 + 0.697245i
\(88\) 3.31613 + 0.0571978i 0.353501 + 0.00609730i
\(89\) −12.1232 6.99934i −1.28506 0.741928i −0.307289 0.951616i \(-0.599422\pi\)
−0.977768 + 0.209688i \(0.932755\pi\)
\(90\) −2.22400 −0.234430
\(91\) −0.276890 + 0.110729i −0.0290259 + 0.0116075i
\(92\) −0.803234 −0.0837429
\(93\) 0.177040 0.306643i 0.0183582 0.0317974i
\(94\) 6.47974 + 11.2232i 0.668334 + 1.15759i
\(95\) −0.840064 + 0.485011i −0.0861888 + 0.0497611i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 10.6708i 1.08345i 0.840554 + 0.541727i \(0.182230\pi\)
−0.840554 + 0.541727i \(0.817770\pi\)
\(98\) −6.80393 + 1.64517i −0.687300 + 0.166187i
\(99\) 2.84326 + 1.70760i 0.285758 + 0.171620i
\(100\) 0.0269081 0.0466061i 0.00269081 0.00466061i
\(101\) 9.76595 + 16.9151i 0.971748 + 1.68312i 0.690274 + 0.723548i \(0.257490\pi\)
0.281474 + 0.959569i \(0.409177\pi\)
\(102\) −0.119843 0.207574i −0.0118662 0.0205529i
\(103\) −11.0669 6.38947i −1.09045 0.629573i −0.156756 0.987637i \(-0.550104\pi\)
−0.933697 + 0.358064i \(0.883437\pi\)
\(104\) 0.112712i 0.0110524i
\(105\) 5.46349 2.18486i 0.533182 0.213220i
\(106\) 2.56391i 0.249029i
\(107\) −10.8886 6.28656i −1.05264 0.607745i −0.129256 0.991611i \(-0.541259\pi\)
−0.923389 + 0.383867i \(0.874592\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) −14.3351 + 8.27635i −1.37305 + 0.792730i −0.991311 0.131540i \(-0.958008\pi\)
−0.381739 + 0.924270i \(0.624675\pi\)
\(110\) 6.45061 3.57738i 0.615042 0.341089i
\(111\) 7.34966i 0.697598i
\(112\) −0.377519 + 2.61868i −0.0356722 + 0.247442i
\(113\) −8.19898 −0.771295 −0.385647 0.922646i \(-0.626022\pi\)
−0.385647 + 0.922646i \(0.626022\pi\)
\(114\) 0.218080 0.377726i 0.0204251 0.0353773i
\(115\) −1.54706 + 0.893197i −0.144264 + 0.0832910i
\(116\) −6.50347 + 3.75478i −0.603832 + 0.348622i
\(117\) −0.0563562 + 0.0976119i −0.00521014 + 0.00902422i
\(118\) −3.78095 −0.348065
\(119\) 0.498326 + 0.392193i 0.0456815 + 0.0359522i
\(120\) 2.22400i 0.203023i
\(121\) −10.9935 0.379351i −0.999405 0.0344864i
\(122\) −0.909326 + 0.525000i −0.0823265 + 0.0475312i
\(123\) 2.72685 1.57435i 0.245872 0.141954i
\(124\) 0.306643 + 0.177040i 0.0275374 + 0.0158987i
\(125\) 11.2397i 1.00531i
\(126\) −1.63628 + 2.07908i −0.145771 + 0.185219i
\(127\) 5.11237i 0.453650i −0.973936 0.226825i \(-0.927166\pi\)
0.973936 0.226825i \(-0.0728345\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −5.09368 8.82251i −0.448473 0.776779i
\(130\) 0.125336 + 0.217089i 0.0109927 + 0.0190400i
\(131\) −1.02912 + 1.78250i −0.0899150 + 0.155737i −0.907475 0.420106i \(-0.861993\pi\)
0.817560 + 0.575843i \(0.195326\pi\)
\(132\) −1.70760 + 2.84326i −0.148628 + 0.247474i
\(133\) −0.164659 + 1.14217i −0.0142778 + 0.0990383i
\(134\) 4.96377i 0.428804i
\(135\) 1.11200 1.92604i 0.0957058 0.165767i
\(136\) 0.207574 0.119843i 0.0177993 0.0102764i
\(137\) 9.42545 + 16.3254i 0.805271 + 1.39477i 0.916108 + 0.400931i \(0.131313\pi\)
−0.110838 + 0.993839i \(0.535353\pi\)
\(138\) 0.401617 0.695621i 0.0341879 0.0592152i
\(139\) −10.5033 −0.890880 −0.445440 0.895312i \(-0.646953\pi\)
−0.445440 + 0.895312i \(0.646953\pi\)
\(140\) 2.18486 + 5.46349i 0.184654 + 0.461749i
\(141\) −12.9595 −1.09139
\(142\) 6.56505 + 3.79033i 0.550927 + 0.318078i
\(143\) 0.00644690 0.373769i 0.000539117 0.0312562i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) −8.35063 + 14.4637i −0.693482 + 1.20115i
\(146\) 4.79653i 0.396964i
\(147\) 1.97720 6.71496i 0.163077 0.553840i
\(148\) 7.34966 0.604138
\(149\) −12.6570 7.30752i −1.03690 0.598656i −0.117948 0.993020i \(-0.537631\pi\)
−0.918954 + 0.394364i \(0.870965\pi\)
\(150\) 0.0269081 + 0.0466061i 0.00219703 + 0.00380538i
\(151\) −1.57663 + 0.910267i −0.128304 + 0.0740764i −0.562778 0.826608i \(-0.690268\pi\)
0.434474 + 0.900684i \(0.356934\pi\)
\(152\) 0.377726 + 0.218080i 0.0306377 + 0.0176887i
\(153\) 0.239685 0.0193774
\(154\) 1.40169 8.66229i 0.112951 0.698027i
\(155\) 0.787477 0.0632516
\(156\) −0.0976119 0.0563562i −0.00781520 0.00451211i
\(157\) 15.1388 8.74037i 1.20821 0.697558i 0.245839 0.969311i \(-0.420937\pi\)
0.962367 + 0.271753i \(0.0876034\pi\)
\(158\) −0.247807 0.429215i −0.0197145 0.0341465i
\(159\) 2.22041 + 1.28196i 0.176090 + 0.101666i
\(160\) 2.22400 0.175823
\(161\) −0.303236 + 2.10341i −0.0238984 + 0.165772i
\(162\) 1.00000i 0.0785674i
\(163\) −5.84566 + 10.1250i −0.457867 + 0.793049i −0.998848 0.0479858i \(-0.984720\pi\)
0.540981 + 0.841035i \(0.318053\pi\)
\(164\) 1.57435 + 2.72685i 0.122936 + 0.212931i
\(165\) −0.127208 + 7.37508i −0.00990313 + 0.574149i
\(166\) 0.492929 + 0.284593i 0.0382587 + 0.0220887i
\(167\) 18.4885 1.43068 0.715341 0.698775i \(-0.246271\pi\)
0.715341 + 0.698775i \(0.246271\pi\)
\(168\) −2.07908 1.63628i −0.160405 0.126242i
\(169\) −12.9873 −0.999023
\(170\) 0.266530 0.461644i 0.0204419 0.0354065i
