Properties

Label 462.2.j.f.169.1
Level $462$
Weight $2$
Character 462.169
Analytic conductor $3.689$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.1
Defining polynomial: \(x^{8} - 2 x^{6} + 4 x^{4} - 8 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 169.1
Root \(-0.831254 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 462.169
Dual form 462.2.j.f.421.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-2.65401 + 1.92825i) q^{5} +(0.809017 - 0.587785i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.809017 - 0.587785i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-2.65401 + 1.92825i) q^{5} +(0.809017 - 0.587785i) q^{6} +(-0.309017 - 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.809017 - 0.587785i) q^{9} +3.28054 q^{10} +(2.53598 + 2.13748i) q^{11} -1.00000 q^{12} +(-2.52125 - 1.83179i) q^{13} +(-0.309017 + 0.951057i) q^{14} +(-1.01374 - 3.11998i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-3.18999 + 2.31767i) q^{17} +(0.309017 + 0.951057i) q^{18} +(1.74456 - 5.36921i) q^{19} +(-2.65401 - 1.92825i) q^{20} +1.00000 q^{21} +(-0.795274 - 3.21987i) q^{22} -4.33551 q^{23} +(0.809017 + 0.587785i) q^{24} +(1.78054 - 5.47994i) q^{25} +(0.963031 + 2.96390i) q^{26} +(0.809017 - 0.587785i) q^{27} +(0.809017 - 0.587785i) q^{28} +(-3.11180 - 9.57712i) q^{29} +(-1.01374 + 3.11998i) q^{30} +(-8.56473 - 6.22264i) q^{31} +1.00000 q^{32} +(-2.81652 + 1.75134i) q^{33} +3.94305 q^{34} +(2.65401 + 1.92825i) q^{35} +(0.309017 - 0.951057i) q^{36} +(0.249811 + 0.768840i) q^{37} +(-4.56732 + 3.31835i) q^{38} +(2.52125 - 1.83179i) q^{39} +(1.01374 + 3.11998i) q^{40} +(0.864979 - 2.66213i) q^{41} +(-0.809017 - 0.587785i) q^{42} +8.17461 q^{43} +(-1.24920 + 3.07238i) q^{44} +3.28054 q^{45} +(3.50750 + 2.54835i) q^{46} +(-3.52125 + 10.8373i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(-0.809017 + 0.587785i) q^{49} +(-4.66152 + 3.38679i) q^{50} +(-1.21847 - 3.75006i) q^{51} +(0.963031 - 2.96390i) q^{52} +(1.41696 + 1.02948i) q^{53} -1.00000 q^{54} +(-10.8521 - 0.782879i) q^{55} -1.00000 q^{56} +(4.56732 + 3.31835i) q^{57} +(-3.11180 + 9.57712i) q^{58} +(-2.68536 - 8.26468i) q^{59} +(2.65401 - 1.92825i) q^{60} +(-7.12714 + 5.17817i) q^{61} +(3.27144 + 10.0684i) q^{62} +(-0.309017 + 0.951057i) q^{63} +(-0.809017 - 0.587785i) q^{64} +10.2236 q^{65} +(3.30803 + 0.238643i) q^{66} -10.9875 q^{67} +(-3.18999 - 2.31767i) q^{68} +(1.33975 - 4.12332i) q^{69} +(-1.01374 - 3.11998i) q^{70} +(-2.85410 + 2.07363i) q^{71} +(-0.809017 + 0.587785i) q^{72} +(0.196232 + 0.603941i) q^{73} +(0.249811 - 0.768840i) q^{74} +(4.66152 + 3.38679i) q^{75} +5.64552 q^{76} +(1.24920 - 3.07238i) q^{77} -3.11643 q^{78} +(9.41232 + 6.83845i) q^{79} +(1.01374 - 3.11998i) q^{80} +(0.309017 + 0.951057i) q^{81} +(-2.26454 + 1.64529i) q^{82} +(-12.5071 + 9.08696i) q^{83} +(0.309017 + 0.951057i) q^{84} +(3.99724 - 12.3022i) q^{85} +(-6.61340 - 4.80491i) q^{86} +10.0700 q^{87} +(2.81652 - 1.75134i) q^{88} +7.99802 q^{89} +(-2.65401 - 1.92825i) q^{90} +(-0.963031 + 2.96390i) q^{91} +(-1.33975 - 4.12332i) q^{92} +(8.56473 - 6.22264i) q^{93} +(9.21875 - 6.69781i) q^{94} +(5.72311 + 17.6139i) q^{95} +(-0.309017 + 0.951057i) q^{96} +(11.0500 + 8.02830i) q^{97} +1.00000 q^{98} +(-0.795274 - 3.21987i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 6 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} + O(q^{10}) \) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 6 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} + 4 q^{10} + 14 q^{11} - 8 q^{12} + 8 q^{13} + 2 q^{14} - 