Properties

Label 462.2.p.a.241.8
Level $462$
Weight $2$
Character 462.241
Analytic conductor $3.689$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + 130215 x^{8} - 239606 x^{7} + 378750 x^{6} - 477124 x^{5} + 493030 x^{4} - 386266 x^{3} + 223844 x^{2} - 82874 x + 13417\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 241.8
Root \(0.500000 - 3.43554i\) of defining polynomial
Character \(\chi\) \(=\) 462.241
Dual form 462.2.p.a.439.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(3.72526 - 2.15078i) q^{5} -1.00000 q^{6} +(-1.43173 - 2.22489i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(3.72526 - 2.15078i) q^{5} -1.00000 q^{6} +(-1.43173 - 2.22489i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(2.15078 - 3.72526i) q^{10} +(-3.27015 + 0.553289i) q^{11} +(-0.866025 + 0.500000i) q^{12} +1.00074 q^{13} +(-2.35236 - 1.21095i) q^{14} -4.30156 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.66854 + 2.89000i) q^{17} +(0.866025 + 0.500000i) q^{18} +(1.61555 + 2.79822i) q^{19} -4.30156i q^{20} +(0.127470 + 2.64268i) q^{21} +(-2.55539 + 2.11424i) q^{22} +(2.86499 + 4.96231i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(6.75173 - 11.6943i) q^{25} +(0.866669 - 0.500372i) q^{26} -1.00000i q^{27} +(-2.64268 + 0.127470i) q^{28} -7.74872i q^{29} +(-3.72526 + 2.15078i) q^{30} +(-2.77407 - 1.60161i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(3.10868 + 1.15591i) q^{33} +3.33708i q^{34} +(-10.1188 - 5.20897i) q^{35} +1.00000 q^{36} +(1.26472 + 2.19056i) q^{37} +(2.79822 + 1.61555i) q^{38} +(-0.866669 - 0.500372i) q^{39} +(-2.15078 - 3.72526i) q^{40} +1.45111 q^{41} +(1.43173 + 2.22489i) q^{42} +4.14572i q^{43} +(-1.15591 + 3.10868i) q^{44} +(3.72526 + 2.15078i) q^{45} +(4.96231 + 2.86499i) q^{46} +(2.77216 - 1.60050i) q^{47} +1.00000i q^{48} +(-2.90029 + 6.37090i) q^{49} -13.5035i q^{50} +(2.89000 - 1.66854i) q^{51} +(0.500372 - 0.866669i) q^{52} +(5.65774 - 9.79949i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(-10.9922 + 9.09452i) q^{55} +(-2.22489 + 1.43173i) q^{56} -3.23111i q^{57} +(-3.87436 - 6.71059i) q^{58} +(2.98113 + 1.72116i) q^{59} +(-2.15078 + 3.72526i) q^{60} +(7.42522 + 12.8609i) q^{61} -3.20322 q^{62} +(1.21095 - 2.35236i) q^{63} -1.00000 q^{64} +(3.72803 - 2.15238i) q^{65} +(3.27015 - 0.553289i) q^{66} +(0.165196 - 0.286128i) q^{67} +(1.66854 + 2.89000i) q^{68} -5.72998i q^{69} +(-11.3677 + 0.548319i) q^{70} +2.84974 q^{71} +(0.866025 - 0.500000i) q^{72} +(-7.44790 + 12.9001i) q^{73} +(2.19056 + 1.26472i) q^{74} +(-11.6943 + 6.75173i) q^{75} +3.23111 q^{76} +(5.91298 + 6.48357i) q^{77} -1.00074 q^{78} +(13.9363 - 8.04614i) q^{79} +(-3.72526 - 2.15078i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.25670 - 0.725556i) q^{82} +1.75062 q^{83} +(2.35236 + 1.21095i) q^{84} +14.3547i q^{85} +(2.07286 + 3.59030i) q^{86} +(-3.87436 + 6.71059i) q^{87} +(0.553289 + 3.27015i) q^{88} +(-2.41153 + 1.39230i) q^{89} +4.30156 q^{90} +(-1.43280 - 2.22655i) q^{91} +5.72998 q^{92} +(1.60161 + 2.77407i) q^{93} +(1.60050 - 2.77216i) q^{94} +(12.0367 + 6.94940i) q^{95} +(0.500000 + 0.866025i) q^{96} +12.3347i q^{97} +(0.673723 + 6.96750i) q^{98} +(-2.11424 - 2.55539i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + 12q^{5} - 16q^{6} - 6q^{7} + 8q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 12q^{5} - 16q^{6} - 6q^{7} + 8q^{9} + 2q^{10} - 4q^{11} + 8q^{14} - 4q^{15} - 8q^{16} - 10q^{19} - 4q^{21} + 2q^{22} - 4q^{23} - 8q^{24} + 10q^{25} + 12q^{26} - 12q^{30} + 6q^{31} + 2q^{33} - 8q^{35} + 16q^{36} + 14q^{37} - 12q^{38} - 12q^{39} - 2q^{40} + 32q^{41} + 6q^{42} + 4q^{44} + 12q^{45} + 18q^{46} - 24q^{47} - 6q^{49} + 6q^{51} - 8q^{54} - 14q^{55} + 4q^{56} - 2q^{60} + 28q^{61} - 8q^{62} - 6q^{63} - 16q^{64} + 72q^{65} + 4q^{66} - 16q^{67} - 30q^{70} - 56q^{71} - 44q^{73} + 24q^{74} - 12q^{75} - 20q^{76} + 32q^{77} - 30q^{79} - 12q^{80} - 8q^{81} - 12q^{82} + 8q^{83} - 8q^{84} - 12q^{86} + 4q^{88} - 36q^{89} + 4q^{90} - 8q^{91} - 8q^{92} + 4q^{93} + 14q^{94} + 72q^{95} + 8q^{96} - 40q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.72526 2.15078i 1.66599 0.961859i 0.696221 0.717827i \(-0.254863\pi\)
0.969767 0.244032i \(-0.0784701\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.43173 2.22489i −0.541144 0.840930i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 2.15078 3.72526i 0.680137 1.17803i
\(11\) −3.27015 + 0.553289i −0.985987 + 0.166823i
\(12\) −0.866025 + 0.500000i −0.250000 + 0.144338i
\(13\) 1.00074 0.277556 0.138778 0.990324i \(-0.455683\pi\)
0.138778 + 0.990324i \(0.455683\pi\)
\(14\) −2.35236 1.21095i −0.628695 0.323639i
\(15\) −4.30156 −1.11066
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.66854 + 2.89000i −0.404681 + 0.700927i −0.994284 0.106765i \(-0.965951\pi\)
0.589604 + 0.807693i \(0.299284\pi\)
\(18\) 0.866025 + 0.500000i 0.204124 + 0.117851i
\(19\) 1.61555 + 2.79822i 0.370633 + 0.641956i 0.989663 0.143412i \(-0.0458074\pi\)
−0.619030 + 0.785367i \(0.712474\pi\)
\(20\) 4.30156i 0.961859i
\(21\) 0.127470 + 2.64268i 0.0278162 + 0.576680i
\(22\) −2.55539 + 2.11424i −0.544810 + 0.450757i
\(23\) 2.86499 + 4.96231i 0.597392 + 1.03471i 0.993205 + 0.116382i \(0.0371296\pi\)
−0.395813 + 0.918331i \(0.629537\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 6.75173 11.6943i 1.35035 2.33887i
\(26\) 0.866669 0.500372i 0.169968 0.0981309i
\(27\) 1.00000i 0.192450i
\(28\) −2.64268 + 0.127470i −0.499419 + 0.0240895i
\(29\) 7.74872i 1.43890i −0.694544 0.719450i \(-0.744394\pi\)
0.694544 0.719450i \(-0.255606\pi\)
\(30\) −3.72526 + 2.15078i −0.680137 + 0.392677i
\(31\) −2.77407 1.60161i −0.498237 0.287657i 0.229748 0.973250i \(-0.426210\pi\)
−0.727985 + 0.685593i \(0.759543\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 3.10868 + 1.15591i 0.541151 + 0.201218i
\(34\) 3.33708i 0.572305i