\(171\) 0.218080 + 0.377726i 0.0166770 + 0.0288855i
\(172\) 8.82251 5.09368i 0.672710 0.388389i
\(173\) 8.59437 14.8859i 0.653418 1.13175i −0.328870 0.944375i \(-0.606668\pi\)
0.982288 0.187378i \(-0.0599988\pi\)
\(174\) 7.50955i 0.569298i
\(175\) −0.111888 0.0880583i −0.00845795 0.00665658i
\(176\) −2.84326 1.70760i −0.214318 0.128715i
\(177\) 1.89048 3.27440i 0.142097 0.246119i
\(178\) 6.99934 + 12.1232i 0.524622 + 0.908673i
\(179\) −5.81838 10.0777i −0.434886 0.753244i 0.562400 0.826865i \(-0.309878\pi\)
−0.997286 + 0.0736206i \(0.976545\pi\)
\(180\) 1.92604 + 1.11200i 0.143559 + 0.0828837i
\(181\) 21.9534i 1.63179i 0.578203 + 0.815893i \(0.303754\pi\)
−0.578203 + 0.815893i \(0.696246\pi\)
\(182\) 0.295158 + 0.0425511i 0.0218785 + 0.00315410i
\(183\) 1.05000i 0.0776182i
\(184\) 0.695621 + 0.401617i 0.0512818 + 0.0296076i
\(185\) 14.1557 8.17282i 1.04075 0.600878i
\(186\) −0.306643 + 0.177040i −0.0224842 + 0.0129812i
\(187\) −0.695196 + 0.385541i −0.0508378 + 0.0281936i
\(188\) 12.9595i 0.945168i
\(189\) −0.982398 2.45660i −0.0714590 0.178692i
\(190\) 0.970023 0.0703728
\(191\) 2.99269 5.18349i 0.216543 0.375064i −0.737205 0.675669i \(-0.763855\pi\)
0.953749 + 0.300604i \(0.0971884\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) −7.35467 + 4.24622i −0.529401 + 0.305650i −0.740772 0.671756i \(-0.765540\pi\)
0.211372 + 0.977406i \(0.432207\pi\)
\(194\) 5.33540 9.24118i 0.383059 0.663478i
\(195\) −0.250673 −0.0179510
\(196\) 6.71496 + 1.97720i 0.479640 + 0.141229i
\(197\) 3.71109i 0.264404i −0.991223 0.132202i \(-0.957795\pi\)
0.991223 0.132202i \(-0.0422048\pi\)
\(198\) −1.60853 2.90045i −0.114313 0.206126i
\(199\) 4.99176 2.88199i 0.353857 0.204299i −0.312526 0.949909i \(-0.601175\pi\)
0.666383 + 0.745610i \(0.267842\pi\)
\(200\) −0.0466061 + 0.0269081i −0.00329555 + 0.00190269i
\(201\) 4.29875 + 2.48189i 0.303211 + 0.175059i
\(202\) 19.5319i 1.37426i
\(203\) 7.37737 + 18.4480i 0.517790 + 1.29479i
\(204\) 0.239685i 0.0167813i
\(205\) 6.06451 + 3.50135i 0.423564 + 0.244545i
\(206\) 6.38947 + 11.0669i 0.445176 + 0.771067i
\(207\) 0.401617 + 0.695621i 0.0279143 + 0.0483490i
\(208\) 0.0563562 0.0976119i 0.00390760 0.00676816i
\(209\) −1.24012 0.744789i −0.0857807 0.0515181i
\(210\) −5.82395 0.839603i −0.401890 0.0579381i
\(211\) 23.1201i 1.59165i −0.605524 0.795827i \(-0.707037\pi\)
0.605524 0.795827i \(-0.292963\pi\)
\(212\) −1.28196 + 2.22041i −0.0880451 + 0.152499i
\(213\) −6.56505 + 3.79033i −0.449830 + 0.259709i
\(214\) 6.28656 + 10.8886i 0.429740 + 0.744332i
\(215\) 11.3284 19.6213i 0.772587 1.33816i
\(216\) −1.00000 −0.0680414
\(217\) 0.579376 0.736164i 0.0393306 0.0499740i
\(218\) 16.5527 1.12109
\(219\) 4.15392 + 2.39827i 0.280696 + 0.162060i
\(220\) −7.37508 0.127208i −0.497228 0.00857636i
\(221\) −0.0135078 0.0233961i −0.000908631 0.00157379i
\(222\) −3.67483 + 6.36499i −0.246638 + 0.427190i
\(223\) 11.3233i 0.758267i 0.925342 + 0.379134i \(0.123778\pi\)
−0.925342 + 0.379134i \(0.876222\pi\)
\(224\) 1.63628 2.07908i 0.109329 0.138915i
\(225\) −0.0538161 −0.00358774
\(226\) 7.10052 + 4.09949i 0.472320 + 0.272694i
\(227\) 2.66623 + 4.61805i 0.176964 + 0.306510i 0.940839 0.338853i \(-0.110039\pi\)
−0.763875 + 0.645364i \(0.776706\pi\)
\(228\) −0.377726 + 0.218080i −0.0250155 + 0.0144427i
\(229\) 15.6189 + 9.01755i 1.03212 + 0.595897i 0.917592 0.397523i \(-0.130130\pi\)
0.114531 + 0.993420i \(0.463463\pi\)
\(230\) 1.78639 0.117791
\(231\) 6.80092 + 5.54504i 0.447468 + 0.364837i
\(232\) 7.50955 0.493026
\(233\) −13.5770 7.83866i −0.889456 0.513528i −0.0156917 0.999877i \(-0.504995\pi\)
−0.873765 + 0.486349i \(0.838328\pi\)
\(234\) 0.0976119 0.0563562i 0.00638109 0.00368412i
\(235\) −14.4110 24.9605i −0.940067 1.62824i
\(236\) 3.27440 + 1.89048i 0.213145 + 0.123060i
\(237\) 0.495615 0.0321936
\(238\) −0.235467 0.588812i −0.0152630 0.0381670i
\(239\) 19.6987i 1.27420i −0.770780 0.637101i \(-0.780133\pi\)
0.770780 0.637101i \(-0.219867\pi\)
\(240\) −1.11200 + 1.92604i −0.0717793 + 0.124325i
\(241\) 3.85279 + 6.67323i 0.248180 + 0.429861i 0.963021 0.269427i \(-0.0868342\pi\)
−0.714841 + 0.699287i \(0.753501\pi\)
\(242\) 9.33094 + 5.82526i 0.599815 + 0.374462i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 1.05000 0.0672193
\(245\) 15.1319 3.65886i 0.966744 0.233756i
\(246\) −3.14869 −0.200753
\(247\) 0.0245804 0.0425745i 0.00156401 0.00270895i
\(248\) −0.177040 0.306643i −0.0112421 0.0194719i
\(249\) −0.492929 + 0.284593i −0.0312381 + 0.0180353i
\(250\) −5.61985 + 9.73386i −0.355430 + 0.615624i
\(251\) 11.3888i 0.718857i 0.933173 + 0.359428i \(0.117028\pi\)
−0.933173 + 0.359428i \(0.882972\pi\)
\(252\) 2.45660 0.982398i 0.154751 0.0618853i
\(253\) −2.28380 1.37160i −0.143581 0.0862319i
\(254\) −2.55619 + 4.42744i −0.160389 + 0.277803i
