Properties

Label 462.2.j.f.295.1
Level $462$
Weight $2$
Character 462.295
Analytic conductor $3.689$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.1
Defining polynomial: \(x^{8} - 2 x^{6} + 4 x^{4} - 8 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 295.1
Root \(1.34500 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 462.295
Dual form 462.2.j.f.379.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-1.02224 - 3.14612i) q^{5} +(-0.309017 - 0.951057i) q^{6} +(0.809017 + 0.587785i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} +O(q^{10})\) \(q+(0.309017 - 0.951057i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-1.02224 - 3.14612i) q^{5} +(-0.309017 - 0.951057i) q^{6} +(0.809017 + 0.587785i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} -3.30803 q^{10} +(3.14027 + 1.06710i) q^{11} -1.00000 q^{12} +(0.682489 - 2.10049i) q^{13} +(0.809017 - 0.587785i) q^{14} +(-2.67625 - 1.94441i) q^{15} +(0.309017 + 0.951057i) q^{16} +(-2.16251 - 6.65551i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(-5.44830 + 3.95842i) q^{19} +(-1.02224 + 3.14612i) q^{20} +1.00000 q^{21} +(1.98527 - 2.65682i) q^{22} -4.39698 q^{23} +(-0.309017 + 0.951057i) q^{24} +(-4.80803 + 3.49324i) q^{25} +(-1.78678 - 1.29817i) q^{26} +(-0.309017 - 0.951057i) q^{27} +(-0.309017 - 0.951057i) q^{28} +(5.65303 + 4.10716i) q^{29} +(-2.67625 + 1.94441i) q^{30} +(-1.09904 + 3.38250i) q^{31} +1.00000 q^{32} +(3.16776 - 0.982504i) q^{33} -6.99802 q^{34} +(1.02224 - 3.14612i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(-2.55982 - 1.85982i) q^{37} +(2.08107 + 6.40486i) q^{38} +(-0.682489 - 2.10049i) q^{39} +(2.67625 + 1.94441i) q^{40} +(8.54250 - 6.20649i) q^{41} +(0.309017 - 0.951057i) q^{42} +11.2604 q^{43} +(-1.91331 - 2.70911i) q^{44} -3.30803 q^{45} +(-1.35874 + 4.18177i) q^{46} +(-0.317511 + 0.230685i) q^{47} +(0.809017 + 0.587785i) q^{48} +(0.309017 + 0.951057i) q^{49} +(1.83650 + 5.65218i) q^{50} +(-5.66152 - 4.11333i) q^{51} +(-1.78678 + 1.29817i) q^{52} +(2.11180 - 6.49944i) q^{53} -1.00000 q^{54} +(0.147120 - 10.9705i) q^{55} -1.00000 q^{56} +(-2.08107 + 6.40486i) q^{57} +(5.65303 - 4.10716i) q^{58} +(6.19910 + 4.50391i) q^{59} +(1.02224 + 3.14612i) q^{60} +(1.30339 + 4.01142i) q^{61} +(2.87733 + 2.09050i) q^{62} +(0.809017 - 0.587785i) q^{63} +(0.309017 - 0.951057i) q^{64} -7.30605 q^{65} +(0.0444738 - 3.31633i) q^{66} +2.06998 q^{67} +(-2.16251 + 6.65551i) q^{68} +(-3.55723 + 2.58448i) q^{69} +(-2.67625 - 1.94441i) q^{70} +(3.85410 + 11.8617i) q^{71} +(0.309017 + 0.951057i) q^{72} +(5.69750 + 4.13948i) q^{73} +(-2.55982 + 1.85982i) q^{74} +(-1.83650 + 5.65218i) q^{75} +6.73447 q^{76} +(1.91331 + 2.70911i) q^{77} -2.20858 q^{78} +(2.25019 - 6.92537i) q^{79} +(2.67625 - 1.94441i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(-3.26294 - 10.0423i) q^{82} +(-2.02163 - 6.22192i) q^{83} +(-0.809017 - 0.587785i) q^{84} +(-18.7285 + 13.6070i) q^{85} +(3.47964 - 10.7092i) q^{86} +6.98752 q^{87} +(-3.16776 + 0.982504i) q^{88} +3.70698 q^{89} +(-1.02224 + 3.14612i) q^{90} +(1.78678 - 1.29817i) q^{91} +(3.55723 + 2.58448i) q^{92} +(1.09904 + 3.38250i) q^{93} +(0.121278 + 0.373256i) q^{94} +(18.0231 + 13.0946i) q^{95} +(0.809017 - 0.587785i) q^{96} +(-0.223719 + 0.688535i) q^{97} +1.00000 q^{98} +(1.98527 - 2.65682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 6 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} + O(q^{10}) \) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 6 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} + 4 q^{10} + 14 q^{11} - 8 q^{12} + 8 q^{13} + 2 q^{14} - 4 q^{15} - 2 q^{16} - 4 q^{17} - 2 q^{18} - 2 q^{19} - 6 q^{20} + 8 q^{21} - 6 q^{22} + 4 q^{23} + 2 q^{24} - 8 q^{25} - 12 q^{26} + 2 q^{27} + 2 q^{28} + 4 q^{29} - 4 q^{30} - 10 q^{31} + 8 q^{32} + 6 q^{33} - 4 q^{34} + 6 q^{35} - 2 q^{36} - 20 q^{37} - 12 q^{38} - 8 q^{39} + 4 q^{40} + 12 q^{41} - 2 q^{42} + 48 q^{43} - 6 q^{44} + 4 q^{45} + 4 q^{46} + 2 q^{48} - 2 q^{49} + 2 q^{50} - 6 q^{51} - 12 q^{52} - 12 q^{53} - 8 q^{54} - 8 q^{55} - 8 q^{56} + 12 q^{57} + 4 q^{58} + 12 q^{59} + 6 q^{60} - 32 q^{61} + 20 q^{62} + 2 q^{63} - 2 q^{64} + 24 q^{65} - 4 q^{66} - 48 q^{67} - 4 q^{68} + 6 q^{69} - 4 q^{70} + 4 q^{71} - 2 q^{72} - 20 q^{74} - 2 q^{75} + 28 q^{76} + 6 q^{77} - 8 q^{78} + 40 q^{79} + 4 q^{80} - 2 q^{81} - 18 q^{82} - 32 q^{83} - 2 q^{84} - 42 q^{85} - 32 q^{86} + 16 q^{87} - 6 q^{88} + 12 q^{89} - 6 q^{90} + 12 q^{91} - 6 q^{92} + 10 q^{93} + 54 q^{95} + 2 q^{96} + 8 q^{97} + 8 q^{98} - 6 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −1.02224 3.14612i −0.457158 1.40699i −0.868583 0.495544i \(-0.834969\pi\)
0.411424 0.911444i \(-0.365031\pi\)
\(6\) −0.309017 0.951057i −0.126156 0.388267i
\(7\) 0.809017 + 0.587785i 0.305780 + 0.222162i
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −3.30803 −1.04609
\(11\) 3.14027 + 1.06710i 0.946827 + 0.321742i
\(12\) −1.00000 −0.288675
\(13\) 0.682489 2.10049i 0.189288 0.582570i −0.810707 0.585452i \(-0.800917\pi\)
0.999996 + 0.00288157i \(0.000917234\pi\)
\(14\) 0.809017 0.587785i 0.216219 0.157092i
\(15\) −2.67625 1.94441i −0.691005 0.502045i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −2.16251 6.65551i −0.524485 1.61420i −0.765332 0.643636i \(-0.777425\pi\)
0.240846 0.970563i \(-0.422575\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) −5.44830 + 3.95842i −1.24993 + 0.908124i −0.998218 0.0596792i \(-0.980992\pi\)
−0.251708 + 0.967803i \(0.580992\pi\)
\(20\) −1.02224 + 3.14612i −0.228579 + 0.703494i
\(21\) 1.00000 0.218218
\(22\) 1.98527 2.65682i 0.423261 0.566437i
\(23\) −4.39698 −0.916833 −0.458416 0.888738i \(-0.651583\pi\)
−0.458416 + 0.888738i \(0.651583\pi\)
\(24\) −0.309017 + 0.951057i −0.0630778 + 0.194134i
\(25\) −4.80803 + 3.49324i −0.961606 + 0.698647i
\(26\) −1.78678 1.29817i −0.350416 0.254592i
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) −0.309017 0.951057i −0.0583987 0.179733i
\(29\) 5.65303 + 4.10716i 1.04974 + 0.762681i 0.972163 0.234305i \(-0.0752815\pi\)