\(35\) −10.1188 5.20897i −1.71040 0.880476i
\(36\) 1.00000 0.166667
\(37\) 1.26472 + 2.19056i 0.207918 + 0.360125i 0.951059 0.309010i \(-0.0999978\pi\)
−0.743140 + 0.669136i \(0.766664\pi\)
\(38\) 2.79822 + 1.61555i 0.453931 + 0.262077i
\(39\) −0.866669 0.500372i −0.138778 0.0801236i
\(40\) −2.15078 3.72526i −0.340068 0.589016i
\(41\) 1.45111 0.226625 0.113313 0.993559i \(-0.463854\pi\)
0.113313 + 0.993559i \(0.463854\pi\)
\(42\) 1.43173 + 2.22489i 0.220921 + 0.343308i
\(43\) 4.14572i 0.632216i 0.948723 + 0.316108i \(0.102376\pi\)
−0.948723 + 0.316108i \(0.897624\pi\)
\(44\) −1.15591 + 3.10868i −0.174260 + 0.468651i
\(45\) 3.72526 + 2.15078i 0.555330 + 0.320620i
\(46\) 4.96231 + 2.86499i 0.731653 + 0.422420i
\(47\) 2.77216 1.60050i 0.404360 0.233458i −0.284003 0.958823i \(-0.591663\pi\)
0.688364 + 0.725366i \(0.258329\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.90029 + 6.37090i −0.414327 + 0.910128i
\(50\) 13.5035i 1.90968i
\(51\) 2.89000 1.66854i 0.404681 0.233642i
\(52\) 0.500372 0.866669i 0.0693890 0.120185i
\(53\) 5.65774 9.79949i 0.777150 1.34606i −0.156428 0.987689i \(-0.549998\pi\)
0.933578 0.358374i \(-0.116669\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) −10.9922 + 9.09452i −1.48218 + 1.22631i
\(56\) −2.22489 + 1.43173i −0.297314 + 0.191323i
\(57\) 3.23111i 0.427970i
\(58\) −3.87436 6.71059i −0.508728 0.881143i
\(59\) 2.98113 + 1.72116i 0.388110 + 0.224075i 0.681341 0.731966i \(-0.261397\pi\)
−0.293231 + 0.956042i \(0.594730\pi\)
\(60\) −2.15078 + 3.72526i −0.277665 + 0.480929i
\(61\) 7.42522 + 12.8609i 0.950702 + 1.64666i 0.743911 + 0.668279i \(0.232969\pi\)
0.206791 + 0.978385i \(0.433698\pi\)
\(62\) −3.20322 −0.406809
\(63\) 1.21095 2.35236i 0.152565 0.296370i
\(64\) −1.00000 −0.125000
\(65\) 3.72803 2.15238i 0.462405 0.266970i
\(66\) 3.27015 0.553289i 0.402527 0.0681052i
\(67\) 0.165196 0.286128i 0.0201819 0.0349560i −0.855758 0.517376i \(-0.826909\pi\)
0.875940 + 0.482420i \(0.160242\pi\)
\(68\) 1.66854 + 2.89000i 0.202340 + 0.350464i
\(69\) 5.72998i 0.689809i
\(70\) −11.3677 + 0.548319i −1.35869 + 0.0655367i
\(71\) 2.84974 0.338201 0.169101 0.985599i \(-0.445914\pi\)
0.169101 + 0.985599i \(0.445914\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) −7.44790 + 12.9001i −0.871710 + 1.50985i −0.0114838 + 0.999934i \(0.503655\pi\)
−0.860226 + 0.509912i \(0.829678\pi\)
\(74\) 2.19056 + 1.26472i 0.254647 + 0.147021i
\(75\) −11.6943 + 6.75173i −1.35035 + 0.779622i
\(76\) 3.23111 0.370633
\(77\) 5.91298 + 6.48357i 0.673847 + 0.738871i
\(78\) −1.00074 −0.113312
\(79\) 13.9363 8.04614i 1.56796 0.905261i 0.571552 0.820566i \(-0.306342\pi\)
0.996407 0.0846953i \(-0.0269917\pi\)
\(80\) −3.72526 2.15078i −0.416497 0.240465i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.25670 0.725556i 0.138779 0.0801242i
\(83\) 1.75062 0.192155 0.0960777 0.995374i \(-0.469370\pi\)
0.0960777 + 0.995374i \(0.469370\pi\)
\(84\) 2.35236 + 1.21095i 0.256664 + 0.132125i
\(85\) 14.3547i 1.55698i
\(86\) 2.07286 + 3.59030i 0.223522 + 0.387152i
\(87\) −3.87436 + 6.71059i −0.415375 + 0.719450i
\(88\) 0.553289 + 3.27015i 0.0589808 + 0.348599i
\(89\) −2.41153 + 1.39230i −0.255622 + 0.147583i −0.622336 0.782750i \(-0.713816\pi\)
0.366714 + 0.930334i \(0.380483\pi\)
\(90\) 4.30156 0.453425
\(91\) −1.43280 2.22655i −0.150198 0.233405i
\(92\) 5.72998 0.597392
\(93\) 1.60161 + 2.77407i 0.166079 + 0.287657i
\(94\) 1.60050 2.77216i 0.165079 0.285926i
\(95\) 12.0367 + 6.94940i 1.23494 + 0.712994i
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) 12.3347i 1.25240i 0.779661 + 0.626201i \(0.215391\pi\)
−0.779661 + 0.626201i \(0.784609\pi\)
\(98\) 0.673723 + 6.96750i 0.0680563 + 0.703824i
\(99\) −2.11424 2.55539i −0.212489 0.256826i
\(100\) −6.75173 11.6943i −0.675173 1.16943i
\(101\) 0.0281224 0.0487094i 0.00279828 0.00484677i −0.864623 0.502421i \(-0.832443\pi\)
0.867421 + 0.497575i \(0.165776\pi\)
\(102\) 1.66854 2.89000i 0.165210 0.286152i
\(103\) −12.8128 + 7.39746i −1.26248 + 0.728893i −0.973554 0.228458i \(-0.926632\pi\)
−0.288926 + 0.957351i \(0.593298\pi\)
\(104\) 1.00074i 0.0981309i
\(105\) 6.15868 + 9.57052i 0.601026 + 0.933987i
\(106\) 11.3155i 1.09906i
\(107\) −9.19190 + 5.30694i −0.888614 + 0.513042i −0.873489 0.486844i \(-0.838148\pi\)
−0.0151251 + 0.999886i \(0.504815\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) 0.301553 + 0.174102i 0.0288836 + 0.0166759i 0.514372 0.857567i \(-0.328025\pi\)
−0.485489 + 0.874243i \(0.661358\pi\)
\(110\) −4.97223 + 13.3722i −0.474083 + 1.27499i
\(111\) 2.52944i 0.240084i
\(112\) −1.21095 + 2.35236i −0.114424 + 0.222277i
\(113\) −18.9549 −1.78313 −0.891564 0.452895i \(-0.850391\pi\)
−0.891564 + 0.452895i \(0.850391\pi\)
\(114\) −1.61555 2.79822i −0.151310 0.262077i
\(115\) 21.3457 + 12.3239i 1.99050 + 1.14921i
\(116\) −6.71059 3.87436i −0.623062 0.359725i
\(117\) 0.500372 + 0.866669i 0.0462594 + 0.0801236i
\(118\) 3.44231 0.316890
\(119\) 8.81883 0.425377i 0.808421 0.0389942i
\(120\) 4.30156i 0.392677i
\(121\) 10.3877 3.61867i 0.944340 0.328970i
\(122\) 12.8609 + 7.42522i 1.16437 + 0.672248i
\(123\) −1.25670 0.725556i −0.113313 0.0654211i
\(124\) −2.77407 + 1.60161i −0.249119 + 0.143829i
\(125\) 36.5781i 3.27165i
\(126\) −0.127470 2.64268i −0.0113559 0.235429i
\(127\) 5.90909i 0.524347i −0.965021 0.262173i \(-0.915561\pi\)
0.965021 0.262173i \(-0.0844392\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 2.07286 3.59030i 0.182505 0.316108i
\(130\) 2.15238 3.72803i 0.188776 0.326970i
\(131\) −6.05214 10.4826i −0.528778 0.915870i −0.999437 0.0335545i \(-0.989317\pi\)
0.470659 0.882315i \(-0.344016\pi\)
\(132\) 2.55539 2.11424i 0.222418 0.184021i
\(133\) 3.91270 7.60073i 0.339274 0.659067i
\(134\) 0.330392i 0.0285415i
\(135\) −2.15078 3.72526i −0.185110 0.320620i
\(136\) 2.89000 + 1.66854i 0.247815 + 0.143076i