4 q^{15} - 2 q^{16} - 4 q^{17} - 2 q^{18} - 2 q^{19} - 6 q^{20} + 8 q^{21} - 6 q^{22} + 4 q^{23} + 2 q^{24} - 8 q^{25} - 12 q^{26} + 2 q^{27} + 2 q^{28} + 4 q^{29} - 4 q^{30} - 10 q^{31} + 8 q^{32} + 6 q^{33} - 4 q^{34} + 6 q^{35} - 2 q^{36} - 20 q^{37} - 12 q^{38} - 8 q^{39} + 4 q^{40} + 12 q^{41} - 2 q^{42} + 48 q^{43} - 6 q^{44} + 4 q^{45} + 4 q^{46} + 2 q^{48} - 2 q^{49} + 2 q^{50} - 6 q^{51} - 12 q^{52} - 12 q^{53} - 8 q^{54} - 8 q^{55} - 8 q^{56} + 12 q^{57} + 4 q^{58} + 12 q^{59} + 6 q^{60} - 32 q^{61} + 20 q^{62} + 2 q^{63} - 2 q^{64} + 24 q^{65} - 4 q^{66} - 48 q^{67} - 4 q^{68} + 6 q^{69} - 4 q^{70} + 4 q^{71} - 2 q^{72} - 20 q^{74} - 2 q^{75} + 28 q^{76} + 6 q^{77} - 8 q^{78} + 40 q^{79} + 4 q^{80} - 2 q^{81} - 18 q^{82} - 32 q^{83} - 2 q^{84} - 42 q^{85} - 32 q^{86} + 16 q^{87} - 6 q^{88} + 12 q^{89} - 6 q^{90} + 12 q^{91} - 6 q^{92} + 10 q^{93} + 54 q^{95} + 2 q^{96} + 8 q^{97} + 8 q^{98} - 6 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) −2.65401 + 1.92825i −1.18691 + 0.862341i −0.992934 0.118665i \(-0.962139\pi\)
−0.193977 + 0.981006i \(0.562139\pi\)
\(6\) 0.809017 0.587785i 0.330280 0.239962i
\(7\) −0.309017 0.951057i −0.116797 0.359466i
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 3.28054 1.03740
\(11\) 2.53598 + 2.13748i 0.764627 + 0.644473i
\(12\) −1.00000 −0.288675
\(13\) −2.52125 1.83179i −0.699268 0.508048i 0.180425 0.983589i \(-0.442253\pi\)
−0.879694 + 0.475540i \(0.842253\pi\)
\(14\) −0.309017 + 0.951057i −0.0825883 + 0.254181i
\(15\) −1.01374 3.11998i −0.261747 0.805576i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −3.18999 + 2.31767i −0.773687 + 0.562117i −0.903078 0.429477i \(-0.858698\pi\)
0.129391 + 0.991594i \(0.458698\pi\)
\(18\) 0.309017 + 0.951057i 0.0728360 + 0.224166i
\(19\) 1.74456 5.36921i 0.400230 1.23178i −0.524583 0.851359i \(-0.675779\pi\)
0.924813 0.380422i \(-0.124221\pi\)
\(20\) −2.65401 1.92825i −0.593456 0.431171i
\(21\) 1.00000 0.218218
\(22\) −0.795274 3.21987i −0.169553 0.686478i
\(23\) −4.33551 −0.904017 −0.452009 0.892014i \(-0.649292\pi\)
−0.452009 + 0.892014i \(0.649292\pi\)
\(24\) 0.809017 + 0.587785i 0.165140 + 0.119981i
\(25\) 1.78054 5.47994i 0.356108 1.09599i
\(26\) 0.963031 + 2.96390i 0.188866 + 0.581270i
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0.809017 0.587785i 0.152890 0.111081i
\(29\) −3.11180 9.57712i −0.577846 1.77843i −0.626277 0.779600i \(-0.715422\pi\)
0.0484313 0.998827i \(-0.484578\pi\)
\(30\) −1.01374 + 3.11998i −0.185083 + 0.569628i
\(31\) −8.56473 6.22264i −1.53827 1.11762i −0.951408 0.307934i \(-0.900362\pi\)
−0.586864 0.809686i \(-0.699638\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.81652 + 1.75134i −0.490294 + 0.304870i
\(34\) 3.94305 0.676227
\(35\) 2.65401 + 1.92825i 0.448610 + 0.325934i
\(36\) 0.309017 0.951057i 0.0515028 0.158509i
\(37\) 0.249811 + 0.768840i 0.0410687 + 0.126396i 0.969489 0.245136i \(-0.0788325\pi\)
−0.928420 + 0.371532i \(0.878833\pi\)
\(38\) −4.56732 + 3.31835i −0.740917 + 0.538308i
\(39\) 2.52125 1.83179i 0.403723 0.293322i
\(40\) 1.01374 + 3.11998i 0.160287 + 0.493312i
\(41\) 0.864979 2.66213i 0.135087 0.415755i −0.860517 0.509422i \(-0.829859\pi\)
0.995604 + 0.0936675i \(0.0298591\pi\)
\(42\) −0.809017 0.587785i −0.124834 0.0906972i
\(43\) 8.17461 1.24662 0.623308 0.781976i \(-0.285788\pi\)
0.623308 + 0.781976i \(0.285788\pi\)
\(44\) −1.24920 + 3.07238i −0.188324 + 0.463178i
\(45\) 3.28054 0.489034
\(46\) 3.50750 + 2.54835i 0.517153 + 0.375734i
\(47\) −3.52125 + 10.8373i −0.513627 + 1.58078i 0.272140 + 0.962258i \(0.412269\pi\)