0.0775773 + 0.996986i \(0.475282\pi\)
\(30\) −2.67625 + 1.94441i −0.488614 + 0.354999i
\(31\) −1.09904 + 3.38250i −0.197394 + 0.607515i 0.802547 + 0.596589i \(0.203478\pi\)
−0.999940 + 0.0109259i \(0.996522\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.16776 0.982504i 0.551436 0.171032i
\(34\) −6.99802 −1.20015
\(35\) 1.02224 3.14612i 0.172790 0.531792i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) −2.55982 1.85982i −0.420831 0.305752i 0.357141 0.934051i \(-0.383752\pi\)
−0.777972 + 0.628299i \(0.783752\pi\)
\(38\) 2.08107 + 6.40486i 0.337593 + 1.03901i
\(39\) −0.682489 2.10049i −0.109286 0.336347i
\(40\) 2.67625 + 1.94441i 0.423152 + 0.307438i
\(41\) 8.54250 6.20649i 1.33411 0.969290i 0.334475 0.942405i \(-0.391441\pi\)
0.999639 0.0268858i \(-0.00855905\pi\)
\(42\) 0.309017 0.951057i 0.0476824 0.146751i
\(43\) 11.2604 1.71719 0.858594 0.512656i \(-0.171338\pi\)
0.858594 + 0.512656i \(0.171338\pi\)
\(44\) −1.91331 2.70911i −0.288442 0.408413i
\(45\) −3.30803 −0.493132
\(46\) −1.35874 + 4.18177i −0.200335 + 0.616569i
\(47\) −0.317511 + 0.230685i −0.0463137 + 0.0336489i −0.610701 0.791861i \(-0.709112\pi\)
0.564388 + 0.825510i \(0.309112\pi\)
\(48\) 0.809017 + 0.587785i 0.116772 + 0.0848395i
\(49\) 0.309017 + 0.951057i 0.0441453 + 0.135865i
\(50\) 1.83650 + 5.65218i 0.259721 + 0.799338i
\(51\) −5.66152 4.11333i −0.792771 0.575982i
\(52\) −1.78678 + 1.29817i −0.247782 + 0.180024i
\(53\) 2.11180 6.49944i 0.290077 0.892767i −0.694753 0.719248i \(-0.744486\pi\)
0.984831 0.173518i \(-0.0555136\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0.147120 10.9705i 0.0198377 1.47926i
\(56\) −1.00000 −0.133631
\(57\) −2.08107 + 6.40486i −0.275644 + 0.848344i
\(58\) 5.65303 4.10716i 0.742279 0.539297i
\(59\) 6.19910 + 4.50391i 0.807054 + 0.586359i 0.912975 0.408016i \(-0.133779\pi\)
−0.105921 + 0.994375i \(0.533779\pi\)
\(60\) 1.02224 + 3.14612i 0.131970 + 0.406163i
\(61\) 1.30339 + 4.01142i 0.166882 + 0.513610i 0.999170 0.0407335i \(-0.0129695\pi\)
−0.832288 + 0.554343i \(0.812969\pi\)
\(62\) 2.87733 + 2.09050i 0.365421 + 0.265494i
\(63\) 0.809017 0.587785i 0.101927 0.0740540i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) −7.30605 −0.906204
\(66\) 0.0444738 3.31633i 0.00547434 0.408212i
\(67\) 2.06998 0.252889 0.126444 0.991974i \(-0.459644\pi\)
0.126444 + 0.991974i \(0.459644\pi\)
\(68\) −2.16251 + 6.65551i −0.262243 + 0.807100i
\(69\) −3.55723 + 2.58448i −0.428240 + 0.311135i
\(70\) −2.67625 1.94441i −0.319873 0.232401i
\(71\) 3.85410 + 11.8617i 0.457398 + 1.40773i 0.868297 + 0.496045i \(0.165215\pi\)
−0.410899 + 0.911681i \(0.634785\pi\)
\(72\) 0.309017 + 0.951057i 0.0364180 + 0.112083i
\(73\) 5.69750 + 4.13948i 0.666842 + 0.484489i 0.868967 0.494871i \(-0.164785\pi\)
−0.202125 + 0.979360i \(0.564785\pi\)
\(74\) −2.55982 + 1.85982i −0.297573 + 0.216199i
\(75\) −1.83650 + 5.65218i −0.212061 + 0.652657i
\(76\) 6.73447 0.772496
\(77\) 1.91331 + 2.70911i 0.218042 + 0.308731i
\(78\) −2.20858 −0.250073
\(79\) 2.25019 6.92537i 0.253166 0.779165i −0.741019 0.671484i \(-0.765657\pi\)
0.994185 0.107681i \(-0.0343426\pi\)
\(80\) 2.67625 1.94441i 0.299214 0.217392i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) −3.26294 10.0423i −0.360332 1.10899i
\(83\) −2.02163 6.22192i −0.221902 0.682945i −0.998591 0.0530607i \(-0.983102\pi\)
0.776689 0.629884i \(-0.216898\pi\)
\(84\) −0.809017 0.587785i −0.0882710 0.0641326i
\(85\) −18.7285 + 13.6070i −2.03139 + 1.47589i
\(86\) 3.47964 10.7092i 0.375219 1.15481i
\(87\) 6.98752 0.749141
\(88\) −3.16776 + 0.982504i −0.337684 + 0.104735i
\(89\) 3.70698 0.392939 0.196470 0.980510i \(-0.437052\pi\)
0.196470 + 0.980510i \(0.437052\pi\)
\(90\) −1.02224 + 3.14612i −0.107753 + 0.331630i
\(91\) 1.78678 1.29817i 0.187305 0.136085i
\(92\) 3.55723 + 2.58448i 0.370867 + 0.269450i
\(93\) 1.09904 + 3.38250i 0.113965 + 0.350749i
\(94\) 0.121278 + 0.373256i 0.0125089 + 0.0384984i
\(95\) 18.0231 + 13.0946i 1.84913 + 1.34347i
\(96\) 0.809017 0.587785i 0.0825700 0.0599906i
\(97\) −0.223719 + 0.688535i −0.0227152 + 0.0699102i −0.961772 0.273853i \(-0.911702\pi\)
0.939056 + 0.343763i \(0.111702\pi\)
\(98\) 1.00000 0.101015
\(99\) 1.98527 2.65682i 0.199527 0.267021i
\(100\) 5.94305 0.594305
\(101\) 3.79667 11.6849i 0.377783 1.16270i −0.563800 0.825912i \(-0.690661\pi\)
0.941582 0.336784i \(-0.109339\pi\)
\(102\) −5.66152 + 4.11333i −0.560574 + 0.407281i
\(103\) −6.62919 4.81639i −0.653193 0.474573i 0.211164 0.977451i \(-0.432275\pi\)
−0.864357 + 0.502878i \(0.832275\pi\)
\(104\) 0.682489 + 2.10049i 0.0669236 + 0.205970i
\(105\) −1.02224 3.14612i −0.0997601 0.307030i
\(106\) −5.52875 4.01687i −0.537000 0.390153i
\(107\) −2.21223 + 1.60728i −0.213864 + 0.155382i −0.689560 0.724228i \(-0.742196\pi\)
0.475696 + 0.879610i \(0.342196\pi\)
\(108\) −0.309017 + 0.951057i −0.0297352 + 0.0915155i
\(109\) −16.4852 −1.57899 −0.789496 0.613755i \(-0.789658\pi\)
−0.789496 + 0.613755i \(0.789658\pi\)
\(110\) −10.3881 3.52999i −0.990467 0.336571i
\(111\) −3.16411 −0.300324
\(112\) −0.309017 + 0.951057i −0.0291994 + 0.0898664i
\(113\) −0.280876 + 0.204068i −0.0264225 + 0.0191971i −0.600918 0.799311i \(-0.705198\pi\)
0.574496 + 0.818508i \(0.305198\pi\)
\(114\) 5.44830 + 3.95842i 0.510280 + 0.370740i
\(115\) 4.49475 + 13.8334i 0.419138 + 1.28997i
\(116\) −2.15926 6.64553i −0.200483 0.617022i
\(117\) −1.78678 1.29817i −0.165188 0.120016i
\(118\) 6.19910 4.50391i 0.570673 0.414618i
\(119\) 2.16251 6.65551i 0.198237 0.610110i
\(120\) 3.30803 0.301980
\(121\) 8.72260 + 6.70196i 0.792964 + 0.609269i
\(122\) 4.21786 0.381867
\(123\) 3.26294 10.0423i 0.294210 0.905484i
\(124\) 2.87733 2.09050i 0.258392 0.187733i
\(125\) 2.52384 + 1.83367i 0.225739 + 0.164009i
\(126\) −0.309017 0.951057i −0.0275294 0.0847268i
\(127\) 2.02571 + 6.23451i 0.179753 + 0.553223i 0.999819 0.0190465i \(-0.00606306\pi\)
−0.820065 + 0.572270i \(0.806063\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 9.10982 6.61867i 0.802075 0.582741i
\(130\) −2.25769 + 6.94847i −0.198013 + 0.609421i