\(255\) 0.266530 + 0.461644i 0.0166908 + 0.0289093i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 13.9973 + 8.08134i 0.873127 + 0.504100i 0.868386 0.495888i \(-0.165158\pi\)
0.00474110 + 0.999989i \(0.498491\pi\)
\(258\) 10.1874i 0.634237i
\(259\) 2.77464 19.2464i 0.172407 1.19591i
\(260\) 0.250673i 0.0155461i
\(261\) 6.50347 + 3.75478i 0.402554 + 0.232415i
\(262\) 1.78250 1.02912i 0.110123 0.0635795i
\(263\) −7.43191 + 4.29081i −0.458271 + 0.264583i −0.711317 0.702871i \(-0.751901\pi\)
0.253046 + 0.967454i \(0.418568\pi\)
\(264\) 2.90045 1.60853i 0.178511 0.0989982i
\(265\) 5.70215i 0.350280i
\(266\) 0.713682 0.906815i 0.0437586 0.0556004i
\(267\) −13.9987 −0.856705
\(268\) −2.48189 + 4.29875i −0.151605 + 0.262588i
\(269\) 3.58587 2.07030i 0.218634 0.126229i −0.386683 0.922213i \(-0.626379\pi\)
0.605318 + 0.795984i \(0.293046\pi\)
\(270\) −1.92604 + 1.11200i −0.117215 + 0.0676742i
\(271\) 1.71583 2.97190i 0.104229 0.180530i −0.809194 0.587542i \(-0.800096\pi\)
0.913423 + 0.407012i \(0.133429\pi\)
\(272\) −0.239685 −0.0145331
\(273\) −0.184429 + 0.234339i −0.0111622 + 0.0141828i
\(274\) 18.8509i 1.13882i
\(275\) 0.156091 0.0865649i 0.00941265 0.00522006i
\(276\) −0.695621 + 0.401617i −0.0418714 + 0.0241745i
\(277\) −1.35959 + 0.784960i −0.0816899 + 0.0471637i −0.540289 0.841480i \(-0.681685\pi\)
0.458599 + 0.888643i \(0.348352\pi\)
\(278\) 9.09614 + 5.25166i 0.545550 + 0.314974i
\(279\) 0.354081i 0.0211983i
\(280\) 0.839603 5.82395i 0.0501759 0.348047i
\(281\) 3.49877i 0.208719i 0.994540 + 0.104360i \(0.0332793\pi\)
−0.994540 + 0.104360i \(0.966721\pi\)
\(282\) 11.2232 + 6.47974i 0.668334 + 0.385863i
\(283\) −11.1106 19.2440i −0.660454 1.14394i −0.980496 0.196537i \(-0.937031\pi\)
0.320043 0.947403i \(-0.396303\pi\)
\(284\) −3.79033 6.56505i −0.224915 0.389564i
\(285\) −0.485011 + 0.840064i −0.0287296 + 0.0497611i
\(286\) −0.192468 + 0.320470i −0.0113809 + 0.0189498i
\(287\) 7.73508 3.09327i 0.456588 0.182590i
\(288\) 1.00000i 0.0589256i
\(289\) 8.47128 14.6727i 0.498310 0.863099i
\(290\) 14.4637 8.35063i 0.849339 0.490366i
\(291\) 5.33540 + 9.24118i 0.312766 + 0.541727i
\(292\) −2.39827 + 4.15392i −0.140348 + 0.243090i
\(293\) −6.85562 −0.400510 −0.200255 0.979744i \(-0.564177\pi\)
−0.200255 + 0.979744i \(0.564177\pi\)
\(294\) −5.06979 + 4.82672i −0.295676 + 0.281500i
\(295\) 8.40885 0.489582
\(296\) −6.36499 3.67483i −0.369957 0.213595i
\(297\) 3.31613 + 0.0571978i 0.192421 + 0.00331895i
\(298\) 7.30752 + 12.6570i 0.423313 + 0.733200i
\(299\) 0.0452672 0.0784051i 0.00261787 0.00453429i
\(300\) 0.0538161i 0.00310708i
\(301\) −10.0080 25.0263i −0.576854 1.44249i
\(302\) 1.82053 0.104760
\(303\) 16.9151 + 9.76595i 0.971748 + 0.561039i
\(304\) −0.218080 0.377726i −0.0125078 0.0216641i
\(305\) 2.02234 1.16760i 0.115799 0.0668566i
\(306\) −0.207574 0.119843i −0.0118662 0.00685095i
\(307\) 25.3466 1.44661 0.723303 0.690531i \(-0.242623\pi\)
0.723303 + 0.690531i \(0.242623\pi\)
\(308\) −5.54504 + 6.80092i −0.315958 + 0.387518i
\(309\) −12.7789 −0.726969
\(310\) −0.681975 0.393738i −0.0387336 0.0223628i
\(311\) 12.0093 6.93356i 0.680984 0.393166i −0.119242 0.992865i \(-0.538046\pi\)
0.800226 + 0.599699i \(0.204713\pi\)
\(312\) 0.0563562 + 0.0976119i 0.00319054 + 0.00552618i
\(313\) 10.4414 + 6.02834i 0.590183 + 0.340742i 0.765170 0.643829i \(-0.222655\pi\)
−0.174987 + 0.984571i \(0.555988\pi\)
\(314\) −17.4807 −0.986496
\(315\) 3.63909 4.62388i 0.205040 0.260526i
\(316\) 0.495615i 0.0278805i
\(317\) 3.77629 6.54073i 0.212098 0.367364i −0.740273 0.672306i \(-0.765304\pi\)
0.952371 + 0.304942i \(0.0986372\pi\)
\(318\) −1.28196 2.22041i −0.0718885 0.124515i
\(319\) −24.9027 0.429530i −1.39428 0.0240491i
\(320\) −1.92604 1.11200i −0.107669 0.0621627i
\(321\) −12.5731 −0.701763
\(322\) 1.31432 1.66999i 0.0732439 0.0930649i
\(323\) −0.104541 −0.00581684
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) 0.00303287 + 0.00525309i 0.000168234 + 0.000291389i
\(326\) 10.1250 5.84566i 0.560770 0.323761i
\(327\) −8.27635 + 14.3351i −0.457683 + 0.792730i
\(328\) 3.14869i 0.173857i
\(329\) −33.9367 4.89245i −1.87099 0.269730i
\(330\) 3.79771 6.32340i 0.209057 0.348092i
\(331\) −11.2835 + 19.5435i −0.620195 + 1.07421i 0.369255 + 0.929328i \(0.379613\pi\)
−0.989449 + 0.144880i \(0.953720\pi\)
\(332\) −0.284593 0.492929i −0.0156191 0.0270530i
\(333\) −3.67483 6.36499i −0.201379 0.348799i
\(334\) −16.0115 9.24425i −0.876111 0.505823i
\(335\) 11.0394i 0.603149i
\(336\) 0.982398 + 2.45660i 0.0535942 + 0.134019i
\(337\) 32.4695i 1.76872i 0.466801 + 0.884362i \(0.345406\pi\)
−0.466801 + 0.884362i \(0.654594\pi\)
\(338\) 11.2473 + 6.49365i 0.611774 + 0.353208i
\(339\) −7.10052 + 4.09949i −0.385647 + 0.222654i
\(340\) −0.461644 + 0.266530i −0.0250362 + 0.0144546i