−0.785767 + 0.618523i \(0.787731\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) −4.66152 + 3.38679i −0.659238 + 0.478965i
\(51\) −1.21847 3.75006i −0.170620 0.525114i
\(52\) 0.963031 2.96390i 0.133548 0.411020i
\(53\) 1.41696 + 1.02948i 0.194634 + 0.141410i 0.680834 0.732438i \(-0.261617\pi\)
−0.486200 + 0.873847i \(0.661617\pi\)
\(54\) −1.00000 −0.136083
\(55\) −10.8521 0.782879i −1.46330 0.105563i
\(56\) −1.00000 −0.133631
\(57\) 4.56732 + 3.31835i 0.604957 + 0.439527i
\(58\) −3.11180 + 9.57712i −0.408599 + 1.25754i
\(59\) −2.68536 8.26468i −0.349604 1.07597i −0.959073 0.283159i \(-0.908617\pi\)
0.609469 0.792810i \(-0.291383\pi\)
\(60\) 2.65401 1.92825i 0.342632 0.248937i
\(61\) −7.12714 + 5.17817i −0.912537 + 0.662997i −0.941655 0.336579i \(-0.890730\pi\)
0.0291185 + 0.999576i \(0.490730\pi\)
\(62\) 3.27144 + 10.0684i 0.415473 + 1.27869i
\(63\) −0.309017 + 0.951057i −0.0389325 + 0.119822i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 10.2236 1.26808
\(66\) 3.30803 + 0.238643i 0.407190 + 0.0293749i
\(67\) −10.9875 −1.34234 −0.671170 0.741304i \(-0.734208\pi\)
−0.671170 + 0.741304i \(0.734208\pi\)
\(68\) −3.18999 2.31767i −0.386844 0.281058i
\(69\) 1.33975 4.12332i 0.161287 0.496389i
\(70\) −1.01374 3.11998i −0.121165 0.372909i
\(71\) −2.85410 + 2.07363i −0.338720 + 0.246094i −0.744121 0.668044i \(-0.767132\pi\)
0.405402 + 0.914139i \(0.367132\pi\)
\(72\) −0.809017 + 0.587785i −0.0953436 + 0.0692712i
\(73\) 0.196232 + 0.603941i 0.0229673 + 0.0706860i 0.961883 0.273461i \(-0.0881683\pi\)
−0.938916 + 0.344147i \(0.888168\pi\)
\(74\) 0.249811 0.768840i 0.0290400 0.0893758i
\(75\) 4.66152 + 3.38679i 0.538266 + 0.391073i
\(76\) 5.64552 0.647586
\(77\) 1.24920 3.07238i 0.142360 0.350130i
\(78\) −3.11643 −0.352867
\(79\) 9.41232 + 6.83845i 1.05897 + 0.769386i 0.973897 0.226989i \(-0.0728882\pi\)
0.0850713 + 0.996375i \(0.472888\pi\)
\(80\) 1.01374 3.11998i 0.113340 0.348824i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −2.26454 + 1.64529i −0.250077 + 0.181692i
\(83\) −12.5071 + 9.08696i −1.37284 + 0.997423i −0.375326 + 0.926893i \(0.622469\pi\)
−0.997510 + 0.0705305i \(0.977531\pi\)
\(84\) 0.309017 + 0.951057i 0.0337165 + 0.103769i
\(85\) 3.99724 12.3022i 0.433561 1.33437i
\(86\) −6.61340 4.80491i −0.713141 0.518127i
\(87\) 10.0700 1.07962
\(88\) 2.81652 1.75134i 0.300242 0.186694i
\(89\) 7.99802 0.847789 0.423894 0.905712i \(-0.360663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(90\) −2.65401 1.92825i −0.279758 0.203256i
\(91\) −0.963031 + 2.96390i −0.100953 + 0.310702i
\(92\) −1.33975 4.12332i −0.139678 0.429886i
\(93\) 8.56473 6.22264i 0.888121 0.645258i
\(94\) 9.21875 6.69781i 0.950841 0.690827i
\(95\) 5.72311 + 17.6139i 0.587178 + 1.80715i
\(96\) −0.309017 + 0.951057i −0.0315389 + 0.0970668i
\(97\) 11.0500 + 8.02830i 1.12196 + 0.815150i 0.984505 0.175358i \(-0.0561084\pi\)
0.137453 + 0.990508i \(0.456108\pi\)
\(98\) 1.00000 0.101015
\(99\) −0.795274 3.21987i −0.0799280 0.323609i
\(100\) 5.76195 0.576195
\(101\) −4.12295 2.99550i −0.410249 0.298063i 0.363454 0.931612i \(-0.381597\pi\)
−0.773703 + 0.633549i \(0.781597\pi\)
\(102\) −1.21847 + 3.75006i −0.120646 + 0.371312i
\(103\) 0.384221 + 1.18251i 0.0378585 + 0.116516i 0.968200 0.250179i \(-0.0804893\pi\)
−0.930341 + 0.366695i \(0.880489\pi\)
\(104\) −2.52125 + 1.83179i −0.247229 + 0.179622i
\(105\) −2.65401 + 1.92825i −0.259005 + 0.188178i
\(106\) −0.541229 1.66573i −0.0525689 0.161790i
\(107\) 0.508494 1.56498i 0.0491579 0.151293i −0.923464 0.383684i \(-0.874655\pi\)