\(137\) −4.94560 + 8.56604i −0.422532 + 0.731846i −0.996186 0.0872511i \(-0.972192\pi\)
0.573655 + 0.819097i \(0.305525\pi\)
\(138\) −2.86499 4.96231i −0.243884 0.422420i
\(139\) −1.58746 −0.134647 −0.0673235 0.997731i \(-0.521446\pi\)
−0.0673235 + 0.997731i \(0.521446\pi\)
\(140\) −9.57052 + 6.15868i −0.808856 + 0.520504i
\(141\) −3.20101 −0.269574
\(142\) 2.46794 1.42487i 0.207105 0.119572i
\(143\) −3.27258 + 0.553700i −0.273667 + 0.0463027i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) −16.6658 28.8660i −1.38402 2.39719i
\(146\) 14.8958i 1.23278i
\(147\) 5.69717 4.06721i 0.469895 0.335458i
\(148\) 2.52944 0.207918
\(149\) 14.7912 8.53970i 1.21174 0.699599i 0.248603 0.968605i \(-0.420029\pi\)
0.963138 + 0.269006i \(0.0866952\pi\)
\(150\) −6.75173 + 11.6943i −0.551276 + 0.954838i
\(151\) 7.20145 + 4.15776i 0.586046 + 0.338354i 0.763532 0.645770i \(-0.223463\pi\)
−0.177487 + 0.984123i \(0.556797\pi\)
\(152\) 2.79822 1.61555i 0.226966 0.131039i
\(153\) −3.33708 −0.269787
\(154\) 8.36258 + 2.65844i 0.673876 + 0.214223i
\(155\) −13.7788 −1.10674
\(156\) −0.866669 + 0.500372i −0.0693890 + 0.0400618i
\(157\) −1.08351 0.625565i −0.0864735 0.0499255i 0.456140 0.889908i \(-0.349232\pi\)
−0.542613 + 0.839983i \(0.682565\pi\)
\(158\) 8.04614 13.9363i 0.640116 1.10871i
\(159\) −9.79949 + 5.65774i −0.777150 + 0.448688i
\(160\) −4.30156 −0.340068
\(161\) 6.93871 13.4790i 0.546847 1.06229i
\(162\) 1.00000i 0.0785674i
\(163\) −3.60786 6.24899i −0.282589 0.489459i 0.689433 0.724350i \(-0.257860\pi\)
−0.972022 + 0.234891i \(0.924527\pi\)
\(164\) 0.725556 1.25670i 0.0566564 0.0981317i
\(165\) 14.0668 2.38001i 1.09510 0.185283i
\(166\) 1.51608 0.875309i 0.117671 0.0679372i
\(167\) 15.4393 1.19473 0.597364 0.801970i \(-0.296215\pi\)
0.597364 + 0.801970i \(0.296215\pi\)
\(168\) 2.64268 0.127470i 0.203887 0.00983450i
\(169\) −11.9985 −0.922963
\(170\) 7.17733 + 12.4315i 0.550476 + 0.953453i
\(171\) −1.61555 + 2.79822i −0.123544 + 0.213985i
\(172\) 3.59030 + 2.07286i 0.273757 + 0.158054i
\(173\) −3.11021 5.38705i −0.236465 0.409569i 0.723232 0.690605i \(-0.242656\pi\)
−0.959697 + 0.281035i \(0.909322\pi\)
\(174\) 7.74872i 0.587429i
\(175\) −35.6853 + 1.72128i −2.69755 + 0.130117i
\(176\) 2.11424 + 2.55539i 0.159367 + 0.192620i
\(177\) −1.72116 2.98113i −0.129370 0.224075i
\(178\) −1.39230 + 2.41153i −0.104357 + 0.180752i
\(179\) −1.53946 + 2.66643i −0.115065 + 0.199298i −0.917806 0.397030i \(-0.870041\pi\)
0.802741 + 0.596328i \(0.203374\pi\)
\(180\) 3.72526 2.15078i 0.277665 0.160310i
\(181\) 18.3243i 1.36203i 0.732268 + 0.681016i \(0.238462\pi\)
−0.732268 + 0.681016i \(0.761538\pi\)
\(182\) −2.35411 1.21185i −0.174498 0.0898281i
\(183\) 14.8504i 1.09778i
\(184\) 4.96231 2.86499i 0.365826 0.211210i
\(185\) 9.42282 + 5.44027i 0.692779 + 0.399976i
\(186\) 2.77407 + 1.60161i 0.203404 + 0.117436i
\(187\) 3.85737 10.3739i 0.282079 0.758615i
\(188\) 3.20101i 0.233458i
\(189\) −2.22489 + 1.43173i −0.161837 + 0.104143i
\(190\) 13.8988 1.00833
\(191\) −10.4101 18.0308i −0.753248 1.30466i −0.946241 0.323464i \(-0.895153\pi\)
0.192992 0.981200i \(-0.438181\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) −3.91133 2.25821i −0.281544 0.162549i 0.352578 0.935782i \(-0.385305\pi\)
−0.634122 + 0.773233i \(0.718638\pi\)
\(194\) 6.16737 + 10.6822i 0.442791 + 0.766937i
\(195\) −4.30476 −0.308270
\(196\) 4.06721 + 5.69717i 0.290515 + 0.406941i
\(197\) 17.3563i 1.23659i 0.785947 + 0.618293i \(0.212176\pi\)
−0.785947 + 0.618293i \(0.787824\pi\)
\(198\) −3.10868 1.15591i −0.220924 0.0821471i
\(199\) 6.76938 + 3.90830i 0.479868 + 0.277052i 0.720362 0.693599i \(-0.243976\pi\)
−0.240493 + 0.970651i \(0.577309\pi\)
\(200\) −11.6943 6.75173i −0.826914 0.477419i
\(201\) −0.286128 + 0.165196i −0.0201819 + 0.0116520i
\(202\) 0.0562448i 0.00395737i
\(203\) −17.2401 + 11.0941i −1.21001 + 0.778652i
\(204\) 3.33708i 0.233642i
\(205\) 5.40577 3.12102i 0.377555 0.217982i
\(206\) −7.39746 + 12.8128i −0.515405 + 0.892708i
\(207\) −2.86499 + 4.96231i −0.199131 + 0.344904i
\(208\) −0.500372 0.866669i −0.0346945 0.0600927i
\(209\) −6.83132 8.25673i −0.472532 0.571130i
\(210\) 10.1188 + 5.20897i 0.698266 + 0.359453i
\(211\) 21.9923i 1.51401i 0.653406 + 0.757007i \(0.273339\pi\)
−0.653406 + 0.757007i \(0.726661\pi\)
\(212\) −5.65774 9.79949i −0.388575 0.673032i
\(213\) −2.46794 1.42487i −0.169101 0.0976304i
\(214\) −5.30694 + 9.19190i −0.362775 + 0.628345i
\(215\) 8.91653 + 15.4439i 0.608102 + 1.05326i
\(216\) −1.00000 −0.0680414
\(217\) 0.408313 + 8.46507i 0.0277181 + 0.574646i
\(218\) 0.348204 0.0235833
\(219\) 12.9001 7.44790i 0.871710 0.503282i
\(220\) 2.38001 + 14.0668i 0.160460 + 0.948380i
\(221\) −1.66978 + 2.89214i −0.112322 + 0.194547i
\(222\) −1.26472 2.19056i −0.0848823 0.147021i
\(223\) 8.30245i 0.555973i −0.960585 0.277987i \(-0.910333\pi\)
0.960585 0.277987i \(-0.0896671\pi\)
\(224\) 0.127470 + 2.64268i 0.00851693 + 0.176571i
\(225\) 13.5035 0.900230
\(226\) −16.4154 + 9.47745i −1.09194 + 0.630431i
\(227\) 3.95627 6.85245i 0.262587 0.454813i −0.704342 0.709861i \(-0.748758\pi\)
0.966929 + 0.255048i \(0.0820911\pi\)
\(228\) −2.79822 1.61555i −0.185317 0.106993i
\(229\) −9.27450 + 5.35463i −0.612876 + 0.353844i −0.774090 0.633075i \(-0.781792\pi\)
0.161214 + 0.986919i \(0.448459\pi\)
\(230\) 24.6479 1.62523
\(231\) −1.87901 8.57142i −0.123630 0.563958i
\(232\) −7.74872 −0.508728
\(233\) −15.3378 + 8.85528i −1.00481 + 0.580129i −0.909669 0.415335i \(-0.863664\pi\)
−0.0951440 + 0.995464i \(0.530331\pi\)
\(234\) 0.866669 + 0.500372i 0.0566559 + 0.0327103i
\(235\) 6.88467 11.9246i 0.449107 0.777876i
\(236\) 2.98113 1.72116i 0.194055 0.112038i
\(237\) −16.0923 −1.04531
\(238\) 7.42465 4.77780i 0.481268 0.309699i
\(239\) 26.6356i 1.72291i −0.507832 0.861456i \(-0.669553\pi\)