\(341\) 0.569550 + 1.02700i 0.0308429 + 0.0556149i
\(342\) 0.436161i 0.0235849i
\(343\) 7.71269 16.8379i 0.416446 0.909161i
\(344\) −10.1874 −0.549266
\(345\) −0.893197 + 1.54706i −0.0480881 + 0.0832910i
\(346\) −14.8859 + 8.59437i −0.800270 + 0.462036i
\(347\) −26.6239 + 15.3713i −1.42924 + 0.825174i −0.997061 0.0766119i \(-0.975590\pi\)
−0.432183 + 0.901786i \(0.642256\pi\)
\(348\) −3.75478 + 6.50347i −0.201277 + 0.348622i
\(349\) 24.5576 1.31454 0.657269 0.753656i \(-0.271712\pi\)
0.657269 + 0.753656i \(0.271712\pi\)
\(350\) 0.0528689 + 0.132205i 0.00282596 + 0.00706665i
\(351\) 0.112712i 0.00601615i
\(352\) 1.60853 + 2.90045i 0.0857350 + 0.154595i
\(353\) 3.74418 2.16170i 0.199283 0.115056i −0.397038 0.917802i \(-0.629962\pi\)
0.596321 + 0.802746i \(0.296629\pi\)
\(354\) −3.27440 + 1.89048i −0.174033 + 0.100478i
\(355\) −14.6007 8.42971i −0.774924 0.447402i
\(356\) 13.9987i 0.741928i
\(357\) 0.627659 + 0.0904858i 0.0332192 + 0.00478902i
\(358\) 11.6368i 0.615021i
\(359\) −13.7848 7.95866i −0.727534 0.420042i 0.0899854 0.995943i \(-0.471318\pi\)
−0.817519 + 0.575901i \(0.804651\pi\)
\(360\) −1.11200 1.92604i −0.0586076 0.101511i
\(361\) 9.40488 + 16.2897i 0.494994 + 0.857354i
\(362\) 10.9767 19.0122i 0.576923 0.999260i
\(363\) −9.71029 + 5.16820i −0.509658 + 0.271260i
\(364\) −0.234339 0.184429i −0.0122827 0.00966672i
\(365\) 10.6675i 0.558362i
\(366\) −0.525000 + 0.909326i −0.0274422 + 0.0475312i
\(367\) −22.2966 + 12.8729i −1.16387 + 0.671962i −0.952229 0.305385i \(-0.901215\pi\)
−0.211643 + 0.977347i \(0.567881\pi\)
\(368\) −0.401617 0.695621i −0.0209357 0.0362617i
\(369\) 1.57435 2.72685i 0.0819572 0.141954i
\(370\) −16.3456 −0.849770
\(371\) 5.33059 + 4.19528i 0.276750 + 0.217808i
\(372\) 0.354081 0.0183582
\(373\) 25.2676 + 14.5882i 1.30831 + 0.755350i 0.981813 0.189850i \(-0.0608000\pi\)
0.326492 + 0.945200i \(0.394133\pi\)
\(374\) 0.794828 + 0.0137095i 0.0410996 + 0.000708900i
\(375\) −5.61985 9.73386i −0.290208 0.502654i
\(376\) −6.47974 + 11.2232i −0.334167 + 0.578795i
\(377\) 0.846420i 0.0435929i
\(378\) −0.377519 + 2.61868i −0.0194175 + 0.134690i
\(379\) −28.8200 −1.48039 −0.740193 0.672395i \(-0.765266\pi\)
−0.740193 + 0.672395i \(0.765266\pi\)
\(380\) −0.840064 0.485011i −0.0430944 0.0248806i
\(381\) −2.55619 4.42744i −0.130957 0.226825i
\(382\) −5.18349 + 2.99269i −0.265210 + 0.153119i
\(383\) −6.12468 3.53608i −0.312956 0.180685i 0.335292 0.942114i \(-0.391165\pi\)
−0.648249 + 0.761429i \(0.724498\pi\)
\(384\) 1.00000 0.0510310
\(385\) −3.11735 + 19.2649i −0.158875 + 0.981833i
\(386\) 8.49244 0.432254
\(387\) −8.82251 5.09368i −0.448473 0.258926i
\(388\) −9.24118 + 5.33540i −0.469150 + 0.270864i
\(389\) −6.18937 10.7203i −0.313813 0.543541i 0.665371 0.746513i \(-0.268273\pi\)
−0.979185 + 0.202972i \(0.934940\pi\)
\(390\) 0.217089 + 0.125336i 0.0109927 + 0.00634665i
\(391\) −0.192523 −0.00973633
\(392\) −4.82672 5.06979i −0.243786 0.256063i
\(393\) 2.05825i 0.103825i
\(394\) −1.85555 + 3.21390i −0.0934811 + 0.161914i
\(395\) 0.551124 + 0.954575i 0.0277301 + 0.0480299i
\(396\) −0.0571978 + 3.31613i −0.00287430 + 0.166642i
\(397\) 17.2980 + 9.98702i 0.868163 + 0.501234i 0.866737 0.498765i \(-0.166213\pi\)
0.00142581 + 0.999999i \(0.499546\pi\)
\(398\) −5.76399 −0.288923
\(399\) 0.428484 + 1.07147i 0.0214510 + 0.0536408i
\(400\) 0.0538161 0.00269081
\(401\) −5.27945 + 9.14428i −0.263643 + 0.456643i −0.967207 0.253988i \(-0.918257\pi\)
0.703564 + 0.710632i \(0.251591\pi\)
\(402\) −2.48189 4.29875i −0.123785 0.214402i
\(403\) −0.0345625 + 0.0199547i −0.00172168 + 0.000994013i
\(404\) −9.76595 + 16.9151i −0.485874 + 0.841558i
\(405\) 2.22400i 0.110512i
\(406\) 2.83500 19.6651i 0.140699 0.975963i
\(407\) 20.8969 + 12.5503i 1.03582 + 0.622094i
\(408\) 0.119843 0.207574i 0.00593310 0.0102764i
\(409\) −11.2457 19.4781i −0.556065 0.963132i −0.997820 0.0659967i \(-0.978977\pi\)
0.441755 0.897136i \(-0.354356\pi\)
\(410\) −3.50135 6.06451i −0.172919 0.299505i
\(411\) 16.3254 + 9.42545i 0.805271 + 0.464923i
\(412\) 12.7789i 0.629573i
\(413\) 6.18670 7.86092i 0.304428 0.386811i
\(414\) 0.803234i 0.0394768i
\(415\) −1.09628 0.632935i −0.0538141 0.0310696i
\(416\) −0.0976119 + 0.0563562i −0.00478582 + 0.00276309i
\(417\) −9.09614 + 5.25166i −0.445440 + 0.257175i
\(418\) 0.701578 + 1.26506i 0.0343153 + 0.0618763i
\(419\) 25.5522i 1.24831i −0.781302 0.624154i \(-0.785444\pi\)
0.781302 0.624154i \(-0.214556\pi\)
\(420\) 4.62388 + 3.63909i 0.225622 + 0.177569i
\(421\) −2.88784 −0.140745 −0.0703723 0.997521i \(-0.522419\pi\)
−0.0703723 + 0.997521i \(0.522419\pi\)
\(422\) −11.5601 + 20.0226i −0.562735 + 0.974685i
\(423\) −11.2232 + 6.47974i −0.545693 + 0.315056i
\(424\) 2.22041 1.28196i 0.107833 0.0622573i
\(425\) 0.00644947 0.0111708i 0.000312845 0.000541864i
\(426\) 7.58067 0.367285