0.972622 + 0.232392i \(0.0746551\pi\)
\(108\) 0.809017 + 0.587785i 0.0778477 + 0.0565597i
\(109\) 5.69771 0.545741 0.272871 0.962051i \(-0.412027\pi\)
0.272871 + 0.962051i \(0.412027\pi\)
\(110\) 8.31939 + 7.01208i 0.793223 + 0.668576i
\(111\) −0.808406 −0.0767305
\(112\) 0.809017 + 0.587785i 0.0764449 + 0.0555405i
\(113\) 4.70336 14.4755i 0.442455 1.36174i −0.442796 0.896622i \(-0.646013\pi\)
0.885251 0.465114i \(-0.153987\pi\)
\(114\) −1.74456 5.36921i −0.163393 0.502872i
\(115\) 11.5065 8.35997i 1.07299 0.779572i
\(116\) 8.14679 5.91899i 0.756410 0.549564i
\(117\) 0.963031 + 2.96390i 0.0890322 + 0.274013i
\(118\) −2.68536 + 8.26468i −0.247207 + 0.760825i
\(119\) 3.18999 + 2.31767i 0.292426 + 0.212460i
\(120\) −3.28054 −0.299471
\(121\) 1.86239 + 10.8412i 0.169308 + 0.985563i
\(122\) 8.80963 0.797586
\(123\) 2.26454 + 1.64529i 0.204187 + 0.148351i
\(124\) 3.27144 10.0684i 0.293784 0.904173i
\(125\) 0.772426 + 2.37728i 0.0690879 + 0.212631i
\(126\) 0.809017 0.587785i 0.0720730 0.0523641i
\(127\) −8.18696 + 5.94817i −0.726475 + 0.527815i −0.888446 0.458981i \(-0.848215\pi\)
0.161971 + 0.986795i \(0.448215\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) −2.52609 + 7.77451i −0.222410 + 0.684508i
\(130\) −8.27106 6.00928i −0.725420 0.527048i
\(131\) −21.0939 −1.84298 −0.921492 0.388396i \(-0.873029\pi\)
−0.921492 + 0.388396i \(0.873029\pi\)
\(132\) −2.53598 2.13748i −0.220729 0.186043i
\(133\) −5.64552 −0.489529
\(134\) 8.88909 + 6.45830i 0.767901 + 0.557913i
\(135\) −1.01374 + 3.11998i −0.0872491 + 0.268525i
\(136\) 1.21847 + 3.75006i 0.104483 + 0.321565i
\(137\) −8.50447 + 6.17886i −0.726586 + 0.527895i −0.888481 0.458912i \(-0.848239\pi\)
0.161896 + 0.986808i \(0.448239\pi\)
\(138\) −3.50750 + 2.54835i −0.298579 + 0.216930i
\(139\) 1.34561 + 4.14136i 0.114133 + 0.351265i 0.991765 0.128069i \(-0.0408780\pi\)
−0.877632 + 0.479335i \(0.840878\pi\)
\(140\) −1.01374 + 3.11998i −0.0856769 + 0.263686i
\(141\) −9.21875 6.69781i −0.776359 0.564057i
\(142\) 3.52786 0.296052
\(143\) −2.47842 10.0345i −0.207256 0.839127i
\(144\) 1.00000 0.0833333
\(145\) 26.7259 + 19.4175i 2.21946 + 1.61253i
\(146\) 0.196232 0.603941i 0.0162403 0.0499825i
\(147\) −0.309017 0.951057i −0.0254873 0.0784418i
\(148\) −0.654014 + 0.475169i −0.0537596 + 0.0390587i
\(149\) 1.37999 1.00262i 0.113053 0.0821378i −0.529822 0.848109i \(-0.677741\pi\)
0.642875 + 0.765971i \(0.277741\pi\)
\(150\) −1.78054 5.47994i −0.145381 0.447436i
\(151\) −0.788424 + 2.42652i −0.0641611 + 0.197467i −0.977998 0.208614i \(-0.933105\pi\)
0.913837 + 0.406081i \(0.133105\pi\)
\(152\) −4.56732 3.31835i −0.370459 0.269154i
\(153\) 3.94305 0.318777
\(154\) −2.81652 + 1.75134i −0.226962 + 0.141127i
\(155\) 34.7298 2.78956
\(156\) 2.52125 + 1.83179i 0.201861 + 0.146661i
\(157\) 0.181095 0.557354i 0.0144530 0.0444817i −0.943570 0.331173i \(-0.892556\pi\)
0.958023 + 0.286692i \(0.0925555\pi\)
\(158\) −3.59519 11.0648i −0.286018 0.880272i
\(159\) −1.41696 + 1.02948i −0.112372 + 0.0816430i
\(160\) −2.65401 + 1.92825i −0.209818 + 0.152442i
\(161\) 1.33975 + 4.12332i 0.105587 + 0.324963i
\(162\) 0.309017 0.951057i 0.0242787 0.0747221i
\(163\) −10.8541 7.88597i −0.850159 0.617677i 0.0750310 0.997181i \(-0.476094\pi\)
−0.925190 + 0.379505i \(0.876094\pi\)
\(164\) 2.79913 0.218575
\(165\) 4.09805 10.0791i 0.319033 0.784654i
\(166\) 15.4597 1.19990
\(167\) 1.74661 + 1.26899i 0.135157 + 0.0981972i 0.653309 0.757091i \(-0.273380\pi\)
−0.518153 + 0.855288i \(0.673380\pi\)
\(168\) 0.309017 0.951057i 0.0238412 0.0733756i
\(169\) −1.01600 3.12692i −0.0781537 0.240532i