0.507832 0.861456i \(-0.330447\pi\)
\(240\) 2.15078 + 3.72526i 0.138832 + 0.240465i
\(241\) 1.85521 3.21331i 0.119504 0.206987i −0.800067 0.599911i \(-0.795203\pi\)
0.919571 + 0.392923i \(0.128536\pi\)
\(242\) 7.18671 8.32774i 0.461979 0.535327i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 14.8504 0.950702
\(245\) 2.89806 + 29.9712i 0.185150 + 1.91479i
\(246\) −1.45111 −0.0925195
\(247\) 1.61675 + 2.80030i 0.102872 + 0.178179i
\(248\) −1.60161 + 2.77407i −0.101702 + 0.176153i
\(249\) −1.51608 0.875309i −0.0960777 0.0554705i
\(250\) −18.2891 31.6776i −1.15670 2.00347i
\(251\) 10.6948i 0.675051i 0.941316 + 0.337526i \(0.109590\pi\)
−0.941316 + 0.337526i \(0.890410\pi\)
\(252\) −1.43173 2.22489i −0.0901906 0.140155i
\(253\) −12.1145 14.6423i −0.761634 0.920555i
\(254\) −2.95454 5.11742i −0.185385 0.321095i
\(255\) 7.17733 12.4315i 0.449462 0.778491i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 20.6304 11.9110i 1.28689 0.742987i 0.308793 0.951129i \(-0.400075\pi\)
0.978099 + 0.208142i \(0.0667416\pi\)
\(258\) 4.14572i 0.258101i
\(259\) 3.06302 5.95015i 0.190327 0.369724i
\(260\) 4.30476i 0.266970i
\(261\) 6.71059 3.87436i 0.415375 0.239817i
\(262\) −10.4826 6.05214i −0.647618 0.373902i
\(263\) −14.7672 8.52582i −0.910582 0.525725i −0.0299637 0.999551i \(-0.509539\pi\)
−0.880618 + 0.473826i \(0.842873\pi\)
\(264\) 1.15591 3.10868i 0.0711415 0.191326i
\(265\) 48.6743i 2.99004i
\(266\) −0.411868 8.53877i −0.0252532 0.523546i
\(267\) 2.78460 0.170414
\(268\) −0.165196 0.286128i −0.0100909 0.0174780i
\(269\) 8.32306 + 4.80532i 0.507466 + 0.292986i 0.731791 0.681529i \(-0.238685\pi\)
−0.224326 + 0.974514i \(0.572018\pi\)
\(270\) −3.72526 2.15078i −0.226712 0.130892i
\(271\) 2.55614 + 4.42736i 0.155274 + 0.268943i 0.933159 0.359464i \(-0.117040\pi\)
−0.777884 + 0.628407i \(0.783707\pi\)
\(272\) 3.33708 0.202340
\(273\) 0.127564 + 2.64464i 0.00772055 + 0.160061i
\(274\) 9.89121i 0.597550i
\(275\) −15.6088 + 41.9779i −0.941246 + 2.53136i
\(276\) −4.96231 2.86499i −0.298696 0.172452i
\(277\) −22.8002 13.1637i −1.36993 0.790931i −0.379013 0.925391i \(-0.623736\pi\)
−0.990919 + 0.134461i \(0.957070\pi\)
\(278\) −1.37478 + 0.793732i −0.0824541 + 0.0476049i
\(279\) 3.20322i 0.191772i
\(280\) −5.20897 + 10.1188i −0.311295 + 0.604716i
\(281\) 10.5684i 0.630459i −0.949015 0.315230i \(-0.897918\pi\)
0.949015 0.315230i \(-0.102082\pi\)
\(282\) −2.77216 + 1.60050i −0.165079 + 0.0953087i
\(283\) −5.20379 + 9.01323i −0.309333 + 0.535781i −0.978217 0.207586i \(-0.933439\pi\)
0.668883 + 0.743367i \(0.266773\pi\)
\(284\) 1.42487 2.46794i 0.0845504 0.146446i
\(285\) −6.94940 12.0367i −0.411647 0.712994i
\(286\) −2.55729 + 2.11581i −0.151215 + 0.125110i
\(287\) −2.07760 3.22857i −0.122637 0.190576i
\(288\) 1.00000i 0.0589256i
\(289\) 2.93194 + 5.07828i 0.172467 + 0.298722i
\(290\) −28.8660 16.6658i −1.69507 0.978649i
\(291\) 6.16737 10.6822i 0.361538 0.626201i
\(292\) 7.44790 + 12.9001i 0.435855 + 0.754923i
\(293\) −31.4600 −1.83792 −0.918958 0.394356i \(-0.870968\pi\)
−0.918958 + 0.394356i \(0.870968\pi\)
\(294\) 2.90029 6.37090i 0.169148 0.371558i
\(295\) 14.8073 0.862116
\(296\) 2.19056 1.26472i 0.127324 0.0735103i
\(297\) 0.553289 + 3.27015i 0.0321051 + 0.189753i
\(298\) 8.53970 14.7912i 0.494691 0.856831i
\(299\) 2.86712 + 4.96600i 0.165810 + 0.287191i
\(300\) 13.5035i 0.779622i
\(301\) 9.22377 5.93555i 0.531649 0.342120i
\(302\) 8.31552 0.478504
\(303\) −0.0487094 + 0.0281224i −0.00279828 + 0.00161559i
\(304\) 1.61555 2.79822i 0.0926583 0.160489i
\(305\) 55.3218 + 31.9401i 3.16772 + 1.82888i
\(306\) −2.89000 + 1.66854i −0.165210 + 0.0953841i
\(307\) 18.4994 1.05582 0.527910 0.849301i \(-0.322976\pi\)
0.527910 + 0.849301i \(0.322976\pi\)
\(308\) 8.57142 1.87901i 0.488402 0.107067i
\(309\) 14.7949 0.841653
\(310\) −11.9328 + 6.88942i −0.677739 + 0.391293i
\(311\) −26.8449 15.4989i −1.52224 0.878864i −0.999655 0.0262743i \(-0.991636\pi\)
−0.522582 0.852589i \(-0.675031\pi\)
\(312\) −0.500372 + 0.866669i −0.0283280 + 0.0490655i
\(313\) 8.31513 4.80074i 0.469999 0.271354i −0.246240 0.969209i \(-0.579195\pi\)
0.716239 + 0.697855i \(0.245862\pi\)
\(314\) −1.25113 −0.0706053
\(315\) −0.548319 11.3677i −0.0308943 0.640495i
\(316\) 16.0923i 0.905261i
\(317\) 5.97126 + 10.3425i 0.335379 + 0.580894i 0.983558 0.180595i \(-0.0578022\pi\)
−0.648178 + 0.761489i \(0.724469\pi\)
\(318\) −5.65774 + 9.79949i −0.317270 + 0.549528i
\(319\) 4.28728 + 25.3395i 0.240042 + 1.41874i
\(320\) −3.72526 + 2.15078i −0.208249 + 0.120232i
\(321\) 10.6139 0.592409
\(322\) −0.730399 15.1425i −0.0407035 0.843859i
\(323\) −10.7825 −0.599952
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 6.75674 11.7030i 0.374797 0.649167i
\(326\) −6.24899 3.60786i −0.346100 0.199821i
\(327\) −0.174102 0.301553i −0.00962786 0.0166759i
\(328\) 1.45111i 0.0801242i
\(329\) −7.52993 3.87625i −0.415139 0.213705i
\(330\) 10.9922 9.09452i 0.605099 0.500637i
\(331\) −3.24581 5.62191i −0.178406 0.309008i 0.762929 0.646482i \(-0.223761\pi\)
−0.941335 + 0.337474i \(0.890427\pi\)
\(332\) 0.875309 1.51608i 0.0480388 0.0832057i
\(333\) −1.26472 + 2.19056i −0.0693061 + 0.120042i
\(334\) 13.3708 7.71964i 0.731618 0.422400i
\(335\) 1.42120i 0.0776485i
\(336\) 2.22489 1.43173i 0.121378 0.0781074i
\(337\) 5.74869i 0.313151i −0.987666 0.156576i \(-0.949955\pi\)
0.987666 0.156576i \(-0.0500455\pi\)
\(338\) −10.3910 + 5.99926i −0.565197 + 0.326317i
\(339\) 16.4154 + 9.47745i 0.891564 + 0.514745i
\(340\) 12.4315 + 7.17733i 0.674193 + 0.389246i
\(341\) 9.95776 + 3.70264i 0.539243 + 0.200509i
\(342\) 3.23111i 0.174718i
\(343\) 18.3270 2.66858i 0.989565 0.144090i
\(344\) 4.14572 0.223522
\(345\) −12.3239 21.3457i −0.663499 1.14921i
\(346\) −5.38705 3.11021i −0.289609 0.167206i
\(347\) 12.6658 + 7.31263i 0.679938 + 0.392563i 0.799832 0.600224i \(-0.204922\pi\)