\(131\) 19.8239 1.73202 0.866010 0.500026i \(-0.166676\pi\)
0.866010 + 0.500026i \(0.166676\pi\)
\(132\) −3.14027 1.06710i −0.273325 0.0928790i
\(133\) −6.73447 −0.583952
\(134\) 0.639660 1.96867i 0.0552582 0.170067i
\(135\) −2.67625 + 1.94441i −0.230335 + 0.167348i
\(136\) 5.66152 + 4.11333i 0.485471 + 0.352715i
\(137\) 5.54696 + 17.0718i 0.473909 + 1.45854i 0.847423 + 0.530918i \(0.178153\pi\)
−0.373514 + 0.927624i \(0.621847\pi\)
\(138\) 1.35874 + 4.18177i 0.115664 + 0.355976i
\(139\) −2.64187 1.91943i −0.224081 0.162804i 0.470081 0.882623i \(-0.344225\pi\)
−0.694162 + 0.719819i \(0.744225\pi\)
\(140\) −2.67625 + 1.94441i −0.226184 + 0.164333i
\(141\) −0.121278 + 0.373256i −0.0102135 + 0.0314338i
\(142\) 12.4721 1.04664
\(143\) 4.38463 5.86781i 0.366661 0.490691i
\(144\) 1.00000 0.0833333
\(145\) 7.14290 21.9836i 0.593186 1.82564i
\(146\) 5.69750 4.13948i 0.471528 0.342585i
\(147\) 0.809017 + 0.587785i 0.0667266 + 0.0484797i
\(148\) 0.977763 + 3.00925i 0.0803716 + 0.247358i
\(149\) −0.674984 2.07739i −0.0552969 0.170186i 0.919594 0.392871i \(-0.128518\pi\)
−0.974891 + 0.222684i \(0.928518\pi\)
\(150\) 4.80803 + 3.49324i 0.392574 + 0.285222i
\(151\) 5.04713 3.66696i 0.410730 0.298413i −0.363167 0.931724i \(-0.618305\pi\)
0.773897 + 0.633311i \(0.218305\pi\)
\(152\) 2.08107 6.40486i 0.168797 0.519503i
\(153\) −6.99802 −0.565757
\(154\) 3.16776 0.982504i 0.255265 0.0791724i
\(155\) 11.7652 0.945007
\(156\) −0.682489 + 2.10049i −0.0546429 + 0.168173i
\(157\) −10.9411 + 7.94915i −0.873193 + 0.634412i −0.931442 0.363891i \(-0.881448\pi\)
0.0582491 + 0.998302i \(0.481448\pi\)
\(158\) −5.89107 4.28011i −0.468668 0.340508i
\(159\) −2.11180 6.49944i −0.167476 0.515439i
\(160\) −1.02224 3.14612i −0.0808149 0.248723i
\(161\) −3.55723 2.58448i −0.280349 0.203685i
\(162\) −0.809017 + 0.587785i −0.0635624 + 0.0461808i
\(163\) −4.14590 + 12.7598i −0.324732 + 0.999422i 0.646830 + 0.762634i \(0.276094\pi\)
−0.971562 + 0.236787i \(0.923906\pi\)
\(164\) −10.5591 −0.824528
\(165\) −6.32928 8.96180i −0.492733 0.697675i
\(166\) −6.54212 −0.507767
\(167\) 1.59341 4.90402i 0.123302 0.379485i −0.870286 0.492547i \(-0.836066\pi\)
0.993588 + 0.113062i \(0.0360659\pi\)
\(168\) −0.809017 + 0.587785i −0.0624170 + 0.0453486i
\(169\) 6.57097 + 4.77409i 0.505459 + 0.367238i
\(170\) 7.15364 + 22.0166i 0.548659 + 1.68860i
\(171\) 2.08107 + 6.40486i 0.159143 + 0.489792i
\(172\) −9.10982 6.61867i −0.694617 0.504669i
\(173\) −19.5211 + 14.1829i −1.48417 + 1.07831i −0.507981 + 0.861369i \(0.669608\pi\)
−0.976185 + 0.216941i \(0.930392\pi\)
\(174\) 2.15926 6.64553i 0.163693 0.503796i
\(175\) −5.94305 −0.449252
\(176\) −0.0444738 + 3.31633i −0.00335234 + 0.249978i
\(177\) 7.66251 0.575949
\(178\) 1.14552 3.52555i 0.0858604 0.264251i
\(179\) −18.4812 + 13.4274i −1.38135 + 1.00361i −0.384600 + 0.923083i \(0.625661\pi\)
−0.996752 + 0.0805284i \(0.974339\pi\)
\(180\) 2.67625 + 1.94441i 0.199476 + 0.144928i
\(181\) 2.03697 + 6.26915i 0.151407 + 0.465982i 0.997779 0.0666096i \(-0.0212182\pi\)
−0.846372 + 0.532592i \(0.821218\pi\)
\(182\) −0.682489 2.10049i −0.0505895 0.155698i
\(183\) 3.41232 + 2.47919i 0.252246 + 0.183267i
\(184\) 3.55723 2.58448i 0.262242 0.190530i
\(185\) −3.23447 + 9.95467i −0.237803 + 0.731882i
\(186\) 3.55657 0.260781
\(187\) 0.311228 23.2077i 0.0227593 1.69712i
\(188\) 0.392465 0.0286234
\(189\) 0.309017 0.951057i 0.0224777 0.0691792i
\(190\) 18.0231 13.0946i 1.30753 0.949980i
\(191\) −13.5379 9.83583i −0.979565 0.711696i −0.0219536 0.999759i \(-0.506989\pi\)
−0.957611 + 0.288063i \(0.906989\pi\)
\(192\) −0.309017 0.951057i −0.0223014 0.0686366i
\(193\) 6.53700 + 20.1188i 0.470543 + 1.44818i 0.851875 + 0.523745i \(0.175466\pi\)
−0.381332 + 0.924438i \(0.624534\pi\)
\(194\) 0.585703 + 0.425538i 0.0420510 + 0.0305519i
\(195\) −5.91072 + 4.29439i −0.423275 + 0.307528i
\(196\) 0.309017 0.951057i 0.0220726 0.0679326i
\(197\) −18.2843 −1.30270 −0.651351 0.758776i \(-0.725797\pi\)
−0.651351 + 0.758776i \(0.725797\pi\)
\(198\) −1.91331 2.70911i −0.135973 0.192528i
\(199\) 3.59907 0.255131 0.127566 0.991830i \(-0.459284\pi\)
0.127566 + 0.991830i \(0.459284\pi\)
\(200\) 1.83650 5.65218i 0.129860 0.399669i
\(201\) 1.67465 1.21670i 0.118121 0.0858198i
\(202\) −9.93981 7.22169i −0.699362 0.508116i
\(203\) 2.15926 + 6.64553i 0.151551 + 0.466425i
\(204\) 2.16251 + 6.65551i 0.151406 + 0.465979i
\(205\) −28.2588 20.5312i −1.97368 1.43396i
\(206\) −6.62919 + 4.81639i −0.461877 + 0.335574i
\(207\) −1.35874 + 4.18177i −0.0944390 + 0.290653i
\(208\) 2.20858 0.153138
\(209\) −21.3332 + 6.61664i −1.47565 + 0.457683i
\(210\) −3.30803 −0.228276
\(211\) −1.46628 + 4.51273i −0.100943 + 0.310669i −0.988757 0.149533i \(-0.952223\pi\)
0.887814 + 0.460202i \(0.152223\pi\)
\(212\) −5.52875 + 4.01687i −0.379716 + 0.275880i
\(213\) 10.0902 + 7.33094i 0.691367 + 0.502308i
\(214\) 0.844997 + 2.60063i 0.0577628 + 0.177776i
\(215\) −11.5107 35.4264i −0.785027 2.41606i
\(216\) 0.809017 + 0.587785i 0.0550466 + 0.0399937i
\(217\) −2.87733 + 2.09050i −0.195326 + 0.141912i
\(218\) −5.09420 + 15.6783i −0.345023 + 1.06187i
\(219\) 7.04250 0.475888
\(220\) −6.56732 + 8.78885i −0.442769 + 0.592544i
\(221\) −15.4557 −1.03966
\(222\) −0.977763 + 3.00925i −0.0656232 + 0.201967i
\(223\) 23.0476 16.7450i 1.54338 1.12133i 0.595208 0.803571i \(-0.297070\pi\)
0.948171 0.317760i \(-0.102930\pi\)
\(224\) 0.809017 + 0.587785i 0.0540547 + 0.0392731i
\(225\) 1.83650 + 5.65218i 0.122434 + 0.376812i
\(226\) 0.107285 + 0.330189i 0.00713649 + 0.0219638i
\(227\) −19.5788 14.2248i −1.29949 0.944133i −0.299537 0.954085i \(-0.596832\pi\)
−0.999950 + 0.00995175i \(0.996832\pi\)
\(228\) 5.44830 3.95842i 0.360822 0.262153i
\(229\) −3.92020 + 12.0651i −0.259054 + 0.797287i 0.733950 + 0.679204i \(0.237675\pi\)
−0.993004 + 0.118083i \(0.962325\pi\)
\(230\) 14.5453 0.959090
\(231\) 3.14027 + 1.06710i 0.206615 + 0.0702099i
\(232\) −6.98752 −0.458753
\(233\) 7.13178 21.9494i 0.467218 1.43795i −0.388953 0.921258i \(-0.627163\pi\)
0.856171 0.516692i \(-0.172837\pi\)
\(234\) −1.78678 + 1.29817i −0.116805 + 0.0848641i