\(170\) −10.4649 + 7.60320i −0.802622 + 0.583139i
\(171\) −4.56732 + 3.31835i −0.349272 + 0.253761i
\(172\) 2.52609 + 7.77451i 0.192613 + 0.592801i
\(173\) 3.71994 11.4488i 0.282822 0.870436i −0.704221 0.709981i \(-0.748704\pi\)
0.987043 0.160456i \(-0.0512964\pi\)
\(174\) −8.14679 5.91899i −0.617606 0.448717i
\(175\) −5.76195 −0.435563
\(176\) −3.30803 0.238643i −0.249352 0.0179884i
\(177\) 8.68999 0.653180
\(178\) −6.47054 4.70112i −0.484987 0.352364i
\(179\) −5.00502 + 15.4039i −0.374092 + 1.15134i 0.569996 + 0.821647i \(0.306945\pi\)
−0.944089 + 0.329691i \(0.893055\pi\)
\(180\) 1.01374 + 3.11998i 0.0755600 + 0.232550i
\(181\) 6.44929 4.68568i 0.479372 0.348284i −0.321711 0.946838i \(-0.604258\pi\)
0.801082 + 0.598554i \(0.204258\pi\)
\(182\) 2.52125 1.83179i 0.186887 0.135782i
\(183\) −2.72232 8.37845i −0.201240 0.619353i
\(184\) −1.33975 + 4.12332i −0.0987675 + 0.303975i
\(185\) −2.14552 1.55881i −0.157742 0.114606i
\(186\) −10.5866 −0.776247
\(187\) −13.0437 0.940981i −0.953851 0.0688114i
\(188\) −11.3950 −0.831066
\(189\) −0.809017 0.587785i −0.0588473 0.0427551i
\(190\) 5.72311 17.6139i 0.415198 1.27785i
\(191\) −4.01838 12.3673i −0.290760 0.894867i −0.984613 0.174750i \(-0.944088\pi\)
0.693853 0.720117i \(-0.255912\pi\)
\(192\) 0.809017 0.587785i 0.0583858 0.0424197i
\(193\) −18.3371 + 13.3227i −1.31993 + 0.958986i −0.319997 + 0.947418i \(0.603682\pi\)
−0.999933 + 0.0115670i \(0.996318\pi\)
\(194\) −4.22072 12.9901i −0.303030 0.932632i
\(195\) −3.15926 + 9.72321i −0.226240 + 0.696294i
\(196\) −0.809017 0.587785i −0.0577869 0.0419847i
\(197\) −0.153197 −0.0109148 −0.00545740 0.999985i \(-0.501737\pi\)
−0.00545740 + 0.999985i \(0.501737\pi\)
\(198\) −1.24920 + 3.07238i −0.0887768 + 0.218344i
\(199\) −18.2216 −1.29170 −0.645848 0.763466i \(-0.723496\pi\)
−0.645848 + 0.763466i \(0.723496\pi\)
\(200\) −4.66152 3.38679i −0.329619 0.239482i
\(201\) 3.39533 10.4498i 0.239488 0.737069i
\(202\) 1.57483 + 4.84682i 0.110804 + 0.341021i
\(203\) −8.14679 + 5.91899i −0.571792 + 0.415431i
\(204\) 3.18999 2.31767i 0.223344 0.162269i
\(205\) 2.83760 + 8.73323i 0.198186 + 0.609955i
\(206\) 0.384221 1.18251i 0.0267700 0.0823895i
\(207\) 3.50750 + 2.54835i 0.243788 + 0.177123i
\(208\) 3.11643 0.216086
\(209\) 15.9007 9.88725i 1.09988 0.683915i
\(210\) 3.28054 0.226379
\(211\) −8.38749 6.09387i −0.577419 0.419519i 0.260374 0.965508i \(-0.416154\pi\)
−0.837793 + 0.545989i \(0.816154\pi\)
\(212\) −0.541229 + 1.66573i −0.0371718 + 0.114403i
\(213\) −1.09017 3.35520i −0.0746972 0.229894i
\(214\) −1.33125 + 0.967213i −0.0910026 + 0.0661173i
\(215\) −21.6955 + 15.7627i −1.47962 + 1.07501i
\(216\) −0.309017 0.951057i −0.0210259 0.0647112i
\(217\) −3.27144 + 10.0684i −0.222080 + 0.683491i
\(218\) −4.60954 3.34903i −0.312197 0.226825i
\(219\) −0.635021 −0.0429108
\(220\) −2.60893 10.5629i −0.175894 0.712151i
\(221\) 12.2883 0.826597
\(222\) 0.654014 + 0.475169i 0.0438945 + 0.0318913i
\(223\) 0.142420 0.438324i 0.00953717 0.0293524i −0.946175 0.323656i \(-0.895088\pi\)
0.955712 + 0.294304i \(0.0950878\pi\)
\(224\) −0.309017 0.951057i −0.0206471 0.0635451i
\(225\) −4.66152 + 3.38679i −0.310768 + 0.225786i
\(226\) −12.3136 + 8.94632i −0.819085 + 0.595100i
\(227\) −5.76495 17.7427i −0.382633 1.17762i −0.938183 0.346140i \(-0.887492\pi\)
0.555550 0.831483i \(-0.312508\pi\)
\(228\) −1.74456 + 5.36921i −0.115536 + 0.355585i
\(229\) −10.9611 7.96367i −0.724327 0.526254i 0.163437 0.986554i \(-0.447742\pi\)
−0.887764 + 0.460300i \(0.847742\pi\)
\(230\) −14.2228 −0.937826