−0.119893 + 0.992787i \(0.538255\pi\)
\(348\) 3.87436 + 6.71059i 0.207687 + 0.359725i
\(349\) 15.2458 0.816091 0.408046 0.912962i \(-0.366210\pi\)
0.408046 + 0.912962i \(0.366210\pi\)
\(350\) −30.0437 + 19.3333i −1.60590 + 1.03341i
\(351\) 1.00074i 0.0534157i
\(352\) 3.10868 + 1.15591i 0.165693 + 0.0616103i
\(353\) −23.7709 13.7242i −1.26520 0.730463i −0.291124 0.956685i \(-0.594029\pi\)
−0.974076 + 0.226222i \(0.927363\pi\)
\(354\) −2.98113 1.72116i −0.158445 0.0914784i
\(355\) 10.6160 6.12916i 0.563440 0.325302i
\(356\) 2.78460i 0.147583i
\(357\) −7.85002 4.04103i −0.415467 0.213874i
\(358\) 3.07893i 0.162726i
\(359\) −14.1129 + 8.14808i −0.744850 + 0.430039i −0.823830 0.566837i \(-0.808167\pi\)
0.0789804 + 0.996876i \(0.474834\pi\)
\(360\) 2.15078 3.72526i 0.113356 0.196339i
\(361\) 4.27998 7.41314i 0.225262 0.390165i
\(362\) 9.16214 + 15.8693i 0.481551 + 0.834071i
\(363\) −10.8054 2.06001i −0.567136 0.108122i
\(364\) −2.64464 + 0.127564i −0.138617 + 0.00668619i
\(365\) 64.0752i 3.35385i
\(366\) −7.42522 12.8609i −0.388122 0.672248i
\(367\) −2.93922 1.69696i −0.153426 0.0885807i 0.421321 0.906911i \(-0.361566\pi\)
−0.574748 + 0.818331i \(0.694900\pi\)
\(368\) 2.86499 4.96231i 0.149348 0.258678i
\(369\) 0.725556 + 1.25670i 0.0377709 + 0.0654211i
\(370\) 10.8805 0.565652
\(371\) −29.9032 + 1.44238i −1.55250 + 0.0748847i
\(372\) 3.20322 0.166079
\(373\) −5.64289 + 3.25792i −0.292178 + 0.168689i −0.638923 0.769270i \(-0.720620\pi\)
0.346746 + 0.937959i \(0.387287\pi\)
\(374\) −1.84637 10.9128i −0.0954735 0.564285i
\(375\) −18.2891 + 31.6776i −0.944444 + 1.63582i
\(376\) −1.60050 2.77216i −0.0825397 0.142963i
\(377\) 7.75447i 0.399376i
\(378\) −1.21095 + 2.35236i −0.0622844 + 0.120992i
\(379\) −27.4324 −1.40911 −0.704555 0.709650i \(-0.748853\pi\)
−0.704555 + 0.709650i \(0.748853\pi\)
\(380\) 12.0367 6.94940i 0.617471 0.356497i
\(381\) −2.95454 + 5.11742i −0.151366 + 0.262173i
\(382\) −18.0308 10.4101i −0.922537 0.532627i
\(383\) −7.65298 + 4.41845i −0.391049 + 0.225772i −0.682615 0.730779i \(-0.739157\pi\)
0.291565 + 0.956551i \(0.405824\pi\)
\(384\) 1.00000 0.0510310
\(385\) 35.9722 + 11.4355i 1.83331 + 0.582805i
\(386\) −4.51641 −0.229879
\(387\) −3.59030 + 2.07286i −0.182505 + 0.105369i
\(388\) 10.6822 + 6.16737i 0.542306 + 0.313101i
\(389\) −4.46153 + 7.72760i −0.226209 + 0.391805i −0.956681 0.291137i \(-0.905966\pi\)
0.730473 + 0.682942i \(0.239300\pi\)
\(390\) −3.72803 + 2.15238i −0.188776 + 0.108990i
\(391\) −19.1214 −0.967011
\(392\) 6.37090 + 2.90029i 0.321779 + 0.146487i
\(393\) 12.1043i 0.610580i
\(394\) 8.67816 + 15.0310i 0.437200 + 0.757252i
\(395\) 34.6110 59.9480i 1.74147 3.01631i
\(396\) −3.27015 + 0.553289i −0.164331 + 0.0278038i
\(397\) −4.13575 + 2.38778i −0.207567 + 0.119839i −0.600180 0.799865i \(-0.704905\pi\)
0.392613 + 0.919704i \(0.371571\pi\)
\(398\) 7.81660 0.391811
\(399\) −7.18886 + 4.62607i −0.359893 + 0.231593i
\(400\) −13.5035 −0.675173
\(401\) −1.26986 2.19946i −0.0634137 0.109836i 0.832576 0.553912i \(-0.186865\pi\)
−0.895989 + 0.444076i \(0.853532\pi\)
\(402\) −0.165196 + 0.286128i −0.00823922 + 0.0142707i
\(403\) −2.77613 1.60280i −0.138289 0.0798411i
\(404\) −0.0281224 0.0487094i −0.00139914 0.00242338i
\(405\) 4.30156i 0.213746i
\(406\) −9.38329 + 18.2278i −0.465685 + 0.904630i
\(407\) −5.34783 6.46369i −0.265082 0.320393i
\(408\) −1.66854 2.89000i −0.0826051 0.143076i
\(409\) −0.0321007 + 0.0556000i −0.00158728 + 0.00274924i −0.866818 0.498625i \(-0.833839\pi\)
0.865231 + 0.501374i \(0.167172\pi\)
\(410\) 3.12102 5.40577i 0.154136 0.266972i
\(411\) 8.56604 4.94560i 0.422532 0.243949i
\(412\) 14.7949i 0.728893i
\(413\) −0.438790 9.09692i −0.0215915 0.447630i
\(414\) 5.72998i 0.281613i
\(415\) 6.52152 3.76520i 0.320129 0.184826i
\(416\) −0.866669 0.500372i −0.0424919 0.0245327i
\(417\) 1.37478 + 0.793732i 0.0673235 + 0.0388692i
\(418\) −10.0445 3.73487i −0.491291 0.182679i
\(419\) 23.7720i 1.16134i 0.814140 + 0.580669i \(0.197209\pi\)
−0.814140 + 0.580669i \(0.802791\pi\)
\(420\) 11.3677 0.548319i 0.554685 0.0267552i
\(421\) −1.11501 −0.0543422 −0.0271711 0.999631i \(-0.508650\pi\)
−0.0271711 + 0.999631i \(0.508650\pi\)
\(422\) 10.9962 + 19.0459i 0.535285 + 0.927141i
\(423\) 2.77216 + 1.60050i 0.134787 + 0.0778192i
\(424\) −9.79949 5.65774i −0.475905 0.274764i
\(425\) 22.5311 + 39.0249i 1.09292 + 1.89299i
\(426\) −2.84974 −0.138070
\(427\) 17.9831 34.9336i 0.870263 1.69056i
\(428\) 10.6139i 0.513042i
\(429\) 3.11099 + 1.15677i 0.150200 + 0.0558494i
\(430\) 15.4439 + 8.91653i 0.744770 + 0.429993i
\(431\) 25.4430 + 14.6895i 1.22555 + 0.707569i 0.966095 0.258187i \(-0.0831250\pi\)
0.259451 + 0.965756i \(0.416458\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 13.1705i 0.632934i 0.948604 + 0.316467i \(0.102497\pi\)
−0.948604 + 0.316467i \(0.897503\pi\)
\(434\) 4.58614 + 7.12681i 0.220142 + 0.342098i
\(435\) 33.3316i 1.59813i
\(436\) 0.301553 0.174102i 0.0144418 0.00833797i
\(437\) −9.25709 + 16.0337i −0.442826 + 0.766998i
\(438\) 7.44790 12.9001i 0.355874 0.616392i
\(439\) −5.10665 8.84498i −0.243727 0.422148i 0.718046 0.695996i \(-0.245037\pi\)
−0.961773 + 0.273848i \(0.911703\pi\)
\(440\) 9.09452 + 10.9922i 0.433564 + 0.524031i
\(441\) −6.96750 + 0.673723i −0.331786 + 0.0320820i
\(442\) 3.33956i 0.158847i
\(443\) −13.6862 23.7051i −0.650250 1.12627i −0.983062 0.183272i \(-0.941331\pi\)
0.332813 0.942993i \(-0.392002\pi\)
\(444\) −2.19056 1.26472i −0.103959 0.0600209i
\(445\) −5.98906 + 10.3734i −0.283909 + 0.491744i
\(446\) −4.15123 7.19014i −0.196566 0.340463i
\(447\) −17.0794 −0.807828
\(448\) 1.43173 + 2.22489i 0.0676430 + 0.105116i
\(449\) 1.35953 0.0641602 0.0320801 0.999485i \(-0.489787\pi\)
0.0320801 + 0.999485i \(0.489787\pi\)
\(450\) 11.6943 6.75173i 0.551276 0.318279i
\(451\) −4.74535 + 0.802884i −0.223450 + 0.0378063i