\(235\) 1.05033 + 0.763113i 0.0685163 + 0.0497800i
\(236\) −2.36785 7.28748i −0.154134 0.474374i
\(237\) −2.25019 6.92537i −0.146165 0.449851i
\(238\) −5.66152 4.11333i −0.366982 0.266628i
\(239\) −10.6769 + 7.75719i −0.690629 + 0.501771i −0.876867 0.480733i \(-0.840370\pi\)
0.186238 + 0.982505i \(0.440370\pi\)
\(240\) 1.02224 3.14612i 0.0659851 0.203081i
\(241\) 18.1889 1.17165 0.585827 0.810436i \(-0.300770\pi\)
0.585827 + 0.810436i \(0.300770\pi\)
\(242\) 9.06937 6.22467i 0.583001 0.400137i
\(243\) −1.00000 −0.0641500
\(244\) 1.30339 4.01142i 0.0834410 0.256805i
\(245\) 2.67625 1.94441i 0.170979 0.124224i
\(246\) −8.54250 6.20649i −0.544650 0.395711i
\(247\) 4.59620 + 14.1457i 0.292449 + 0.900066i
\(248\) −1.09904 3.38250i −0.0697892 0.214789i
\(249\) −5.29268 3.84536i −0.335410 0.243690i
\(250\) 2.52384 1.83367i 0.159621 0.115972i
\(251\) −7.04836 + 21.6926i −0.444888 + 1.36923i 0.437718 + 0.899112i \(0.355787\pi\)
−0.882606 + 0.470113i \(0.844213\pi\)
\(252\) −1.00000 −0.0629941
\(253\) −13.8077 4.69201i −0.868082 0.294984i
\(254\) 6.55535 0.411319
\(255\) −7.15364 + 22.0166i −0.447978 + 1.37873i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 1.61902 + 1.17629i 0.100992 + 0.0733749i 0.637135 0.770752i \(-0.280119\pi\)
−0.536143 + 0.844127i \(0.680119\pi\)
\(258\) −3.47964 10.7092i −0.216633 0.666728i
\(259\) −0.977763 3.00925i −0.0607552 0.186985i
\(260\) 5.91072 + 4.29439i 0.366567 + 0.266327i
\(261\) 5.65303 4.10716i 0.349913 0.254227i
\(262\) 6.12592 18.8536i 0.378460 1.16478i
\(263\) 19.7584 1.21836 0.609178 0.793034i \(-0.291500\pi\)
0.609178 + 0.793034i \(0.291500\pi\)
\(264\) −1.98527 + 2.65682i −0.122185 + 0.163516i
\(265\) −22.6068 −1.38872
\(266\) −2.08107 + 6.40486i −0.127598 + 0.392707i
\(267\) 2.99901 2.17891i 0.183536 0.133347i
\(268\) −1.67465 1.21670i −0.102296 0.0743221i
\(269\) −5.34323 16.4448i −0.325782 1.00265i −0.971086 0.238729i \(-0.923269\pi\)
0.645304 0.763926i \(-0.276731\pi\)
\(270\) 1.02224 + 3.14612i 0.0622114 + 0.191467i
\(271\) 13.7314 + 9.97647i 0.834125 + 0.606027i 0.920723 0.390216i \(-0.127600\pi\)
−0.0865984 + 0.996243i \(0.527600\pi\)
\(272\) 5.66152 4.11333i 0.343280 0.249408i
\(273\) 0.682489 2.10049i 0.0413061 0.127127i
\(274\) 17.9503 1.08442
\(275\) −18.8261 + 5.83907i −1.13526 + 0.352109i
\(276\) 4.39698 0.264667
\(277\) 6.10391 18.7859i 0.366749 1.12874i −0.582130 0.813096i \(-0.697781\pi\)
0.948879 0.315641i \(-0.102219\pi\)
\(278\) −2.64187 + 1.91943i −0.158449 + 0.115120i
\(279\) 2.87733 + 2.09050i 0.172261 + 0.125155i
\(280\) 1.02224 + 3.14612i 0.0610903 + 0.188017i
\(281\) −2.35263 7.24065i −0.140346 0.431941i 0.856037 0.516914i \(-0.172919\pi\)
−0.996383 + 0.0849735i \(0.972919\pi\)
\(282\) 0.317511 + 0.230685i 0.0189075 + 0.0137371i
\(283\) 0.0608772 0.0442299i 0.00361877 0.00262919i −0.585974 0.810330i \(-0.699288\pi\)
0.589593 + 0.807700i \(0.299288\pi\)
\(284\) 3.85410 11.8617i 0.228699 0.703863i
\(285\) 22.2778 1.31962
\(286\) −4.22570 5.98328i −0.249871 0.353799i
\(287\) 10.5591 0.623284
\(288\) 0.309017 0.951057i 0.0182090 0.0560415i
\(289\) −25.8661 + 18.7929i −1.52154 + 1.10546i
\(290\) −18.7004 13.5866i −1.09812 0.797833i
\(291\) 0.223719 + 0.688535i 0.0131146 + 0.0403627i
\(292\) −2.17625 6.69781i −0.127355 0.391960i
\(293\) −8.69446 6.31690i −0.507936 0.369037i 0.304104 0.952639i \(-0.401643\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(294\) 0.809017 0.587785i 0.0471828 0.0342803i
\(295\) 7.83290 24.1072i 0.456049 1.40357i
\(296\) 3.16411 0.183910
\(297\) 0.0444738 3.31633i 0.00258063 0.192433i
\(298\) −2.18430 −0.126533
\(299\) −3.00089 + 9.23579i −0.173546 + 0.534119i
\(300\) 4.80803 3.49324i 0.277592 0.201682i
\(301\) 9.10982 + 6.61867i 0.525081 + 0.381494i
\(302\) −1.92783 5.93326i −0.110934 0.341421i
\(303\) −3.79667 11.6849i −0.218113 0.671282i
\(304\) −5.44830 3.95842i −0.312481 0.227031i
\(305\) 11.2880 8.20125i 0.646352 0.469602i
\(306\) −2.16251 + 6.65551i −0.123622 + 0.380470i
\(307\) −17.4877 −0.998076 −0.499038 0.866580i \(-0.666313\pi\)
−0.499038 + 0.866580i \(0.666313\pi\)
\(308\) 0.0444738 3.31633i 0.00253413 0.188965i
\(309\) −8.19413 −0.466148
\(310\) 3.63566 11.1894i 0.206492 0.635516i
\(311\) −20.9564 + 15.2257i −1.18833 + 0.863372i −0.993087 0.117383i \(-0.962549\pi\)
−0.195243 + 0.980755i \(0.562549\pi\)
\(312\) 1.78678 + 1.29817i 0.101157 + 0.0734945i
\(313\) −0.800695 2.46428i −0.0452579 0.139290i 0.925874 0.377832i \(-0.123330\pi\)
−0.971132 + 0.238543i \(0.923330\pi\)
\(314\) 4.17912 + 12.8620i 0.235841 + 0.725845i
\(315\) −2.67625 1.94441i −0.150790 0.109555i
\(316\) −5.89107 + 4.28011i −0.331399 + 0.240775i
\(317\) 2.34137 7.20601i 0.131505 0.404730i −0.863525 0.504306i \(-0.831749\pi\)
0.995030 + 0.0995757i \(0.0317485\pi\)
\(318\) −6.83391 −0.383227
\(319\) 13.3693 + 18.9299i 0.748536 + 1.05987i
\(320\) −3.30803 −0.184924
\(321\) −0.844997 + 2.60063i −0.0471631 + 0.145153i
\(322\) −3.55723 + 2.58448i −0.198237 + 0.144027i
\(323\) 38.1273 + 27.7011i 2.12146 + 1.54133i
\(324\) 0.309017 + 0.951057i 0.0171676 + 0.0528365i
\(325\) 4.05607 + 12.4833i 0.224990 + 0.692448i
\(326\) 10.8541 + 7.88597i 0.601153 + 0.436763i
\(327\) −13.3368 + 9.68974i −0.737526 + 0.535844i
\(328\) −3.26294 + 10.0423i −0.180166 + 0.554494i
\(329\) −0.392465 −0.0216373
\(330\) −10.4790 + 3.25015i −0.576852 + 0.178915i
\(331\) 5.57929 0.306666 0.153333 0.988175i \(-0.450999\pi\)
0.153333 + 0.988175i \(0.450999\pi\)
\(332\) −2.02163 + 6.22192i −0.110951 + 0.341472i
\(333\) −2.55982 + 1.85982i −0.140277 + 0.101917i
\(334\) −4.17161 3.03085i −0.228260 0.165841i
\(335\) −2.11601 6.51242i −0.115610 0.355811i
\(336\) 0.309017 + 0.951057i 0.0168583 + 0.0518844i
\(337\) 0.306428 + 0.222633i 0.0166922 + 0.0121276i 0.596100 0.802910i \(-0.296716\pi\)
−0.579408 + 0.815038i \(0.696716\pi\)
\(338\) 6.57097 4.77409i 0.357414 0.259676i
\(339\) −0.107285 + 0.330189i −0.00582692 + 0.0179334i
\(340\) 23.1497 1.25547
\(341\) −7.06075 + 9.44919i −0.382361 + 0.511702i
\(342\) 6.73447 0.364158