\(427\) 0.396395 2.74961i 0.0191829 0.133063i
\(428\) 12.5731i 0.607745i
\(429\) −0.181302 0.326917i −0.00875332 0.0157837i
\(430\) −19.6213 + 11.3284i −0.946222 + 0.546302i
\(431\) 28.7727 16.6119i 1.38593 0.800168i 0.393077 0.919505i \(-0.371410\pi\)
0.992854 + 0.119338i \(0.0380771\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) 0.741961i 0.0356564i 0.999841 + 0.0178282i \(0.00567519\pi\)
−0.999841 + 0.0178282i \(0.994325\pi\)
\(434\) −0.869836 + 0.347849i −0.0417535 + 0.0166973i
\(435\) 16.7013i 0.800764i
\(436\) −14.3351 8.27635i −0.686525 0.396365i
\(437\) −0.175170 0.303403i −0.00837950 0.0145137i
\(438\) −2.39827 4.15392i −0.114594 0.198482i
\(439\) −8.11637 + 14.0580i −0.387373 + 0.670950i −0.992095 0.125486i \(-0.959951\pi\)
0.604722 + 0.796437i \(0.293284\pi\)
\(440\) 6.32340 + 3.79771i 0.301456 + 0.181049i
\(441\) −1.64517 6.80393i −0.0783415 0.323996i
\(442\) 0.0270155i 0.00128500i
\(443\) 5.45671 9.45129i 0.259256 0.449044i −0.706787 0.707427i \(-0.749856\pi\)
0.966043 + 0.258382i \(0.0831893\pi\)
\(444\) 6.36499 3.67483i 0.302069 0.174400i
\(445\) −15.5665 26.9620i −0.737925 1.27812i
\(446\) 5.66167 9.80630i 0.268088 0.464342i
\(447\) −14.6150 −0.691268
\(448\) −2.45660 + 0.982398i −0.116064 + 0.0464140i
\(449\) −23.6594 −1.11656 −0.558278 0.829654i \(-0.688538\pi\)
−0.558278 + 0.829654i \(0.688538\pi\)
\(450\) 0.0466061 + 0.0269081i 0.00219703 + 0.00126846i
\(451\) −0.180098 + 10.4415i −0.00848049 + 0.491670i
\(452\) −4.09949 7.10052i −0.192824 0.333980i
\(453\) −0.910267 + 1.57663i −0.0427681 + 0.0740764i
\(454\) 5.33246i 0.250265i
\(455\) −0.656431 0.0946338i −0.0307740 0.00443650i
\(456\) 0.436161 0.0204251
\(457\) 21.2115 + 12.2465i 0.992233 + 0.572866i 0.905941 0.423404i \(-0.139165\pi\)
0.0862919 + 0.996270i \(0.472498\pi\)
\(458\) −9.01755 15.6189i −0.421363 0.729821i
\(459\) 0.207574 0.119843i 0.00968871 0.00559378i
\(460\) −1.54706 0.893197i −0.0721321 0.0416455i
\(461\) 8.01773 0.373423 0.186712 0.982415i \(-0.440217\pi\)
0.186712 + 0.982415i \(0.440217\pi\)
\(462\) −3.11725 8.20261i −0.145028 0.381620i
\(463\) 32.2209 1.49743 0.748716 0.662891i \(-0.230671\pi\)
0.748716 + 0.662891i \(0.230671\pi\)
\(464\) −6.50347 3.75478i −0.301916 0.174311i
\(465\) 0.681975 0.393738i 0.0316258 0.0182592i
\(466\) 7.83866 + 13.5770i 0.363119 + 0.628941i
\(467\) 11.5836 + 6.68782i 0.536027 + 0.309475i 0.743467 0.668772i \(-0.233180\pi\)
−0.207440 + 0.978248i \(0.566513\pi\)
\(468\) −0.112712 −0.00521014
\(469\) 10.3201 + 8.12212i 0.476538 + 0.375045i
\(470\) 28.8219i 1.32946i
\(471\) 8.74037 15.1388i 0.402735 0.697558i
\(472\) −1.89048 3.27440i −0.0870163 0.150717i
\(473\) 33.7826 + 0.582694i 1.55333 + 0.0267923i
\(474\) −0.429215 0.247807i −0.0197145 0.0113822i
\(475\) 0.0234725 0.00107699
\(476\) −0.0904858 + 0.627659i −0.00414741 + 0.0287687i
\(477\) 2.56391 0.117393
\(478\) −9.84934 + 17.0596i −0.450498 + 0.780286i
\(479\) 17.3629 + 30.0734i 0.793330 + 1.37409i 0.923894 + 0.382648i \(0.124988\pi\)
−0.130564 + 0.991440i \(0.541679\pi\)
\(480\) 1.92604 1.11200i 0.0879114 0.0507557i
\(481\) −0.414199 + 0.717414i −0.0188858 + 0.0327112i
\(482\) 7.70558i 0.350980i
\(483\) 0.789095 + 1.97323i 0.0359051 + 0.0897849i
\(484\) −5.16820 9.71029i −0.234918 0.441377i
\(485\) −11.8659 + 20.5524i −0.538804 + 0.933236i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −9.83069 17.0272i −0.445471 0.771578i 0.552614 0.833437i \(-0.313630\pi\)
−0.998085 + 0.0618591i \(0.980297\pi\)
\(488\) −0.909326 0.525000i −0.0411633 0.0237656i
\(489\) 11.6913i 0.528699i
\(490\) −14.9341 4.39730i −0.674653 0.198650i
\(491\) 31.6334i 1.42760i 0.700352 + 0.713798i \(0.253026\pi\)
−0.700352 + 0.713798i \(0.746974\pi\)
\(492\) 2.72685 + 1.57435i 0.122936 + 0.0709770i
\(493\) −1.55879 + 0.899965i −0.0702042 + 0.0405324i
\(494\) −0.0425745 + 0.0245804i −0.00191552 + 0.00110592i
\(495\) 3.57738 + 6.45061i 0.160791 + 0.289933i
\(496\) 0.354081i 0.0158987i
\(497\) −18.6227 + 7.44723i −0.835341 + 0.334054i
\(498\) 0.569186 0.0255058
\(499\) 18.1190 31.3830i 0.811118 1.40490i −0.100965 0.994890i \(-0.532193\pi\)
0.912082 0.410007i \(-0.134474\pi\)
\(500\) 9.73386 5.61985i 0.435312 0.251327i
\(501\) 16.0115 9.24425i 0.715341 0.413003i
\(502\) 5.69442 9.86302i 0.254154 0.440208i
\(503\) 28.3530 1.26420 0.632098 0.774889i \(-0.282194\pi\)
0.632098 + 0.774889i \(0.282194\pi\)
\(504\) −2.61868 0.377519i −0.116645 0.0168160i
\(505\) 43.4390i 1.93301i
\(506\) 1.29203 + 2.32974i 0.0574376 + 0.103570i
\(507\) −11.2473 + 6.49365i −0.499511 + 0.288393i
\(508\) 4.42744 2.55619i 0.196436 0.113412i
\(509\) −31.4337 18.1483i −1.39328 0.804408i −0.399600 0.916690i \(-0.630851\pi\)
−0.993676 + 0.112281i \(0.964184\pi\)
\(510\) 0.533061i 0.0236043i
\(511\) 9.97239 + 7.84847i 0.441152 + 0.347196i