\(452\) −9.47745 + 16.4154i −0.445782 + 0.772117i
\(453\) −4.15776 7.20145i −0.195349 0.338354i
\(454\) 7.91253i 0.371354i
\(455\) −10.1264 5.21284i −0.474731 0.244382i
\(456\) −3.23111 −0.151310
\(457\) 18.9644 10.9491i 0.887115 0.512176i 0.0141173 0.999900i \(-0.495506\pi\)
0.872998 + 0.487724i \(0.162173\pi\)
\(458\) −5.35463 + 9.27450i −0.250206 + 0.433369i
\(459\) 2.89000 + 1.66854i 0.134894 + 0.0778808i
\(460\) 21.3457 12.3239i 0.995248 0.574607i
\(461\) −13.4227 −0.625159 −0.312579 0.949892i \(-0.601193\pi\)
−0.312579 + 0.949892i \(0.601193\pi\)
\(462\) −5.91298 6.48357i −0.275097 0.301643i
\(463\) −21.1422 −0.982562 −0.491281 0.871001i \(-0.663471\pi\)
−0.491281 + 0.871001i \(0.663471\pi\)
\(464\) −6.71059 + 3.87436i −0.311531 + 0.179863i
\(465\) 11.9328 + 6.88942i 0.553371 + 0.319489i
\(466\) −8.85528 + 15.3378i −0.410213 + 0.710510i
\(467\) 2.48960 1.43737i 0.115205 0.0665137i −0.441290 0.897364i \(-0.645479\pi\)
0.556495 + 0.830851i \(0.312146\pi\)
\(468\) 1.00074 0.0462594
\(469\) −0.873119 + 0.0421149i −0.0403169 + 0.00194469i
\(470\) 13.7693i 0.635133i
\(471\) 0.625565 + 1.08351i 0.0288245 + 0.0499255i
\(472\) 1.72116 2.98113i 0.0792226 0.137218i
\(473\) −2.29378 13.5571i −0.105468 0.623356i
\(474\) −13.9363 + 8.04614i −0.640116 + 0.369571i
\(475\) 43.6311 2.00193
\(476\) 4.04103 7.85002i 0.185220 0.359805i
\(477\) 11.3155 0.518100
\(478\) −13.3178 23.0671i −0.609141 1.05506i
\(479\) −1.91941 + 3.32451i −0.0877000 + 0.151901i −0.906539 0.422123i \(-0.861285\pi\)
0.818839 + 0.574024i \(0.194618\pi\)
\(480\) 3.72526 + 2.15078i 0.170034 + 0.0981693i
\(481\) 1.26566 + 2.19218i 0.0577091 + 0.0999550i
\(482\) 3.71041i 0.169005i
\(483\) −12.7486 + 8.20379i −0.580081 + 0.373286i
\(484\) 2.06001 10.8054i 0.0936367 0.491154i
\(485\) 26.5293 + 45.9502i 1.20463 + 2.08649i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) 4.84042 8.38386i 0.219340 0.379909i −0.735266 0.677779i \(-0.762943\pi\)
0.954607 + 0.297870i \(0.0962761\pi\)
\(488\) 12.8609 7.42522i 0.582184 0.336124i
\(489\) 7.21571i 0.326306i
\(490\) 17.4954 + 24.5068i 0.790360 + 1.10710i
\(491\) 15.8886i 0.717041i −0.933522 0.358520i \(-0.883281\pi\)
0.933522 0.358520i \(-0.116719\pi\)
\(492\) −1.25670 + 0.725556i −0.0566564 + 0.0327106i
\(493\) 22.3938 + 12.9290i 1.00856 + 0.582295i
\(494\) 2.80030 + 1.61675i 0.125991 + 0.0727412i
\(495\) −13.3722 4.97223i −0.601034 0.223485i
\(496\) 3.20322i 0.143829i
\(497\) −4.08006 6.34036i −0.183016 0.284404i
\(498\) −1.75062 −0.0784471
\(499\) 15.0220 + 26.0188i 0.672477 + 1.16476i 0.977200 + 0.212323i \(0.0681027\pi\)
−0.304723 + 0.952441i \(0.598564\pi\)
\(500\) −31.6776 18.2891i −1.41667 0.817912i
\(501\) −13.3708 7.71964i −0.597364 0.344888i
\(502\) 5.34741 + 9.26199i 0.238667 + 0.413383i
\(503\) 4.66798 0.208135 0.104067 0.994570i \(-0.466814\pi\)
0.104067 + 0.994570i \(0.466814\pi\)
\(504\) −2.35236 1.21095i −0.104783 0.0539399i
\(505\) 0.241941i 0.0107662i
\(506\) −17.8127 6.62335i −0.791869 0.294444i
\(507\) 10.3910 + 5.99926i 0.461481 + 0.266436i
\(508\) −5.11742 2.95454i −0.227049 0.131087i
\(509\) 26.8000 15.4730i 1.18789 0.685829i 0.230064 0.973175i \(-0.426106\pi\)
0.957827 + 0.287346i \(0.0927730\pi\)
\(510\) 14.3547i 0.635635i
\(511\) 39.3648 1.89876i 1.74140 0.0839963i
\(512\) 1.00000i 0.0441942i
\(513\) 2.79822 1.61555i 0.123544 0.0713284i
\(514\) 11.9110 20.6304i 0.525371 0.909970i
\(515\) −31.8206 + 55.1150i −1.40219 + 2.42866i
\(516\) −2.07286 3.59030i −0.0912525 0.158054i
\(517\) −8.17982 + 6.76769i −0.359748 + 0.297643i
\(518\) −0.322427 6.68449i −0.0141666 0.293700i
\(519\) 6.22042i 0.273046i
\(520\) −2.15238 3.72803i −0.0943881 0.163485i
\(521\) 9.57271 + 5.52680i 0.419388 + 0.242134i 0.694815 0.719188i \(-0.255486\pi\)
−0.275427 + 0.961322i \(0.588819\pi\)
\(522\) 3.87436 6.71059i 0.169576 0.293714i
\(523\) 2.06741 + 3.58085i 0.0904013 + 0.156580i 0.907680 0.419663i \(-0.137852\pi\)
−0.817279 + 0.576243i \(0.804518\pi\)
\(524\) −12.1043 −0.528778
\(525\) 31.7650 + 16.3520i 1.38634 + 0.713659i
\(526\) −17.0516 −0.743487
\(527\) 9.25728 5.34470i 0.403254 0.232819i
\(528\) −0.553289 3.27015i −0.0240788 0.142315i
\(529\) −4.91634 + 8.51535i −0.213754 + 0.370233i
\(530\) −24.3371 42.1531i −1.05714 1.83102i
\(531\) 3.44231i 0.149384i
\(532\) −4.62607 7.18886i −0.200566 0.311677i
\(533\) 1.45219 0.0629013
\(534\) 2.41153 1.39230i 0.104357 0.0602506i
\(535\) −22.8282 + 39.5395i −0.986947 + 1.70944i
\(536\) −0.286128 0.165196i −0.0123588 0.00713537i
\(537\) 2.66643 1.53946i 0.115065 0.0664328i
\(538\) 9.61064 0.414344
\(539\) 5.95943 22.4385i 0.256691 0.966494i
\(540\) −4.30156 −0.185110
\(541\) −34.4914 + 19.9136i −1.48290 + 0.856153i −0.999811 0.0194190i \(-0.993818\pi\)
−0.483088 + 0.875572i \(0.660485\pi\)
\(542\) 4.42736 + 2.55614i 0.190172 + 0.109796i
\(543\) 9.16214 15.8693i 0.393185 0.681016i
\(544\) 2.89000 1.66854i 0.123908 0.0715381i
\(545\) 1.49782 0.0641596
\(546\) 1.43280 + 2.22655i 0.0613180 + 0.0952874i
\(547\) 37.7080i 1.61228i 0.591728 + 0.806138i \(0.298446\pi\)
−0.591728 + 0.806138i \(0.701554\pi\)
\(548\) 4.94560 + 8.56604i 0.211266 + 0.365923i
\(549\) −7.42522 + 12.8609i −0.316901 + 0.548888i
\(550\) 7.47131 + 44.1583i 0.318578 + 1.88292i
\(551\) 21.6826 12.5185i 0.923710 0.533304i
\(552\) −5.72998 −0.243884
\(553\) −37.8549 19.4869i −1.60975 0.828667i
\(554\) −26.3274 −1.11854
\(555\) −5.44027 9.42282i −0.230926 0.399976i
\(556\) −0.793732 + 1.37478i −0.0336617 + 0.0583039i
\(557\) −27.3188 15.7725i −1.15754 0.668304i −0.206824 0.978378i \(-0.566313\pi\)
−0.950712 + 0.310074i \(0.899646\pi\)
\(558\) −1.60161 2.77407i −0.0678015 0.117436i
\(559\) 4.14880i 0.175475i
\(560\) 0.548319 + 11.3677i 0.0231707 + 0.480371i
\(561\) −8.52753 + 7.05538i −0.360033 + 0.297878i
\(562\) −5.28421 9.15252i −0.222901 0.386076i