\(231\) 2.53598 + 2.13748i 0.166855 + 0.140636i
\(232\) −10.0700 −0.661127
\(233\) 2.20572 + 1.60255i 0.144501 + 0.104986i 0.657687 0.753291i \(-0.271535\pi\)
−0.513186 + 0.858277i \(0.671535\pi\)
\(234\) 0.963031 2.96390i 0.0629553 0.193757i
\(235\) −11.5516 35.5522i −0.753543 2.31917i
\(236\) 7.03035 5.10785i 0.457637 0.332493i
\(237\) −9.41232 + 6.83845i −0.611396 + 0.444205i
\(238\) −1.21847 3.75006i −0.0789816 0.243080i
\(239\) −0.160630 + 0.494369i −0.0103903 + 0.0319781i −0.956117 0.292984i \(-0.905352\pi\)
0.945727 + 0.324962i \(0.105352\pi\)
\(240\) 2.65401 + 1.92825i 0.171316 + 0.124468i
\(241\) 7.06349 0.455000 0.227500 0.973778i \(-0.426945\pi\)
0.227500 + 0.973778i \(0.426945\pi\)
\(242\) 4.86559 9.86540i 0.312772 0.634172i
\(243\) −1.00000 −0.0641500
\(244\) −7.12714 5.17817i −0.456268 0.331498i
\(245\) 1.01374 3.11998i 0.0647657 0.199328i
\(246\) −0.864979 2.66213i −0.0551490 0.169731i
\(247\) −14.2338 + 10.3414i −0.905672 + 0.658009i
\(248\) −8.56473 + 6.22264i −0.543861 + 0.395138i
\(249\) −4.77730 14.7030i −0.302749 0.931765i
\(250\) 0.772426 2.37728i 0.0488525 0.150353i
\(251\) 16.4947 + 11.9841i 1.04113 + 0.756427i 0.970506 0.241075i \(-0.0775001\pi\)
0.0706267 + 0.997503i \(0.477500\pi\)
\(252\) −1.00000 −0.0629941
\(253\) −10.9948 9.26706i −0.691236 0.582615i
\(254\) 10.1196 0.634962
\(255\) 10.4649 + 7.60320i 0.655338 + 0.476131i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 4.85349 + 14.9375i 0.302752 + 0.931776i 0.980506 + 0.196487i \(0.0629535\pi\)
−0.677754 + 0.735289i \(0.737047\pi\)
\(258\) 6.61340 4.80491i 0.411732 0.299141i
\(259\) 0.654014 0.475169i 0.0406385 0.0295256i
\(260\) 3.15926 + 9.72321i 0.195929 + 0.603008i
\(261\) −3.11180 + 9.57712i −0.192615 + 0.592809i
\(262\) 17.0653 + 12.3987i 1.05430 + 0.765994i
\(263\) 3.62411 0.223472 0.111736 0.993738i \(-0.464359\pi\)
0.111736 + 0.993738i \(0.464359\pi\)
\(264\) 0.795274 + 3.21987i 0.0489457 + 0.198169i
\(265\) −5.74572 −0.352957
\(266\) 4.56732 + 3.31835i 0.280040 + 0.203461i
\(267\) −2.47152 + 7.60657i −0.151255 + 0.465515i
\(268\) −3.39533 10.4498i −0.207403 0.638320i
\(269\) 1.66571 1.21021i 0.101560 0.0737877i −0.535846 0.844316i \(-0.680007\pi\)
0.637406 + 0.770528i \(0.280007\pi\)
\(270\) 2.65401 1.92825i 0.161518 0.117350i
\(271\) 7.41733 + 22.8282i 0.450571 + 1.38671i 0.876257 + 0.481844i \(0.160033\pi\)
−0.425686 + 0.904871i \(0.639967\pi\)
\(272\) 1.21847 3.75006i 0.0738806 0.227381i
\(273\) −2.52125 1.83179i −0.152593 0.110865i
\(274\) 10.5121 0.635059
\(275\) 16.2287 10.0912i 0.978626 0.608520i
\(276\) 4.33551 0.260967
\(277\) −7.76642 5.64264i −0.466639 0.339033i 0.329491 0.944159i \(-0.393123\pi\)
−0.796130 + 0.605126i \(0.793123\pi\)
\(278\) 1.34561 4.14136i 0.0807042 0.248382i
\(279\) 3.27144 + 10.0684i 0.195856 + 0.602782i
\(280\) 2.65401 1.92825i 0.158608 0.115235i
\(281\) 10.8564 7.88766i 0.647640 0.470538i −0.214826 0.976652i \(-0.568919\pi\)
0.862467 + 0.506114i \(0.168919\pi\)
\(282\) 3.52125 + 10.8373i 0.209687 + 0.645351i
\(283\) −8.46468 + 26.0516i −0.503173 + 1.54861i 0.300648 + 0.953735i \(0.402797\pi\)
−0.803821 + 0.594871i \(0.797203\pi\)
\(284\) −2.85410 2.07363i −0.169360 0.123047i
\(285\) −18.5204 −1.09705
\(286\) −3.89305 + 9.57486i −0.230201 + 0.566173i
\(287\) −2.79913 −0.165227
\(288\) −0.809017 0.587785i −0.0476718 0.0346356i
\(289\) −0.448804 + 1.38128i −0.0264002 + 0.0812516i
\(290\) −10.2084 31.4181i −0.599456 1.84494i
\(291\) −11.0500 + 8.02830i −0.647763 + 0.470627i
\(292\) −0.513743 + 0.373256i −0.0300645 + 0.0218432i