\(512\) 1.00000i 0.0441942i
\(513\) 0.377726 + 0.218080i 0.0166770 + 0.00962849i
\(514\) −8.08134 13.9973i −0.356453 0.617394i
\(515\) −14.2102 24.6128i −0.626176 1.08457i
\(516\) 5.09368 8.82251i 0.224237 0.388389i
\(517\) 22.1296 36.8471i 0.973260 1.62053i
\(518\) −12.0261 + 15.2805i −0.528396 + 0.671389i
\(519\) 17.1887i 0.754502i
\(520\) −0.125336 + 0.217089i −0.00549636 + 0.00951998i
\(521\) −7.10021 + 4.09931i −0.311066 + 0.179594i −0.647403 0.762148i \(-0.724145\pi\)
0.336338 + 0.941741i \(0.390812\pi\)
\(522\) −3.75478 6.50347i −0.164342 0.284649i
\(523\) 16.8849 29.2456i 0.738327 1.27882i −0.214921 0.976631i \(-0.568950\pi\)
0.953248 0.302188i \(-0.0977171\pi\)
\(524\) −2.05825 −0.0899150
\(525\) −0.140927 0.0203166i −0.00615057 0.000886690i
\(526\) 8.58163 0.374177
\(527\) 0.0734979 + 0.0424340i 0.00320162 + 0.00184845i
\(528\) −3.31613 0.0571978i −0.144316 0.00248921i
\(529\) 11.1774 + 19.3598i 0.485974 + 0.841732i
\(530\) 2.85107 4.93820i 0.123843 0.214502i
\(531\) 3.78095i 0.164079i
\(532\) −1.07147 + 0.428484i −0.0464543 + 0.0185771i
\(533\) −0.354897 −0.0153723
\(534\) 12.1232 + 6.99934i 0.524622 + 0.302891i
\(535\) −13.9813 24.2164i −0.604465 1.04696i
\(536\) 4.29875 2.48189i 0.185678 0.107201i
\(537\) −10.0777 5.81838i −0.434886 0.251081i
\(538\) −4.14061 −0.178514
\(539\) 15.7161 + 17.0882i 0.676939 + 0.736039i
\(540\) 2.22400 0.0957058
\(541\) −19.6218 11.3286i −0.843607 0.487057i 0.0148819 0.999889i \(-0.495263\pi\)
−0.858489 + 0.512833i \(0.828596\pi\)
\(542\) −2.97190 + 1.71583i −0.127654 + 0.0737011i
\(543\) 10.9767 + 19.0122i 0.471056 + 0.815893i
\(544\) 0.207574 + 0.119843i 0.00889965 + 0.00513821i
\(545\) −36.8132 −1.57691
\(546\) 0.276890 0.110729i 0.0118498 0.00473874i
\(547\) 11.4499i 0.489563i 0.969578 + 0.244782i \(0.0787163\pi\)
−0.969578 + 0.244782i \(0.921284\pi\)
\(548\) −9.42545 + 16.3254i −0.402635 + 0.697385i
\(549\) −0.525000 0.909326i −0.0224064 0.0388091i
\(550\) −0.178461 0.00307816i −0.00760962 0.000131253i
\(551\) −2.83656 1.63769i −0.120841 0.0697678i
\(552\) 0.803234 0.0341879
\(553\) 1.29786 + 0.187104i 0.0551904 + 0.00795647i
\(554\) 1.56992 0.0666995
\(555\) 8.17282 14.1557i 0.346917 0.600878i
\(556\) −5.25166 9.09614i −0.222720 0.385762i
\(557\) 39.2147 22.6406i 1.66158 0.959314i 0.689619 0.724173i \(-0.257778\pi\)
0.971961 0.235141i \(-0.0755552\pi\)
\(558\) −0.177040 + 0.306643i −0.00749472 + 0.0129812i
\(559\) 1.14824i 0.0485655i
\(560\) −3.63909 + 4.62388i −0.153780 + 0.195395i
\(561\) −0.409287 + 0.681487i −0.0172801 + 0.0287724i
\(562\) 1.74939 3.03003i 0.0737934 0.127814i
\(563\) 13.8636 + 24.0125i 0.584283 + 1.01201i 0.994964 + 0.100228i \(0.0319573\pi\)
−0.410682 + 0.911779i \(0.634709\pi\)
\(564\) −6.47974 11.2232i −0.272846 0.472584i
\(565\) −15.7916 9.11727i −0.664356 0.383566i
\(566\) 22.2211i 0.934023i
\(567\) −2.07908 1.63628i −0.0873133 0.0687173i
\(568\) 7.58067i 0.318078i
\(569\) −13.9061 8.02868i −0.582973 0.336580i 0.179341 0.983787i \(-0.442603\pi\)
−0.762314 + 0.647207i \(0.775937\pi\)
\(570\) 0.840064 0.485011i 0.0351864 0.0203149i
\(571\) −8.42022 + 4.86141i −0.352375 + 0.203444i −0.665731 0.746192i \(-0.731880\pi\)
0.313356 + 0.949636i \(0.398547\pi\)
\(572\) 0.326917 0.181302i 0.0136691 0.00758060i
\(573\) 5.98538i 0.250043i
\(574\) −8.24541 1.18869i −0.344157 0.0496150i
\(575\) 0.0432269 0.00180269
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 2.22544 1.28486i 0.0926462 0.0534893i −0.452961 0.891530i \(-0.649632\pi\)
0.545607 + 0.838041i \(0.316299\pi\)
\(578\) −14.6727 + 8.47128i −0.610303 + 0.352359i
\(579\) −4.24622 + 7.35467i −0.176467 + 0.305650i
\(580\) −16.7013 −0.693482
\(581\) −1.39826 + 0.559167i −0.0580097 + 0.0231982i
\(582\) 10.6708i 0.442319i
\(583\) −7.43651 + 4.12413i −0.307989 + 0.170804i
\(584\) 4.15392 2.39827i 0.171890 0.0992409i
\(585\) −0.217089 + 0.125336i −0.00897552 + 0.00518202i
\(586\) 5.93714 + 3.42781i 0.245261 + 0.141602i
\(587\) 25.9150i 1.06963i 0.844970 + 0.534814i \(0.179618\pi\)
−0.844970 + 0.534814i \(0.820382\pi\)
\(588\) 6.80393 1.64517i 0.280589 0.0678457i
\(589\) 0.154436i 0.00636344i
\(590\) −7.28228 4.20443i −0.299807 0.173093i
\(591\) −1.85555 3.21390i −0.0763270 0.132202i
\(592\) 3.67483 + 6.36499i 0.151034 + 0.261599i
\(593\) 3.72204 6.44677i 0.152846 0.264737i −0.779427 0.626494i \(-0.784489\pi\)
0.932273 + 0.361756i \(0.117823\pi\)
\(594\) −2.84326 1.70760i −0.116660 0.0700637i
\(595\) 0.523678 + 1.30952i 0.0214687 + 0.0536850i
\(596\) 14.6150i 0.598656i
\(597\) 2.88199 4.99176i 0.117952 0.204299i
\(598\) −0.0784051 + 0.0452672i −0.00320622 + 0.00185111i
\(599\) −12.3177 21.3348i −0.503286 0.871717i −0.999993 0.00379841i \(-0.998791\pi\)
0.496707 0.867918i \(-0.334542\pi\)
\(600\) −0.0269081 + 0.0466061i −0.00109852 + 0.00190269i