\(563\) −18.8993 + 32.7345i −0.796511 + 1.37960i 0.125365 + 0.992111i \(0.459990\pi\)
−0.921876 + 0.387486i \(0.873344\pi\)
\(564\) −1.60050 + 2.77216i −0.0673934 + 0.116729i
\(565\) −70.6120 + 40.7679i −2.97067 + 1.71512i
\(566\) 10.4076i 0.437463i
\(567\) 2.64268 0.127470i 0.110982 0.00535322i
\(568\) 2.84974i 0.119572i
\(569\) 16.0111 9.24404i 0.671222 0.387530i −0.125317 0.992117i \(-0.539995\pi\)
0.796540 + 0.604586i \(0.206662\pi\)
\(570\) −12.0367 6.94940i −0.504163 0.291078i
\(571\) −13.1984 7.62013i −0.552338 0.318892i 0.197727 0.980257i \(-0.436644\pi\)
−0.750064 + 0.661365i \(0.769978\pi\)
\(572\) −1.15677 + 3.11099i −0.0483670 + 0.130077i
\(573\) 20.8202i 0.869776i
\(574\) −3.41354 1.75722i −0.142478 0.0733449i
\(575\) 77.3745 3.22674
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −23.7188 13.6941i −0.987428 0.570092i −0.0829237 0.996556i \(-0.526426\pi\)
−0.904505 + 0.426464i \(0.859759\pi\)
\(578\) 5.07828 + 2.93194i 0.211228 + 0.121953i
\(579\) 2.25821 + 3.91133i 0.0938479 + 0.162549i
\(580\) −33.3316 −1.38402
\(581\) −2.50642 3.89494i −0.103984 0.161589i
\(582\) 12.3347i 0.511291i
\(583\) −13.0797 + 35.1762i −0.541706 + 1.45685i
\(584\) 12.9001 + 7.44790i 0.533811 + 0.308196i
\(585\) 3.72803 + 2.15238i 0.154135 + 0.0889900i
\(586\) −27.2452 + 15.7300i −1.12549 + 0.649801i
\(587\) 17.1517i 0.707927i 0.935259 + 0.353964i \(0.115166\pi\)
−0.935259 + 0.353964i \(0.884834\pi\)
\(588\) −0.673723 6.96750i −0.0277839 0.287335i
\(589\) 10.3499i 0.426461i
\(590\) 12.8235 7.40366i 0.527936 0.304804i
\(591\) 8.67816 15.0310i 0.356972 0.618293i
\(592\) 1.26472 2.19056i 0.0519796 0.0900313i
\(593\) −2.63071 4.55652i −0.108030 0.187114i 0.806942 0.590631i \(-0.201121\pi\)
−0.914972 + 0.403517i \(0.867788\pi\)
\(594\) 2.11424 + 2.55539i 0.0867482 + 0.104849i
\(595\) 31.9376 20.5520i 1.30931 0.842551i
\(596\) 17.0794i 0.699599i
\(597\) −3.90830 6.76938i −0.159956 0.277052i
\(598\) 4.96600 + 2.86712i 0.203075 + 0.117245i
\(599\) 17.8442 30.9071i 0.729096 1.26283i −0.228169 0.973621i \(-0.573274\pi\)
0.957266 0.289210i \(-0.0933927\pi\)
\(600\) 6.75173 + 11.6943i 0.275638 + 0.477419i
\(601\) −9.98679 −0.407370 −0.203685 0.979036i \(-0.565292\pi\)
−0.203685 + 0.979036i \(0.565292\pi\)
\(602\) 5.02024 9.75222i 0.204610 0.397471i
\(603\) 0.330392 0.0134546
\(604\) 7.20145 4.15776i 0.293023 0.169177i
\(605\) 30.9141 35.8223i 1.25684 1.45638i
\(606\) −0.0281224 + 0.0487094i −0.00114239 + 0.00197868i
\(607\) 11.8496 + 20.5242i 0.480962 + 0.833050i 0.999761 0.0218456i \(-0.00695422\pi\)
−0.518800 + 0.854896i \(0.673621\pi\)
\(608\) 3.23111i 0.131039i
\(609\) 20.4774 0.987726i 0.829785 0.0400247i
\(610\) 63.8801 2.58643
\(611\) 2.77422 1.60169i 0.112233 0.0647976i
\(612\) −1.66854 + 2.89000i −0.0674468 + 0.116821i
\(613\) −22.3572 12.9080i −0.903000 0.521347i −0.0248276 0.999692i \(-0.507904\pi\)
−0.878172 + 0.478345i \(0.841237\pi\)
\(614\) 16.0210 9.24972i 0.646555 0.373288i
\(615\) −6.24205 −0.251704
\(616\) 6.48357 5.91298i 0.261230 0.238241i
\(617\) 4.44499 0.178949 0.0894743 0.995989i \(-0.471481\pi\)
0.0894743 + 0.995989i \(0.471481\pi\)
\(618\) 12.8128 7.39746i 0.515405 0.297569i
\(619\) −30.0167 17.3301i −1.20647 0.696557i −0.244485 0.969653i \(-0.578619\pi\)
−0.961987 + 0.273096i \(0.911952\pi\)
\(620\) −6.88942 + 11.9328i −0.276686 + 0.479234i
\(621\) 4.96231 2.86499i 0.199131 0.114968i
\(622\) −30.9979 −1.24290
\(623\) 6.55038 + 3.37200i 0.262435 + 0.135096i
\(624\) 1.00074i 0.0400618i
\(625\) −44.9130 77.7916i −1.79652 3.11166i
\(626\) 4.80074 8.31513i 0.191876 0.332339i
\(627\) 1.78773 + 10.5662i 0.0713953 + 0.421973i
\(628\) −1.08351 + 0.625565i −0.0432368 + 0.0249627i
\(629\) −8.44094 −0.336562
\(630\) −6.15868 9.57052i −0.245368 0.381298i
\(631\) 32.7549 1.30395 0.651975 0.758240i \(-0.273941\pi\)
0.651975 + 0.758240i \(0.273941\pi\)
\(632\) −8.04614 13.9363i −0.320058 0.554357i
\(633\) 10.9962 19.0459i 0.437058 0.757007i
\(634\) 10.3425 + 5.97126i 0.410754 + 0.237149i
\(635\) −12.7092 22.0129i −0.504348 0.873556i
\(636\) 11.3155i 0.448688i
\(637\) −2.90245 + 6.37563i −0.114999 + 0.252612i
\(638\) 16.3826 + 19.8010i 0.648594 + 0.783928i
\(639\) 1.42487 + 2.46794i 0.0563669 + 0.0976304i
\(640\) −2.15078 + 3.72526i −0.0850171 + 0.147254i
\(641\) 17.5417 30.3831i 0.692854 1.20006i −0.278044 0.960568i \(-0.589686\pi\)
0.970899 0.239491i \(-0.0769805\pi\)
\(642\) 9.19190 5.30694i 0.362775 0.209448i
\(643\) 4.02224i 0.158622i 0.996850 + 0.0793109i \(0.0252720\pi\)
−0.996850 + 0.0793109i \(0.974728\pi\)
\(644\) −8.20379 12.7486i −0.323275 0.502365i
\(645\) 17.8331i 0.702176i
\(646\) −9.33788 + 5.39123i −0.367394 + 0.212115i
\(647\) −4.94497 2.85498i −0.194407 0.112241i 0.399637 0.916673i \(-0.369136\pi\)
−0.594044 + 0.804433i \(0.702470\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) −10.7010 3.97901i −0.420052 0.156190i
\(650\) 13.5135i 0.530043i
\(651\) 3.87893 7.53512i 0.152027 0.295325i
\(652\) −7.21571 −0.282589
\(653\) 7.19689 + 12.4654i 0.281636 + 0.487808i 0.971788 0.235857i \(-0.0757896\pi\)
−0.690152 + 0.723665i \(0.742456\pi\)
\(654\) −0.301553 0.174102i −0.0117917 0.00680792i
\(655\) −45.0916 26.0336i −1.76187 1.01722i
\(656\) −0.725556 1.25670i −0.0283282 0.0490659i
\(657\) −14.8958 −0.581140
\(658\) −8.45924 + 0.408032i −0.329776 + 0.0159067i
\(659\) 1.73466i 0.0675728i 0.999429 + 0.0337864i \(0.0107566\pi\)
−0.999429 + 0.0337864i \(0.989243\pi\)
\(660\) 4.97223 13.3722i 0.193544 0.520511i
\(661\) −24.2717 14.0132i −0.944058 0.545052i −0.0528280 0.998604i \(-0.516823\pi\)
−0.891230 + 0.453551i \(0.850157\pi\)
\(662\) −5.62191 3.24581i −0.218502 0.126152i
\(663\) 2.89214 1.66978i 0.112322 0.0648489i
\(664\) 1.75062i 0.0679372i
\(665\) −1.77168 36.7301i −0.0687027 1.42433i
\(666\) 2.52944i 0.0980137i