\(293\) 2.03195 + 6.25371i 0.118708 + 0.365346i 0.992702 0.120590i \(-0.0384788\pi\)
−0.873994 + 0.485936i \(0.838479\pi\)
\(294\) −0.309017 + 0.951057i −0.0180222 + 0.0554667i
\(295\) 23.0634 + 16.7565i 1.34280 + 0.975602i
\(296\) 0.808406 0.0469876
\(297\) 3.30803 + 0.238643i 0.191951 + 0.0138475i
\(298\) −1.70576 −0.0988120
\(299\) 10.9309 + 7.94177i 0.632151 + 0.459284i
\(300\) −1.78054 + 5.47994i −0.102800 + 0.316385i
\(301\) −2.52609 7.77451i −0.145602 0.448115i
\(302\) 2.06412 1.49967i 0.118777 0.0862964i
\(303\) 4.12295 2.99550i 0.236857 0.172087i
\(304\) 1.74456 + 5.36921i 0.100057 + 0.307945i
\(305\) 8.93070 27.4859i 0.511370 1.57384i
\(306\) −3.18999 2.31767i −0.182360 0.132492i
\(307\) 3.91024 0.223169 0.111585 0.993755i \(-0.464407\pi\)
0.111585 + 0.993755i \(0.464407\pi\)
\(308\) 3.30803 + 0.238643i 0.188492 + 0.0135980i
\(309\) −1.24337 −0.0707326
\(310\) −28.0970 20.4136i −1.59580 1.15942i
\(311\) −3.76107 + 11.5754i −0.213270 + 0.656379i 0.786001 + 0.618225i \(0.212148\pi\)
−0.999272 + 0.0381543i \(0.987852\pi\)
\(312\) −0.963031 2.96390i −0.0545209 0.167798i
\(313\) −3.57676 + 2.59867i −0.202170 + 0.146885i −0.684264 0.729234i \(-0.739876\pi\)
0.482094 + 0.876120i \(0.339876\pi\)
\(314\) −0.474114 + 0.344464i −0.0267558 + 0.0194392i
\(315\) −1.01374 3.11998i −0.0571180 0.175791i
\(316\) −3.59519 + 11.0648i −0.202245 + 0.622446i
\(317\) −25.4927 18.5215i −1.43181 1.04027i −0.989676 0.143323i \(-0.954221\pi\)
−0.442135 0.896948i \(-0.645779\pi\)
\(318\) 1.75146 0.0982167
\(319\) 12.5794 30.9388i 0.704312 1.73224i
\(320\) 3.28054 0.183388
\(321\) 1.33125 + 0.967213i 0.0743033 + 0.0539845i
\(322\) 1.33975 4.12332i 0.0746612 0.229784i
\(323\) 6.87889 + 21.1711i 0.382752 + 1.17799i
\(324\) −0.809017 + 0.587785i −0.0449454 + 0.0326547i
\(325\) −14.5273 + 10.5547i −0.805830 + 0.585470i
\(326\) 4.14590 + 12.7598i 0.229620 + 0.706698i
\(327\) −1.76069 + 5.41884i −0.0973663 + 0.299663i
\(328\) −2.26454 1.64529i −0.125038 0.0908458i
\(329\) 11.3950 0.628227
\(330\) −9.23972 + 5.74536i −0.508630 + 0.316271i
\(331\) −5.90178 −0.324391 −0.162195 0.986759i \(-0.551858\pi\)
−0.162195 + 0.986759i \(0.551858\pi\)
\(332\) −12.5071 9.08696i −0.686418 0.498712i
\(333\) 0.249811 0.768840i 0.0136896 0.0421321i
\(334\) −0.667146 2.05326i −0.0365046 0.112350i
\(335\) 29.1610 21.1867i 1.59324 1.15756i
\(336\) −0.809017 + 0.587785i −0.0441355 + 0.0320663i
\(337\) −2.89895 8.92206i −0.157916 0.486016i 0.840529 0.541767i \(-0.182245\pi\)
−0.998445 + 0.0557515i \(0.982245\pi\)
\(338\) −1.01600 + 3.12692i −0.0552630 + 0.170082i
\(339\) 12.3136 + 8.94632i 0.668781 + 0.485897i
\(340\) 12.9353 0.701517
\(341\) −8.41924 34.0874i −0.455927 1.84594i
\(342\) 5.64552 0.305275
\(343\) 0.809017 + 0.587785i 0.0436828 + 0.0317374i
\(344\) 2.52609 7.77451i 0.136198 0.419174i
\(345\) 4.39510 + 13.5267i 0.236624 + 0.728254i
\(346\) −9.73893 + 7.07575i −0.523568 + 0.380395i
\(347\) 22.5904 16.4129i 1.21272 0.881092i 0.217244 0.976117i \(-0.430293\pi\)
0.995475 + 0.0950256i \(0.0302933\pi\)
\(348\) 3.11180 + 9.57712i 0.166810 + 0.513388i
\(349\) 8.67288 26.6924i 0.464249 1.42881i −0.395677 0.918390i \(-0.629490\pi\)
0.859925 0.510420i \(-0.170510\pi\)
\(350\) 4.66152 + 3.38679i 0.249169 + 0.181032i
\(351\) −3.11643 −0.166343
\(352\) 2.53598 + 2.13748i 0.135168 + 0.113928i
\(353\) −6.63461 −0.353125 −0.176562 0.984289i \(-0.556498\pi\)
−0.176562 + 0.984289i \(0.556498\pi\)
\(354\) −7.03035 5.10785i −0.373659 0.271479i
\(355\) 3.57635 11.0069i 0.189813 0.584184i
\(356\) 2.47152 + 7.60657i 0.130991 + 0.403147i