\(343\) −0.309017 + 0.951057i −0.0166853 + 0.0513522i
\(344\) −9.10982 + 6.61867i −0.491168 + 0.356855i
\(345\) 11.7674 + 8.54952i 0.633536 + 0.460291i
\(346\) 7.45641 + 22.9485i 0.400859 + 1.23372i
\(347\) −2.13041 6.55673i −0.114366 0.351984i 0.877448 0.479672i \(-0.159244\pi\)
−0.991814 + 0.127688i \(0.959244\pi\)
\(348\) −5.65303 4.10716i −0.303034 0.220167i
\(349\) −13.2691 + 9.64055i −0.710278 + 0.516047i −0.883263 0.468877i \(-0.844659\pi\)
0.172986 + 0.984924i \(0.444659\pi\)
\(350\) −1.83650 + 5.65218i −0.0981652 + 0.302122i
\(351\) −2.20858 −0.117885
\(352\) 3.14027 + 1.06710i 0.167377 + 0.0568765i
\(353\) −31.5354 −1.67846 −0.839229 0.543778i \(-0.816993\pi\)
−0.839229 + 0.543778i \(0.816993\pi\)
\(354\) 2.36785 7.28748i 0.125850 0.387325i
\(355\) 33.3786 24.2509i 1.77155 1.28711i
\(356\) −2.99901 2.17891i −0.158947 0.115482i
\(357\) −2.16251 6.65551i −0.114452 0.352247i
\(358\) 7.05921 + 21.7260i 0.373091 + 1.14825i
\(359\) −5.68376 4.12949i −0.299977 0.217946i 0.427607 0.903965i \(-0.359357\pi\)
−0.727584 + 0.686019i \(0.759357\pi\)
\(360\) 2.67625 1.94441i 0.141051 0.102479i
\(361\) 8.14354 25.0632i 0.428607 1.31912i
\(362\) 6.59177 0.346456
\(363\) 10.9960 + 0.294979i 0.577143 + 0.0154824i
\(364\) −2.20858 −0.115761
\(365\) 7.19910 22.1565i 0.376818 1.15973i
\(366\) 3.41232 2.47919i 0.178365 0.129590i
\(367\) 17.5136 + 12.7244i 0.914201 + 0.664206i 0.942074 0.335406i \(-0.108873\pi\)
−0.0278728 + 0.999611i \(0.508873\pi\)
\(368\) −1.35874 4.18177i −0.0708292 0.217990i
\(369\) −3.26294 10.0423i −0.169862 0.522782i
\(370\) 8.46795 + 6.15232i 0.440228 + 0.319844i
\(371\) 5.52875 4.01687i 0.287039 0.208546i
\(372\) 1.09904 3.38250i 0.0569826 0.175375i
\(373\) 1.74770 0.0904925 0.0452462 0.998976i \(-0.485593\pi\)
0.0452462 + 0.998976i \(0.485593\pi\)
\(374\) −21.9757 7.46758i −1.13634 0.386139i
\(375\) 3.11963 0.161097
\(376\) 0.121278 0.373256i 0.00625445 0.0192492i
\(377\) 12.4852 9.07101i 0.643019 0.467181i
\(378\) −0.809017 0.587785i −0.0416113 0.0302324i
\(379\) −2.86173 8.80751i −0.146997 0.452412i 0.850265 0.526355i \(-0.176442\pi\)
−0.997262 + 0.0739433i \(0.976442\pi\)
\(380\) −6.88422 21.1875i −0.353153 1.08689i
\(381\) 5.30339 + 3.85314i 0.271701 + 0.197402i
\(382\) −13.5379 + 9.83583i −0.692657 + 0.503245i
\(383\) 1.44267 4.44009i 0.0737171 0.226878i −0.907408 0.420250i \(-0.861942\pi\)
0.981126 + 0.193372i \(0.0619424\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 6.56732 8.78885i 0.334702 0.447921i
\(386\) 21.1542 1.07672
\(387\) 3.47964 10.7092i 0.176880 0.544381i
\(388\) 0.585703 0.425538i 0.0297346 0.0216034i
\(389\) 13.2557 + 9.63084i 0.672091 + 0.488303i 0.870725 0.491771i \(-0.163650\pi\)
−0.198633 + 0.980074i \(0.563650\pi\)
\(390\) 2.25769 + 6.94847i 0.114323 + 0.351849i
\(391\) 9.50849 + 29.2641i 0.480865 + 1.47995i
\(392\) −0.809017 0.587785i −0.0408615 0.0296876i
\(393\) 16.0379 11.6522i 0.809003 0.587775i
\(394\) −5.65016 + 17.3894i −0.284651 + 0.876065i
\(395\) −24.0883 −1.21201
\(396\) −3.16776 + 0.982504i −0.159186 + 0.0493727i
\(397\) 25.5140 1.28051 0.640255 0.768163i \(-0.278829\pi\)
0.640255 + 0.768163i \(0.278829\pi\)
\(398\) 1.11217 3.42292i 0.0557482 0.171575i
\(399\) −5.44830 + 3.95842i −0.272756 + 0.198169i
\(400\) −4.80803 3.49324i −0.240401 0.174662i
\(401\) −6.37535 19.6213i −0.318370 0.979841i −0.974345 0.225059i \(-0.927742\pi\)
0.655975 0.754782i \(-0.272258\pi\)
\(402\) −0.639660 1.96867i −0.0319033 0.0981883i
\(403\) 6.35481 + 4.61704i 0.316556 + 0.229991i
\(404\) −9.93981 + 7.22169i −0.494524 + 0.359293i
\(405\) −1.02224 + 3.14612i −0.0507954 + 0.156332i
\(406\) 6.98752 0.346785
\(407\) −6.05391 8.57190i −0.300081 0.424893i
\(408\) 6.99802 0.346454
\(409\) −2.61155 + 8.03751i −0.129133 + 0.397429i −0.994631 0.103482i \(-0.967002\pi\)
0.865499 + 0.500911i \(0.167002\pi\)
\(410\) −28.2588 + 20.5312i −1.39560 + 1.01397i
\(411\) 14.5221 + 10.5509i 0.716324 + 0.520440i
\(412\) 2.53212 + 7.79308i 0.124749 + 0.383937i
\(413\) 2.36785 + 7.28748i 0.116514 + 0.358593i
\(414\) 3.55723 + 2.58448i 0.174828 + 0.127020i
\(415\) −17.5083 + 12.7206i −0.859451 + 0.624428i
\(416\) 0.682489 2.10049i 0.0334618 0.102985i
\(417\) −3.26553 −0.159914
\(418\) −0.299507 + 22.3337i −0.0146494 + 1.09238i
\(419\) −20.2753 −0.990512 −0.495256 0.868747i \(-0.664926\pi\)
−0.495256 + 0.868747i \(0.664926\pi\)
\(420\) −1.02224 + 3.14612i −0.0498801 + 0.153515i
\(421\) −7.33153 + 5.32667i −0.357317 + 0.259606i −0.751932 0.659241i \(-0.770878\pi\)
0.394615 + 0.918846i \(0.370878\pi\)
\(422\) 3.83876 + 2.78902i 0.186868 + 0.135767i
\(423\) 0.121278 + 0.373256i 0.00589675 + 0.0181483i
\(424\) 2.11180 + 6.49944i 0.102558 + 0.315641i
\(425\) 33.6467 + 24.4457i 1.63210 + 1.18579i
\(426\) 10.0902 7.33094i 0.488870 0.355185i
\(427\) −1.30339 + 4.01142i −0.0630755 + 0.194126i
\(428\) 2.73447 0.132175
\(429\) 0.0982239 7.32438i 0.00474230 0.353624i
\(430\) −37.2496 −1.79633
\(431\) 9.50774 29.2618i 0.457972 1.40949i −0.409639 0.912248i \(-0.634345\pi\)
0.867611 0.497244i \(-0.165655\pi\)
\(432\) 0.809017 0.587785i 0.0389238 0.0282798i
\(433\) 13.4505 + 9.77237i 0.646390 + 0.469630i 0.862040 0.506841i \(-0.169187\pi\)
−0.215649 + 0.976471i \(0.569187\pi\)
\(434\) 1.09904 + 3.38250i 0.0527557 + 0.162365i
\(435\) −7.14290 21.9836i −0.342476 1.05403i
\(436\) 13.3368 + 9.68974i 0.638716 + 0.464054i
\(437\) 23.9560 17.4051i 1.14597 0.832598i
\(438\) 2.17625 6.69781i 0.103985 0.320034i
\(439\) −14.0587 −0.670986 −0.335493 0.942043i \(-0.608903\pi\)
−0.335493 + 0.942043i \(0.608903\pi\)
\(440\) 6.32928 + 8.96180i 0.301736 + 0.427237i
\(441\) 1.00000 0.0476190
\(442\) −4.77608 + 14.6992i −0.227175 + 0.699172i
\(443\) −8.35295 + 6.06877i −0.396861 + 0.288336i −0.768261 0.640137i \(-0.778878\pi\)
0.371400 + 0.928473i \(0.378878\pi\)
\(444\) 2.55982 + 1.85982i 0.121484 + 0.0882630i
\(445\) −3.78941 11.6626i −0.179635 0.552861i
\(446\) −8.80339 27.0940i −0.416853 1.28294i
\(447\) −1.76713 1.28390i −0.0835825 0.0607262i
\(448\) 0.809017 0.587785i 0.0382225 0.0277702i