\(667\) 38.4515 22.2000i 1.48885 0.859587i
\(668\) 7.71964 13.3708i 0.298682 0.517332i
\(669\) −4.15123 + 7.19014i −0.160496 + 0.277987i
\(670\) −0.710600 1.23080i −0.0274529 0.0475498i
\(671\) −31.3973 37.9486i −1.21208 1.46499i
\(672\) 1.21095 2.35236i 0.0467133 0.0907443i
\(673\) 11.9436i 0.460394i −0.973144 0.230197i \(-0.926063\pi\)
0.973144 0.230197i \(-0.0739370\pi\)
\(674\) −2.87434 4.97851i −0.110716 0.191765i
\(675\) −11.6943 6.75173i −0.450115 0.259874i
\(676\) −5.99926 + 10.3910i −0.230741 + 0.399655i
\(677\) 20.2334 + 35.0453i 0.777634 + 1.34690i 0.933302 + 0.359092i \(0.116914\pi\)
−0.155668 + 0.987809i \(0.549753\pi\)
\(678\) 18.9549 0.727959
\(679\) 27.4435 17.6600i 1.05318 0.677730i
\(680\) 14.3547 0.550476
\(681\) −6.85245 + 3.95627i −0.262587 + 0.151604i
\(682\) 10.4750 1.77230i 0.401108 0.0678650i
\(683\) 9.15993 15.8655i 0.350495 0.607075i −0.635841 0.771820i \(-0.719347\pi\)
0.986336 + 0.164745i \(0.0526801\pi\)
\(684\) 1.61555 + 2.79822i 0.0617722 + 0.106993i
\(685\) 42.5477i 1.62566i
\(686\) 14.5374 11.4746i 0.555039 0.438100i
\(687\) 10.7093 0.408584
\(688\) 3.59030 2.07286i 0.136879 0.0790270i
\(689\) 5.66194 9.80677i 0.215703 0.373608i
\(690\) −21.3457 12.3239i −0.812617 0.469164i
\(691\) 38.6960 22.3412i 1.47207 0.849898i 0.472560 0.881299i \(-0.343330\pi\)
0.999507 + 0.0314005i \(0.00999673\pi\)
\(692\) −6.22042 −0.236465
\(693\) −2.65844 + 8.36258i −0.100986 + 0.317668i
\(694\) 14.6253 0.555167
\(695\) −5.91372 + 3.41429i −0.224320 + 0.129511i
\(696\) 6.71059 + 3.87436i 0.254364 + 0.146857i
\(697\) −2.42124 + 4.19371i −0.0917109 + 0.158848i
\(698\) 13.2033 7.62292i 0.499752 0.288532i
\(699\) 17.7106 0.669875
\(700\) −16.3520 + 31.7650i −0.618046 + 1.20060i
\(701\) 18.6437i 0.704161i −0.935970 0.352081i \(-0.885474\pi\)
0.935970 0.352081i \(-0.114526\pi\)
\(702\) −0.500372 0.866669i −0.0188853 0.0327103i
\(703\) −4.08644 + 7.07792i −0.154123 + 0.266949i
\(704\) 3.27015 0.553289i 0.123248 0.0208529i
\(705\) −11.9246 + 6.88467i −0.449107 + 0.259292i
\(706\) −27.4483 −1.03303
\(707\) −0.148637 + 0.00716950i −0.00559007 + 0.000269637i
\(708\) −3.44231 −0.129370
\(709\) 2.45067 + 4.24468i 0.0920368 + 0.159412i 0.908368 0.418172i \(-0.137329\pi\)
−0.816331 + 0.577584i \(0.803996\pi\)
\(710\) 6.12916 10.6160i 0.230023 0.398412i
\(711\) 13.9363 + 8.04614i 0.522653 + 0.301754i
\(712\) 1.39230 + 2.41153i 0.0521786 + 0.0903759i
\(713\) 18.3544i 0.687376i
\(714\) −8.81883 + 0.425377i −0.330037 + 0.0159193i
\(715\) −11.0003 + 9.10128i −0.411389 + 0.340369i
\(716\) 1.53946 + 2.66643i 0.0575325 + 0.0996492i
\(717\) −13.3178 + 23.0671i −0.497362 + 0.861456i
\(718\) −8.14808 + 14.1129i −0.304084 + 0.526688i
\(719\) −19.2665 + 11.1235i −0.718518 + 0.414837i −0.814207 0.580575i \(-0.802828\pi\)
0.0956887 + 0.995411i \(0.469495\pi\)
\(720\) 4.30156i 0.160310i
\(721\) 34.8030 + 17.9159i 1.29613 + 0.667222i
\(722\) 8.55996i 0.318569i
\(723\) −3.21331 + 1.85521i −0.119504 + 0.0689958i
\(724\) 15.8693 + 9.16214i 0.589777 + 0.340508i
\(725\) −90.6161 52.3172i −3.36540 1.94301i
\(726\) −10.3877 + 3.61867i −0.385525 + 0.134302i
\(727\) 27.5807i 1.02291i −0.859310 0.511456i \(-0.829106\pi\)
0.859310 0.511456i \(-0.170894\pi\)
\(728\) −2.22655 + 1.43280i −0.0825213 + 0.0531029i
\(729\) −1.00000 −0.0370370
\(730\) 32.0376 + 55.4907i 1.18576 + 2.05380i
\(731\) −11.9811 6.91730i −0.443137 0.255845i
\(732\) −12.8609 7.42522i −0.475351 0.274444i
\(733\) −8.95070 15.5031i −0.330602 0.572619i 0.652028 0.758195i \(-0.273918\pi\)
−0.982630 + 0.185576i \(0.940585\pi\)
\(734\) −3.39392 −0.125272
\(735\) 12.4758 27.4048i 0.460176 1.01084i
\(736\) 5.72998i 0.211210i
\(737\) −0.381904 + 1.02708i −0.0140676 + 0.0378330i
\(738\) 1.25670 + 0.725556i 0.0462597 + 0.0267081i
\(739\) 24.9947 + 14.4307i 0.919443 + 0.530841i 0.883457 0.468511i \(-0.155210\pi\)
0.0359860 + 0.999352i \(0.488543\pi\)
\(740\) 9.42282 5.44027i 0.346390 0.199988i
\(741\) 3.23351i 0.118786i
\(742\) −25.1757 + 16.2007i −0.924230 + 0.594747i
\(743\) 34.0656i 1.24975i −0.780726 0.624873i \(-0.785151\pi\)
0.780726 0.624873i \(-0.214849\pi\)
\(744\) 2.77407 1.60161i 0.101702 0.0587178i
\(745\) 36.7341 63.6253i 1.34583 2.33105i
\(746\) −3.25792 + 5.64289i −0.119281 + 0.206601i
\(747\) 0.875309 + 1.51608i 0.0320259 + 0.0554705i
\(748\) −7.05538 8.52753i −0.257970 0.311798i
\(749\) 24.9677 + 12.8529i 0.912300 + 0.469633i
\(750\) 36.5781i 1.33565i
\(751\) 6.28179 + 10.8804i 0.229226 + 0.397031i 0.957579 0.288171i \(-0.0930472\pi\)
−0.728353 + 0.685202i \(0.759714\pi\)
\(752\) −2.77216 1.60050i −0.101090 0.0583644i
\(753\) 5.34741 9.26199i 0.194871 0.337526i
\(754\) −3.87724 6.71557i −0.141201 0.244567i
\(755\) 35.7697 1.30179
\(756\) 0.127470 + 2.64268i 0.00463603 + 0.0961133i
\(757\) 7.03843 0.255816 0.127908 0.991786i \(-0.459174\pi\)
0.127908 + 0.991786i \(0.459174\pi\)
\(758\) −23.7572 + 13.7162i −0.862900 + 0.498195i
\(759\) 3.17034 + 18.7379i 0.115076 + 0.680142i
\(760\) 6.94940 12.0367i 0.252081 0.436618i
\(761\) 0.820725 + 1.42154i 0.0297512 + 0.0515307i 0.880518 0.474013i \(-0.157195\pi\)
−0.850766 + 0.525544i \(0.823862\pi\)
\(762\) 5.90909i 0.214064i
\(763\) −0.0443854 0.920191i −0.00160686 0.0333131i
\(764\) −20.8202 −0.753248
\(765\) −12.4315 + 7.17733i −0.449462 + 0.259497i
\(766\) −4.41845 + 7.65298i −0.159645 + 0.276514i
\(767\) 2.98334 + 1.72243i 0.107722 + 0.0621935i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 5.29585 0.190973 0.0954867 0.995431i \(-0.469559\pi\)
0.0954867 + 0.995431i \(0.469559\pi\)
\(770\) 36.8705 8.08268i 1.32872 0.291280i
\(771\) −23.8220 −0.857928
\(772\) −3.91133 + 2.25821i −0.140772 + 0.0812746i
\(773\) −17.0683 9.85437i −0.613903 0.354437i 0.160588 0.987021i \(-0.448661\pi\)
−0.774491 + 0.632584i \(0.781994\pi\)
\(774\) −2.07286 + 3.59030i −0.0745073 + 0.129051i
\(775\) −37.4595 +