\(601\) 6.75417 0.275508 0.137754 0.990466i \(-0.456012\pi\)
0.137754 + 0.990466i \(0.456012\pi\)
\(602\) −3.84592 + 26.6774i −0.156748 + 1.08729i
\(603\) 4.96377 0.202140
\(604\) −1.57663 0.910267i −0.0641521 0.0370382i
\(605\) −20.7520 12.9554i −0.843690 0.526711i
\(606\) −9.76595 16.9151i −0.396714 0.687130i
\(607\) −18.7854 + 32.5373i −0.762476 + 1.32065i 0.179095 + 0.983832i \(0.442683\pi\)
−0.941571 + 0.336815i \(0.890650\pi\)
\(608\) 0.436161i 0.0176887i
\(609\) 15.6130 + 12.2877i 0.632670 + 0.497924i
\(610\) −2.33520 −0.0945495
\(611\) 1.26500 + 0.730348i 0.0511764 + 0.0295467i
\(612\) 0.119843 + 0.207574i 0.00484435 + 0.00839067i
\(613\) 32.3937 18.7025i 1.30837 0.755387i 0.326544 0.945182i \(-0.394116\pi\)
0.981824 + 0.189795i \(0.0607824\pi\)
\(614\) −21.9508 12.6733i −0.885861 0.511452i
\(615\) 7.00270 0.282376
\(616\) 8.20261 3.11725i 0.330492 0.125598i
\(617\) −12.6245 −0.508243 −0.254122 0.967172i \(-0.581786\pi\)
−0.254122 + 0.967172i \(0.581786\pi\)
\(618\) 11.0669 + 6.38947i 0.445176 + 0.257022i
\(619\) −5.03418 + 2.90648i −0.202341 + 0.116821i −0.597747 0.801685i \(-0.703937\pi\)
0.395406 + 0.918506i \(0.370604\pi\)
\(620\) 0.393738 + 0.681975i 0.0158129 + 0.0273888i
\(621\) 0.695621 + 0.401617i 0.0279143 + 0.0161163i
\(622\) −13.8671 −0.556021
\(623\) −36.6580 5.28477i −1.46867 0.211730i
\(624\) 0.112712i 0.00451211i
\(625\) 12.3640 21.4151i 0.494560 0.856604i
\(626\) −6.02834 10.4414i −0.240941 0.417322i
\(627\) −1.44637 0.0249474i −0.0577623 0.000996304i
\(628\) 15.1388 + 8.74037i 0.604103 + 0.348779i
\(629\) 1.76161 0.0702398
\(630\) −5.46349 + 2.18486i −0.217671 + 0.0870467i
\(631\) 45.0951 1.79521 0.897604 0.440804i \(-0.145307\pi\)
0.897604 + 0.440804i \(0.145307\pi\)
\(632\) 0.247807 0.429215i 0.00985725 0.0170733i
\(633\) −11.5601 20.0226i −0.459471 0.795827i
\(634\) −6.54073 + 3.77629i −0.259766 + 0.149976i
\(635\) 5.68496 9.84664i 0.225601 0.390752i
\(636\) 2.56391i 0.101666i
\(637\) −0.571428 + 0.544032i −0.0226408 + 0.0215553i
\(638\) 21.3516 + 12.8233i 0.845317 + 0.507680i
\(639\) −3.79033 + 6.56505i −0.149943 + 0.259709i
\(640\) 1.11200 + 1.92604i 0.0439557 + 0.0761335i
\(641\) 9.27227 + 16.0600i 0.366233 + 0.634333i 0.988973 0.148095i \(-0.0473141\pi\)
−0.622741 + 0.782428i \(0.713981\pi\)
\(642\) 10.8886 + 6.28656i 0.429740 + 0.248111i
\(643\) 9.80715i 0.386756i −0.981124 0.193378i \(-0.938056\pi\)
0.981124 0.193378i \(-0.0619444\pi\)
\(644\) −1.97323 + 0.789095i −0.0777560 + 0.0310947i
\(645\) 22.6567i 0.892107i
\(646\) 0.0905355 + 0.0522707i 0.00356207 + 0.00205656i
\(647\) −16.4510 + 9.49800i −0.646756 + 0.373405i −0.787212 0.616682i \(-0.788476\pi\)
0.140456 + 0.990087i \(0.455143\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) 6.08178 + 10.9665i 0.238731 + 0.430472i
\(650\) 0.00606575i 0.000237918i
\(651\) 0.133672 0.927224i 0.00523903 0.0363408i
\(652\) −11.6913 −0.457867
\(653\) −7.65833 + 13.2646i −0.299694 + 0.519084i −0.976066 0.217476i \(-0.930218\pi\)
0.676372 + 0.736560i \(0.263551\pi\)
\(654\) 14.3351 8.27635i 0.560545 0.323631i
\(655\) −3.96427 + 2.28877i −0.154897 + 0.0894298i
\(656\) −1.57435 + 2.72685i −0.0614679 + 0.106465i
\(657\) 4.79653 0.187131
\(658\) 26.9438 + 21.2054i 1.05038 + 0.826671i
\(659\) 50.6179i 1.97179i 0.167358 + 0.985896i \(0.446476\pi\)
−0.167358 + 0.985896i \(0.553524\pi\)
\(660\) −6.45061 + 3.57738i −0.251090 + 0.139249i
\(661\) 33.9093 19.5776i 1.31892 0.761478i 0.335365 0.942088i \(-0.391141\pi\)
0.983555 + 0.180610i \(0.0578072\pi\)
\(662\) 19.5435 11.2835i 0.759580 0.438544i
\(663\) −0.0233961 0.0135078i −0.000908631 0.000524598i
\(664\) 0.569186i 0.0220887i
\(665\) −1.58723 + 2.01676i −0.0615501 + 0.0782065i
\(666\) 7.34966i 0.284793i
\(667\) −5.22380 3.01596i −0.202266 0.116779i
\(668\) 9.24425 + 16.0115i 0.357671 + 0.619504i
\(669\) 5.66167 + 9.80630i 0.218893 + 0.379134i
\(670\) 5.51972 9.56043i 0.213245 0.369352i
\(671\) 2.98542 + 1.79298i 0.115251 + 0.0692172i
\(672\) 0.377519 2.61868i 0.0145631 0.101018i
\(673\) 25.0173i 0.964345i −0.876076 0.482172i \(-0.839848\pi\)
0.876076 0.482172i \(-0.160152\pi\)
\(674\) 16.2347 28.1194i 0.625339 1.08312i
\(675\) −0.0466061 + 0.0269081i −0.00179387 + 0.00103569i
\(676\) −6.49365 11.2473i −0.249756 0.432590i
\(677\) 24.2515 42.0048i 0.932059 1.61437i 0.152263 0.988340i \(-0.451344\pi\)
0.779796 0.626034i \(-0.215323\pi\)
\(678\) 8.19898 0.314880
\(679\) 10.4830 + 26.2139i 0.402299 + 1.00600i
\(680\) 0.533061 0.0204419
\(681\) 4.61805 + 2.66623i 0.176964 + 0.102170i
\(682\) 0.0202526 1.17418i 0.000775514 0.0449616i
\(683\) 3.55626 + 6.15962i 0.136076 + 0.235691i 0.926008 0.377504i \(-0.123217\pi\)
−0.789932 + 0.613195i \(0.789884\pi\)
\(684\) −0.218080 + 0.377726i −0.00833851 + 0.0144427i
\(685\) 41.9244i 1.60185i