\(449\) −9.21950 + 28.3747i −0.435095 + 1.33909i 0.457894 + 0.889007i \(0.348604\pi\)
−0.892989 + 0.450078i \(0.851396\pi\)
\(450\) 5.94305 0.280158
\(451\) 33.4487 10.3744i 1.57504 0.488510i
\(452\) 0.347181 0.0163300
\(453\) 1.92783 5.93326i 0.0905775 0.278769i
\(454\) −19.5788 + 14.2248i −0.918876 + 0.667603i
\(455\) −5.91072 4.29439i −0.277099 0.201324i
\(456\) −2.08107 6.40486i −0.0974548 0.299935i
\(457\) 6.95076 + 21.3922i 0.325143 + 1.00069i 0.971376 + 0.237547i \(0.0763433\pi\)
−0.646233 + 0.763140i \(0.723657\pi\)
\(458\) 10.2632 + 7.45667i 0.479569 + 0.348427i
\(459\) −5.66152 + 4.11333i −0.264257 + 0.191994i
\(460\) 4.49475 13.8334i 0.209569 0.644987i
\(461\) 16.9679 0.790273 0.395137 0.918622i \(-0.370697\pi\)
0.395137 + 0.918622i \(0.370697\pi\)
\(462\) 1.98527 2.65682i 0.0923630 0.123607i
\(463\) 4.29997 0.199837 0.0999184 0.994996i \(-0.468142\pi\)
0.0999184 + 0.994996i \(0.468142\pi\)
\(464\) −2.15926 + 6.64553i −0.100241 + 0.308511i
\(465\) 9.51828 6.91544i 0.441400 0.320696i
\(466\) −18.6712 13.5654i −0.864928 0.628407i
\(467\) −1.24766 3.83991i −0.0577349 0.177690i 0.918030 0.396511i \(-0.129779\pi\)
−0.975765 + 0.218821i \(0.929779\pi\)
\(468\) 0.682489 + 2.10049i 0.0315481 + 0.0970950i
\(469\) 1.67465 + 1.21670i 0.0773282 + 0.0561822i
\(470\) 1.05033 0.763113i 0.0484483 0.0351998i
\(471\) −4.17912 + 12.8620i −0.192564 + 0.592650i
\(472\) −7.66251 −0.352696
\(473\) 35.3606 + 12.0159i 1.62588 + 0.552492i
\(474\) −7.28176 −0.334463
\(475\) 12.3679 38.0644i 0.567477 1.74651i
\(476\) −5.66152 + 4.11333i −0.259495 + 0.188534i
\(477\) −5.52875 4.01687i −0.253144 0.183920i
\(478\) 4.07820 + 12.5514i 0.186532 + 0.574088i
\(479\) 2.73325 + 8.41206i 0.124885 + 0.384357i 0.993880 0.110464i \(-0.0352337\pi\)
−0.868995 + 0.494821i \(0.835234\pi\)
\(480\) −2.67625 1.94441i −0.122154 0.0887498i
\(481\) −5.65357 + 4.10756i −0.257780 + 0.187288i
\(482\) 5.62069 17.2987i 0.256016 0.787935i
\(483\) −4.39698 −0.200069
\(484\) −3.11742 10.5490i −0.141701 0.479501i
\(485\) 2.39491 0.108747
\(486\) −0.309017 + 0.951057i −0.0140173 + 0.0431408i
\(487\) 14.8675 10.8018i 0.673709 0.489478i −0.197556 0.980292i \(-0.563300\pi\)
0.871265 + 0.490813i \(0.163300\pi\)
\(488\) −3.41232 2.47919i −0.154468 0.112228i
\(489\) 4.14590 + 12.7598i 0.187484 + 0.577016i
\(490\) −1.02224 3.14612i −0.0461800 0.142127i
\(491\) 17.3344 + 12.5942i 0.782290 + 0.568367i 0.905666 0.423993i \(-0.139372\pi\)
−0.123375 + 0.992360i \(0.539372\pi\)
\(492\) −8.54250 + 6.20649i −0.385125 + 0.279810i
\(493\) 15.1106 46.5056i 0.680546 2.09451i
\(494\) 14.8736 0.669196
\(495\) −10.3881 3.52999i −0.466911 0.158661i
\(496\) −3.55657 −0.159695
\(497\) −3.85410 + 11.8617i −0.172880 + 0.532070i
\(498\) −5.29268 + 3.84536i −0.237171 + 0.172315i
\(499\) −5.77948 4.19904i −0.258725 0.187975i 0.450860 0.892595i \(-0.351117\pi\)
−0.709585 + 0.704620i \(0.751117\pi\)
\(500\) −0.964020 2.96695i −0.0431123 0.132686i
\(501\) −1.59341 4.90402i −0.0711885 0.219096i
\(502\) 18.4528 + 13.4068i 0.823590 + 0.598373i
\(503\) −17.0879 + 12.4151i −0.761910 + 0.553560i −0.899496 0.436930i \(-0.856066\pi\)
0.137586 + 0.990490i \(0.456066\pi\)
\(504\) −0.309017 + 0.951057i −0.0137647 + 0.0423634i
\(505\) −40.6433 −1.80860
\(506\) −8.72917 + 11.6820i −0.388059 + 0.519328i
\(507\) 8.12217 0.360718
\(508\) 2.02571 6.23451i 0.0898766 0.276612i
\(509\) −11.3250 + 8.22807i −0.501971 + 0.364703i −0.809769 0.586749i \(-0.800408\pi\)
0.307799 + 0.951452i \(0.400408\pi\)
\(510\) 18.7285 + 13.6070i 0.829310 + 0.602529i
\(511\) 2.17625 + 6.69781i 0.0962717 + 0.296294i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) 5.44830 + 3.95842i 0.240548 + 0.174769i
\(514\) 1.61902 1.17629i 0.0714120 0.0518839i
\(515\) −8.37634 + 25.7797i −0.369106 + 1.13599i
\(516\) −11.2604 −0.495709
\(517\) −1.24323 + 0.385598i −0.0546773 + 0.0169586i
\(518\) −3.16411 −0.139023
\(519\) −7.45641 + 22.9485i −0.327300 + 1.00733i
\(520\) 5.91072 4.29439i 0.259202 0.188321i
\(521\) 23.9884 + 17.4286i 1.05095 + 0.763559i 0.972393 0.233350i \(-0.0749688\pi\)
0.0785567 + 0.996910i \(0.474969\pi\)
\(522\) −2.15926 6.64553i −0.0945084 0.290867i
\(523\) 1.96341 + 6.04275i 0.0858539 + 0.264231i 0.984762 0.173905i \(-0.0556387\pi\)
−0.898908 + 0.438136i \(0.855639\pi\)
\(524\) −16.0379 11.6522i −0.700617 0.509028i
\(525\) −4.80803 + 3.49324i −0.209840 + 0.152457i
\(526\) 6.10568 18.7914i 0.266221 0.819342i
\(527\) 24.8890 1.08418
\(528\) 1.91331 + 2.70911i 0.0832660 + 0.117899i
\(529\) −3.66661 −0.159418
\(530\) −6.98588 + 21.5003i −0.303447 + 0.933914i
\(531\) 6.19910 4.50391i 0.269018 0.195453i
\(532\) 5.44830 + 3.95842i 0.236214 + 0.171619i
\(533\) −7.20648 22.1793i −0.312147 0.960690i
\(534\) −1.14552 3.52555i −0.0495715 0.152565i
\(535\) 7.31812 + 5.31693i 0.316390 + 0.229871i
\(536\) −1.67465 + 1.21670i −0.0723339 + 0.0525537i
\(537\) −7.05921 + 21.7260i −0.304627 + 0.937546i
\(538\) −17.2910 −0.745470
\(539\) −0.0444738 + 3.31633i −0.00191562 + 0.142844i
\(540\) 3.30803 0.142355
\(541\) −4.04775 + 12.4577i −0.174026 + 0.535597i −0.999588 0.0287147i \(-0.990859\pi\)
0.825561 + 0.564312i \(0.190859\pi\)
\(542\) 13.7314 9.97647i 0.589815 0.428526i
\(543\) 5.33285 + 3.87455i 0.228855 + 0.166273i
\(544\) −2.16251 6.65551i −0.0927168 0.285353i
\(545\) 16.8517 + 51.8643i 0.721850 + 2.22162i
\(546\) −1.78678 1.29817i −0.0764671 0.0555566i
\(547\) −22.8698 + 16.6159i −0.977842 + 0.710444i −0.957225 0.289344i \(-0.906563\pi\)
−0.0206165 + 0.999787i \(0.506563\pi\)
\(548\) 5.54696 17.0718i 0.236954 0.729271i
\(549\) 4.21786 0.180014
\(550\) −0.264310 + 19.7091i −0.0112702 + 0.840399i
\(551\) −47.0573 −2.00471
\(552\) 1.35874 4.18177i 0.0578318 0.177988i
\(553\) 5.89107 4.28011i 0.250514 0.182009i
\(554\) −15.9803 11.6103i −0.678936 0.493276i
\(555\) 3.23447 + 9.95467i 0.137296 + 0.422552i
\(556\) 1.00910 + 3.10571i 0.0427956 + 0.131711i
\(557\) −1.58735 1.15328i −0.0672581 0.0488658i 0.553648 0.832751i \(-0.313235\pi\)
−0.620906 + 0.783885i \(0.713235\pi\)
\(558\) 2.87733 2.09050i 0.121807 0.0884980i
\(559\) 7.68507 23.6522i 0.325044 1.00038i
\(560\) 3.30803 0.139790
\(561\) −13.3894 18.9584i −0.565300 0.800423i
\(562\) −7.61327 −0.321146
\(563\) −4.54785 + 13.9968i −0.191669 + 0.589896i 0.808330 + 0.588729i \(0.200371\pi\)
−0.999999 + 0.00116703i \(0.999629\pi\)
\(564\) 0.317511 0.230685i 0.0133696 0.00971359i
\(565\) 0.929144 + 0.675063i 0.0390894 + 0.0284001i
\(566\) −0.0232530 0.0715654i −0.000977397 0.00300812i
\(567\) −0.309017 0.951057i −0.0129775 0.0399406i
\(568\) −10.0902 7.33094i −0.423374 0.307599i
\(569\) 19.4898 14.1602i 0.817055 0.593625i −0.0988123 0.995106i \(-0.531504\pi\)
0.915867 + 0.401481i \(0.131504\pi\)
\(570\) 6.88422 21.1875i 0.288348 0.887445i
\(571\) −8.32182 −0.348257 −0.174129 0.984723i \(-0.555711\pi\)
−0.174129 + 0.984723i \(0.555711\pi\)
\(572\) −6.99625 + 2.16994i −0.292528 + 0.0907298i
\(573\) −16.7337 −0.699061
\(574\) 3.26294 10.0423i 0.136193 0.419158i
\(575\) 21.1408 15.3597i 0.881632 0.640543i
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) −0.668368 2.05703i −0.0278245 0.0856351i 0.936180 0.351521i \(-0.114335\pi\)
−0.964004 + 0.265886i \(0.914335\pi\)
\(578\) 9.87999 + 30.4075i 0.410953 + 1.26478i
\(579\) 17.1141 + 12.4341i 0.711237 + 0.516744i
\(580\) −18.7004 + 13.5866i −0.776490 + 0.564153i
\(581\) 2.02163 6.22192i 0.0838712 0.258129i
\(582\) 0.723969 0.0300095
\(583\) 13.5672 18.1565i 0.561894 0.751966i
\(584\) −7.04250 −0.291421
\(585\) −2.25769 + 6.94847i −0.0933441 + 0.287284i
\(586\) −8.69446 + 6.31690i −0.359165 + 0.260949i
\(587\) 5.85730 + 4.25558i 0.241757 + 0.175647i 0.702066 0.712112i \(-0.252261\pi\)
−0.460309 + 0.887759i \(0.652261\pi\)
\(588\) −0.309017 0.951057i −0.0127436 0.0392209i
\(589\) −7.40146 22.7793i −0.304972 0.938607i
\(590\) −20.5068 14.8991i −0.844251 0.613384i
\(591\) −14.7923 + 10.7472i −0.608474 + 0.442082i
\(592\) 0.977763 3.00925i 0.0401858 0.123679i
\(593\) 40.2594 1.65326 0.826628 0.562749i \(-0.190256\pi\)
0.826628 + 0.562749i \(0.190256\pi\)
\(594\) −3.14027 1.06710i −0.128847 0.0437836i
\(595\) −23.1497 −0.949043
\(596\) −0.674984 + 2.07739i −0.0276484 + 0.0850932i
\(597\) 2.91171 2.11548i 0.119168 0.0865808i
\(598\) 7.85643 + 5.70803i 0.321273 + 0.233419i
\(599\) −10.7794 33.1757i −0.440436 1.35552i −0.887412 0.460977i \(-0.847499\pi\)
0.446976 0.894546i \(-0.352501\pi\)
\(600\) −1.83650 5.65218i −0.0749749 0.230749i
\(601\) 5.19159 + 3.77191i 0.211770 + 0.153860i 0.688614 0.725128i \(-0.258219\pi\)
−0.476844 + 0.878988i \(0.658219\pi\)
\(602\) 9.10982 6.61867i 0.371288 0.269757i
\(603\) 0.639660 1.96867i 0.0260490 0.0801704i
\(604\) −6.23860 −0.253845
\(605\) 12.1686 34.2934i 0.494724 1.39422i
\(606\) −12.2863 −0.499096
\(607\) −12.4967 + 38.4608i −0.507224 + 1.56108i 0.289775 + 0.957095i \(0.406420\pi\)
−0.796999 + 0.603981i \(0.793580\pi\)
\(608\) −5.44830 + 3.95842i −0.220958 + 0.160535i
\(609\) 5.65303 + 4.10716i 0.229072 + 0.166431i
\(610\) −4.31165 13.2699i −0.174574 0.537282i
\(611\) 0.267853 + 0.824367i 0.0108362 + 0.0333503i
\(612\) 5.66152 + 4.11333i 0.228853 + 0.166272i
\(613\) 16.4310 11.9378i 0.663641 0.482163i −0.204250 0.978919i \(-0.565475\pi\)
0.867891 + 0.496755i \(0.165475\pi\)
\(614\) −5.40400 + 16.6318i −0.218088 + 0.671204i
\(615\) −34.9298 −1.40851
\(616\) −3.14027 1.06710i −0.126525 0.0429946i
\(617\) 8.89924 0.358270 0.179135 0.983824i \(-0.442670\pi\)
0.179135 + 0.983824i \(0.442670\pi\)
\(618\) −2.53212 + 7.79308i −0.101857 + 0.313484i
\(619\) 25.6329 18.6234i 1.03027 0.748537i 0.0619090 0.998082i \(-0.480281\pi\)
0.968363 + 0.249545i \(0.0802811\pi\)
\(620\) −9.51828 6.91544i −0.382263 0.277731i
\(621\) 1.35874 + 4.18177i 0.0545244 + 0.167809i
\(622\) 8.00464 + 24.6357i 0.320957 + 0.987803i
\(623\) 2.99901 + 2.17891i 0.120153 + 0.0872961i
\(624\) 1.78678 1.29817i 0.0715285 0.0519685i
\(625\) −5.99351 + 18.4461i −0.239740 + 0.737845i
\(626\) −2.59110 −0.103561
\(627\) −13.3697 + 17.8923i −0.533935 + 0.714549i
\(628\) 13.5239 0.539663
\(629\) −6.84241 + 21.0588i −0.272825 + 0.839668i
\(630\) −2.67625 + 1.94441i −0.106624 + 0.0774672i
\(631\) −28.8603 20.9682i −1.14891 0.834733i −0.160575 0.987024i \(-0.551335\pi\)
−0.988336 + 0.152291i \(0.951335\pi\)
\(632\) 2.25019 + 6.92537i 0.0895077 + 0.275476i
\(633\) 1.46628 + 4.51273i 0.0582792 + 0.179365i
\(634\) −6.12980 4.45356i −0.243445 0.176873i
\(635\) 17.5438 12.7463i 0.696203 0.505821i
\(636\) −2.11180 + 6.49944i −0.0837381 + 0.257720i
\(637\) 2.20858 0.0875072
\(638\) 22.1348 6.86527i 0.876324 0.271799i
\(639\) 12.4721 0.493390
\(640\) −1.02224 + 3.14612i −0.0404075 + 0.124361i
\(641\) −35.9668 + 26.1314i −1.42060 + 1.03213i −0.428931 + 0.903337i \(0.641110\pi\)
−0.991672 + 0.128791i \(0.958890\pi\)
\(642\) 2.21223 + 1.60728i 0.0873098 + 0.0634343i
\(643\) −10.5884 32.5877i −0.417566 1.28513i −0.909936 0.414749i \(-0.863869\pi\)
0.492370 0.870386i \(-0.336131\pi\)
\(644\) 1.35874 + 4.18177i 0.0535419 + 0.164785i
\(645\) −30.1355 21.8947i −1.18659 0.862105i
\(646\) 38.1273 27.7011i 1.50010 1.08989i
\(647\) 7.10906 21.8794i 0.279486 0.860169i −0.708512 0.705699i \(-0.750633\pi\)
0.987997 0.154470i \(-0.0493670\pi\)
\(648\) 1.00000 0.0392837
\(649\) 14.6607 + 20.7585i 0.575484 + 0.814844i
\(650\) 13.1257 0.514833
\(651\) −1.09904 + 3.38250i −0.0430748 + 0.132571i
\(652\) 10.8541 7.88597i 0.425079 0.308838i
\(653\) 1.24268 + 0.902863i 0.0486300 + 0.0353318i 0.611835 0.790986i \(-0.290432\pi\)
−0.563205 + 0.826317i \(0.690432\pi\)
\(654\) 5.09420 + 15.6783i 0.199199 + 0.613071i
\(655\) −20.2647 62.3683i −0.791807 2.43693i
\(656\) 8.54250 + 6.20649i 0.333528 + 0.242323i
\(657\) 5.69750 4.13948i 0.222281 0.161496i
\(658\) −0.121278 + 0.373256i −0.00472792 + 0.0145510i
\(659\) −12.9361 −0.503921 −0.251960 0.967738i \(-0.581075\pi\)
−0.251960 + 0.967738i \(0.581075\pi\)
\(660\) −0.147120 + 10.9705i −0.00572666 + 0.427026i
\(661\) −28.9632 −1.12654 −0.563270 0.826273i \(-0.690457\pi\)
−0.563270 + 0.826273i \(0.690457\pi\)
\(662\) 1.72410 5.30622i 0.0670089 0.206232i
\(663\) −12.5039 + 9.08463i −0.485612 + 0.352818i