\(686\) −15.0983 + 10.7257i −0.576457 + 0.409509i
\(687\) 18.0351 0.688082
\(688\) 8.82251 + 5.09368i 0.336355 + 0.194195i
\(689\) −0.144492 0.250268i −0.00550472 0.00953446i
\(690\) 1.54706 0.893197i 0.0588956 0.0340034i
\(691\) 37.8547 + 21.8554i 1.44006 + 0.831420i 0.997853 0.0654915i \(-0.0208615\pi\)
0.442209 + 0.896912i \(0.354195\pi\)
\(692\) 17.1887 0.653418
\(693\) 8.66229 + 1.40169i 0.329053 + 0.0532456i
\(694\) 30.7426 1.16697
\(695\) −20.2298 11.6797i −0.767361 0.443036i
\(696\) 6.50347 3.75478i 0.246513 0.142324i
\(697\) 0.377348 + 0.653585i 0.0142931 + 0.0247563i
\(698\) −21.2675 12.2788i −0.804986 0.464759i
\(699\) −15.6773 −0.592971
\(700\) 0.0203166 0.140927i 0.000767896 0.00532655i
\(701\) 31.5402i 1.19126i −0.803260 0.595628i \(-0.796903\pi\)
0.803260 0.595628i \(-0.203097\pi\)
\(702\) 0.0563562 0.0976119i 0.00212703 0.00368412i
\(703\) 1.60282 + 2.77616i 0.0604514 + 0.104705i
\(704\) 0.0571978 3.31613i 0.00215572 0.124981i
\(705\) −24.9605 14.4110i −0.940067 0.542748i
\(706\) −4.32341 −0.162714
\(707\) 40.6084 + 31.9597i 1.52724 + 1.20197i
\(708\) 3.78095 0.142097
\(709\) 20.1759 34.9457i 0.757723 1.31241i −0.186287 0.982495i \(-0.559645\pi\)
0.944009 0.329919i \(-0.107021\pi\)
\(710\) 8.42971 + 14.6007i 0.316361 + 0.547954i
\(711\) 0.429215 0.247807i 0.0160968 0.00929350i
\(712\) −6.99934 + 12.1232i −0.262311 + 0.454336i
\(713\) 0.284410i 0.0106512i
\(714\) −0.498326 0.392193i −0.0186494 0.0146774i
\(715\) 0.428049 0.712727i 0.0160081 0.0266545i
\(716\) 5.81838 10.0777i 0.217443 0.376622i
\(717\) −9.84934 17.0596i −0.367830 0.637101i
\(718\) 7.95866 + 13.7848i 0.297014 + 0.514444i
\(719\) −5.72561 3.30568i −0.213529 0.123281i 0.389421 0.921060i \(-0.372675\pi\)
−0.602950 + 0.797779i \(0.706008\pi\)
\(720\) 2.22400i 0.0828837i
\(721\) −33.4639 4.82430i −1.24626 0.179666i
\(722\) 18.8098i 0.700027i
\(723\) 6.67323 + 3.85279i 0.248180 + 0.143287i
\(724\) −19.0122 + 10.9767i −0.706584 + 0.407946i
\(725\) 0.349991 0.202068i 0.0129984 0.00750460i
\(726\) 10.9935 + 0.379351i 0.408005 + 0.0140790i
\(727\) 37.4392i 1.38854i 0.719714 + 0.694271i \(0.244273\pi\)
−0.719714 + 0.694271i \(0.755727\pi\)
\(728\) 0.110729 + 0.276890i 0.00410387 + 0.0102622i
\(729\) −1.00000 −0.0370370
\(730\) 5.33375 9.23832i 0.197411 0.341926i
\(731\) 2.11463 1.22088i 0.0782123 0.0451559i
\(732\) 0.909326 0.525000i 0.0336097 0.0194046i
\(733\) 11.5556 20.0149i 0.426816 0.739266i −0.569772 0.821803i \(-0.692969\pi\)
0.996588 + 0.0825361i \(0.0263020\pi\)
\(734\) 25.7459 0.950297
\(735\) 11.2752 10.7346i 0.415893 0.395953i
\(736\) 0.803234i 0.0296076i
\(737\) −14.3972 + 7.98438i −0.530327 + 0.294108i
\(738\) −2.72685 + 1.57435i −0.100377 + 0.0579525i
\(739\) 24.3934 14.0836i 0.897327 0.518072i 0.0209949 0.999780i \(-0.493317\pi\)
0.876332 + 0.481708i \(0.159983\pi\)
\(740\) 14.1557 + 8.17282i 0.520376 + 0.300439i
\(741\) 0.0491608i 0.00180597i
\(742\) −2.51878 6.29851i −0.0924674 0.231226i
\(743\) 0.655454i 0.0240463i 0.999928 + 0.0120231i \(0.00382718\pi\)
−0.999928 + 0.0120231i \(0.996173\pi\)
\(744\) −0.306643 0.177040i −0.0112421 0.00649062i
\(745\) −16.2519 28.1492i −0.595425 1.03131i
\(746\) −14.5882 25.2676i −0.534113 0.925112i
\(747\) −0.284593 + 0.492929i −0.0104127 + 0.0180353i
\(748\) −0.681487 0.409287i −0.0249176 0.0149650i
\(749\) −32.9250 4.74659i −1.20305 0.173437i
\(750\) 11.2397i 0.410416i
\(751\) −2.65126 + 4.59211i −0.0967457 + 0.167568i −0.910336 0.413870i \(-0.864177\pi\)
0.813590 + 0.581439i \(0.197510\pi\)
\(752\) 11.2232 6.47974i 0.409270 0.236292i
\(753\) 5.69442 + 9.86302i 0.207516 + 0.359428i
\(754\) −0.423210 + 0.733022i −0.0154124 + 0.0266951i
\(755\) −4.04887 −0.147353
\(756\) 1.63628 2.07908i 0.0595110 0.0756155i
\(757\) −5.79544 −0.210639 −0.105319 0.994438i \(-0.533586\pi\)
−0.105319 + 0.994438i \(0.533586\pi\)
\(758\) 24.9589 + 14.4100i 0.906547 + 0.523395i
\(759\) −2.66363 0.0459432i −0.0966836 0.00166763i
\(760\) 0.485011 + 0.840064i 0.0175932 + 0.0304723i
\(761\) −21.5347 + 37.2992i −0.780632 + 1.35209i 0.150942 + 0.988543i \(0.451769\pi\)
−0.931574 + 0.363552i \(0.881564\pi\)
\(762\) 5.11237i 0.185202i
\(763\) −27.0849 + 34.4144i −0.980538 + 1.24589i
\(764\) 5.98538 0.216543
\(765\) 0.461644 + 0.266530i 0.0166908 + 0.00963643i
\(766\) 3.53608 + 6.12468i 0.127764 + 0.221294i
\(767\) −0.369066 + 0.213080i −0.0133262 + 0.00769389i
\(768\) −0.866025 0.500000i −0.0312500 0.0180422i
\(769\) −41.6527 −1.50204 −0.751018 0.660282i \(-0.770437\pi\)
−0.751018 + 0.660282i \(0.770437\pi\)
\(770\) 12.3322 15.1253i 0.444421 0.545077i
\(771\) 16.1627 0.582085
\(772\) −7.35467 4.24622i −0.264700 0.152825i
\(773\) −18.5314 + 10.6991i −0.666527 + 0.384820i −0.794759 0.606925i \(-0.792403\pi\)
0.128232 + 0.991744i \(0.459070\pi\)
\(774\) 5.09368 + 8.82251i 0.183089 + 0.317119i