\(664\) 5.29268 + 3.84536i 0.205396 + 0.149229i
\(665\) 6.88422 + 21.1875i 0.266959 + 0.821614i
\(666\) 0.977763 + 3.00925i 0.0378876 + 0.116606i
\(667\) −24.8562 18.0591i −0.962436 0.699251i
\(668\) −4.17161 + 3.03085i −0.161405 + 0.117267i
\(669\) 8.80339 27.0940i 0.340359 1.04752i
\(670\) −6.84756 −0.264544
\(671\) −0.187584 + 13.9878i −0.00724160 + 0.539993i
\(672\) 1.00000 0.0385758
\(673\) 11.9213 36.6900i 0.459532 1.41429i −0.406199 0.913785i \(-0.633146\pi\)
0.865731 0.500510i \(-0.166854\pi\)
\(674\) 0.306428 0.222633i 0.0118032 0.00857550i
\(675\) 4.80803 + 3.49324i 0.185061 + 0.134455i
\(676\) −2.50989 7.72464i −0.0965341 0.297102i
\(677\) 12.3343 + 37.9610i 0.474045 + 1.45896i 0.847241 + 0.531209i \(0.178262\pi\)
−0.373196 + 0.927753i \(0.621738\pi\)
\(678\) 0.280876 + 0.204068i 0.0107870 + 0.00783718i
\(679\) −0.585703 + 0.425538i −0.0224772 + 0.0163307i
\(680\) 7.15364 22.0166i 0.274329 0.844299i
\(681\) −24.2007 −0.927372
\(682\) 6.80482 + 9.63513i 0.260570 + 0.368948i
\(683\) 25.3924 0.971611 0.485806 0.874067i \(-0.338526\pi\)
0.485806 + 0.874067i \(0.338526\pi\)
\(684\) 2.08107 6.40486i 0.0795715 0.244896i
\(685\) 48.0396 34.9028i 1.83550 1.33357i
\(686\) 0.809017 + 0.587785i 0.0308884 + 0.0224417i
\(687\) 3.92020 + 12.0651i 0.149565 + 0.460314i
\(688\) 3.47964 + 10.7092i 0.132660 + 0.408286i
\(689\) −12.2107 8.87159i −0.465191 0.337981i
\(690\) 11.7674 8.54952i 0.447978 0.325475i
\(691\) −4.77557 + 14.6977i −0.181671 + 0.559127i −0.999875 0.0158016i \(-0.994970\pi\)
0.818204 + 0.574928i \(0.194970\pi\)
\(692\) 24.1295 0.917265
\(693\) 3.16776 0.982504i 0.120333 0.0373222i
\(694\) −6.89415 −0.261698
\(695\) −3.33815 + 10.2738i −0.126623 + 0.389706i
\(696\) −5.65303 + 4.10716i −0.214277 + 0.155682i
\(697\) −59.7806 43.4331i −2.26435 1.64515i
\(698\) 5.06834 + 15.5987i 0.191839 + 0.590421i
\(699\) −7.13178 21.9494i −0.269749 0.830201i
\(700\) 4.80803 + 3.49324i 0.181726 + 0.132032i
\(701\) 5.70854 4.14750i 0.215608 0.156649i −0.474739 0.880127i \(-0.657458\pi\)
0.690348 + 0.723478i \(0.257458\pi\)
\(702\) −0.682489 + 2.10049i −0.0257589 + 0.0792777i
\(703\) 21.3086 0.803668
\(704\) 1.98527 2.65682i 0.0748226 0.100133i
\(705\) 1.29828 0.0488962
\(706\) −9.74497 + 29.9919i −0.366757 + 1.12876i
\(707\) 9.93981 7.22169i 0.373825 0.271600i
\(708\) −6.19910 4.50391i −0.232976 0.169267i
\(709\) 1.85534 + 5.71015i 0.0696788 + 0.214449i 0.979832 0.199822i \(-0.0640364\pi\)
−0.910153 + 0.414271i \(0.864036\pi\)
\(710\) −12.7495 39.2389i −0.478479 1.47261i
\(711\) −5.89107 4.28011i −0.220932 0.160517i
\(712\) −2.99901 + 2.17891i −0.112393 + 0.0816581i
\(713\) 4.83246 14.8728i 0.180977 0.556990i
\(714\) −6.99802 −0.261894
\(715\) −22.9430 7.79627i −0.858019 0.291564i
\(716\) 22.8441 0.853723
\(717\) −4.07820 + 12.5514i −0.152303 + 0.468741i
\(718\) −5.68376 + 4.12949i −0.212116 + 0.154111i
\(719\) −39.5580 28.7406i −1.47527 1.07184i −0.979045 0.203646i \(-0.934721\pi\)
−0.496221 0.868197i \(-0.665279\pi\)
\(720\) −1.02224 3.14612i −0.0380965 0.117249i
\(721\) −2.53212 7.79308i −0.0943012 0.290229i
\(722\) −21.3201 15.4899i −0.793451 0.576476i
\(723\) 14.7152 10.6912i 0.547263 0.397610i
\(724\) 2.03697 6.26915i 0.0757034 0.232991i
\(725\) −41.5272 −1.54228
\(726\) 3.67851 10.3667i 0.136522 0.384745i
\(727\) −30.0098 −1.11300 −0.556502 0.830847i \(-0.687857\pi\)
−0.556502 + 0.830847i \(0.687857\pi\)
\(728\) −0.682489 + 2.10049i −0.0252947 + 0.0778492i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) −18.8475 13.6935i −0.697577 0.506819i
\(731\) −24.3506 74.9434i −0.900640 2.77188i
\(732\) −1.30339 4.01142i −0.0481747 0.148266i
\(733\) 20.4352 + 14.8470i 0.754790 + 0.548387i 0.897308 0.441405i \(-0.145520\pi\)
−0.142518 + 0.989792i \(0.545520\pi\)
\(734\) 17.5136 12.7244i 0.646438 0.469665i
\(735\) 1.02224 3.14612i 0.0377058 0.116046i
\(736\) −4.39698 −0.162075
\(737\) 6.50030 + 2.20887i 0.239442 + 0.0813649i
\(738\) −10.5591 −0.388686
\(739\) −1.56682 + 4.82217i −0.0576363 + 0.177386i −0.975730 0.218977i \(-0.929728\pi\)
0.918094 + 0.396363i \(0.129728\pi\)
\(740\) 8.46795 6.15232i 0.311288 0.226164i
\(741\) 12.0330 + 8.74250i 0.442044 + 0.321164i
\(742\) −2.11180 6.49944i −0.0775265 0.238602i
\(743\) −2.43333 7.48903i −0.0892703 0.274746i 0.896448 0.443149i \(-0.146139\pi\)
−0.985718 + 0.168403i \(0.946139\pi\)
\(744\) −2.87733 2.09050i −0.105488 0.0766415i
\(745\) −5.84572 + 4.24717i −0.214171 + 0.155604i
\(746\) 0.540069 1.66216i 0.0197733 0.0608561i
\(747\) −6.54212 −0.239364
\(748\) −13.8929 + 18.5925i −0.507977 + 0.679809i
\(749\) −2.73447 −0.0999153
\(750\) 0.964020 2.96695i 0.0352010 0.108338i
\(751\) 20.9194 15.1989i 0.763361 0.554615i −0.136578 0.990629i \(-0.543610\pi\)
0.899940 + 0.436015i \(0.143610\pi\)
\(752\) −0.317511 0.230685i −0.0115784 0.00841222i
\(753\) 7.04836 + 21.6926i 0.256856 + 0.790523i
\(754\) −4.76891 14.6772i −0.173673 0.534512i
\(755\) −16.6961 12.1304i −0.607632 0.441470i
\(756\) −0.809017 + 0.587785i −0.0294237 + 0.0213775i
\(757\) −3.00051 + 9.23462i −0.109055 + 0.335638i −0.990661 0.136349i \(-0.956463\pi\)
0.881605 + 0.471987i \(0.156463\pi\)
\(758\) −9.26077 −0.336366
\(759\) −13.9286 + 4.32005i −0.505574 + 0.156808i
\(760\) −22.2778 −0.808101
\(761\) 9.60433 29.5591i 0.348157 1.07152i −0.611715 0.791078i \(-0.709520\pi\)
0.959872 0.280439i \(-0.0904799\pi\)
\(762\) 5.30339 3.85314i 0.192122 0.139584i
\(763\) −13.3368 9.68974i −0.482824 0.350792i
\(764\) 5.17100 + 15.9147i 0.187080 + 0.575774i
\(765\) 7.15364 + 22.0166i 0.258640 + 0.796013i
\(766\) −3.77696 2.74412i −0.136467 0.0991493i
\(767\) 13.6912 9.94725i 0.494361 0.359174i
\(768\) −0.309017 + 0.951057i −0.0111507 + 0.0343183i
\(769\) 21.7811 0.785445 0.392723 0.919657i \(-0.371533\pi\)
0.392723 + 0.919657i \(0.371533\pi\)
\(770\) −6.32928 8.96180i −0.228091 0.322961i
\(771\) 2.00122 0.0720723
\(772\) 6.53700 20.1188i 0.235272 0.724092i
\(773\) −40.6447 + 29.5301i −1.46189 + 1.06212i −0.479020 + 0.877804i \(0.659008\pi\)
−0.982867 + 0.184319i \(0.940992\pi\)