\(357\) −3.18999 + 2.31767i −0.168832 + 0.122664i
\(358\) 13.1033 9.52011i 0.692531 0.503153i
\(359\) −2.87248 8.84059i −0.151604 0.466589i 0.846197 0.532870i \(-0.178887\pi\)
−0.997801 + 0.0662813i \(0.978887\pi\)
\(360\) 1.01374 3.11998i 0.0534290 0.164437i
\(361\) −10.4136 7.56591i −0.548083 0.398206i
\(362\) −7.97176 −0.418986
\(363\) −10.8861 1.57888i −0.571372 0.0828695i
\(364\) −3.11643 −0.163346
\(365\) −1.68536 1.22448i −0.0882156 0.0640924i
\(366\) −2.72232 + 8.37845i −0.142298 + 0.437949i
\(367\) 6.60771 + 20.3364i 0.344919 + 1.06155i 0.961627 + 0.274361i \(0.0884662\pi\)
−0.616707 + 0.787192i \(0.711534\pi\)
\(368\) 3.50750 2.54835i 0.182841 0.132842i
\(369\) −2.26454 + 1.64529i −0.117887 + 0.0856502i
\(370\) 0.819516 + 2.52221i 0.0426046 + 0.131123i
\(371\) 0.541229 1.66573i 0.0280992 0.0864805i
\(372\) 8.56473 + 6.22264i 0.444061 + 0.322629i
\(373\) 26.2248 1.35787 0.678935 0.734199i \(-0.262442\pi\)
0.678935 + 0.734199i \(0.262442\pi\)
\(374\) 9.99949 + 8.42818i 0.517062 + 0.435811i
\(375\) −2.49962 −0.129080
\(376\) 9.21875 + 6.69781i 0.475421 + 0.345413i
\(377\) −9.69771 + 29.8465i −0.499457 + 1.53717i
\(378\) 0.309017 + 0.951057i 0.0158941 + 0.0489171i
\(379\) 14.8793 10.8104i 0.764297 0.555294i −0.135928 0.990719i \(-0.543402\pi\)
0.900225 + 0.435424i \(0.143402\pi\)
\(380\) −14.9833 + 10.8860i −0.768627 + 0.558440i
\(381\) −3.12714 9.62434i −0.160208 0.493070i
\(382\) −4.01838 + 12.3673i −0.205598 + 0.632766i
\(383\) −13.0627 9.49060i −0.667472 0.484947i 0.201706 0.979446i \(-0.435351\pi\)
−0.869178 + 0.494499i \(0.835351\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 2.60893 + 10.5629i 0.132963 + 0.538336i
\(386\) 22.6659 1.15366
\(387\) −6.61340 4.80491i −0.336178 0.244247i
\(388\) −4.22072 + 12.9901i −0.214275 + 0.659470i
\(389\) 8.32801 + 25.6310i 0.422247 + 1.29954i 0.905606 + 0.424120i \(0.139417\pi\)
−0.483359 + 0.875422i \(0.660583\pi\)
\(390\) 8.27106 6.00928i 0.418821 0.304292i
\(391\) 13.8303 10.0483i 0.699427 0.508163i
\(392\) 0.309017 + 0.951057i 0.0156077 + 0.0480356i
\(393\) 6.51838 20.0615i 0.328809 1.01197i
\(394\) 0.123939 + 0.0900467i 0.00624394 + 0.00453649i
\(395\) −38.1667 −1.92037
\(396\) 2.81652 1.75134i 0.141536 0.0880083i
\(397\) 16.4435 0.825275 0.412637 0.910895i \(-0.364608\pi\)
0.412637 + 0.910895i \(0.364608\pi\)
\(398\) 14.7416 + 10.7104i 0.738929 + 0.536864i
\(399\) 1.74456 5.36921i 0.0873373 0.268797i
\(400\) 1.78054 + 5.47994i 0.0890271 + 0.273997i
\(401\) 4.17161 3.03085i 0.208320 0.151354i −0.478733 0.877961i \(-0.658904\pi\)
0.687053 + 0.726607i \(0.258904\pi\)
\(402\) −8.88909 + 6.45830i −0.443348 + 0.322111i
\(403\) 10.1952 + 31.3776i 0.507860 + 1.56303i
\(404\) 1.57483 4.84682i 0.0783506 0.241138i
\(405\) −2.65401 1.92825i −0.131879 0.0958157i
\(406\) 10.0700 0.499765
\(407\) −1.00986 + 2.48373i −0.0500569 + 0.123114i
\(408\) −3.94305 −0.195210
\(409\) 22.2916 + 16.1958i 1.10225 + 0.800830i 0.981425 0.191844i \(-0.0614467\pi\)
0.120823 + 0.992674i \(0.461447\pi\)
\(410\) 2.83760 8.73323i 0.140139 0.431303i
\(411\) −3.24842 9.99760i −0.160233 0.493145i
\(412\) −1.00590 + 0.730832i −0.0495574 + 0.0360055i
\(413\) −7.03035 + 5.10785i −0.345941 + 0.251341i
\(414\) −1.33975 4.12332i −0.0658450 0.202650i
\(415\) 15.6721 48.2338i 0.769314 2.36771i
\(416\) −2.52125 1.83179i −0.123614 0.0898111i
\(417\) −4.35448 −0.213240
\(418\) −18.6755 1.34726i −0.913450 0.0658968i
\(419\) 21.3078 1.04096 0.520478 0.853875i \(-0.325754\pi\)
0.520478 + 0.853875i \(0.325754\pi\)
\(420\) −2.65401 1.92825i −0.129503 0.0940892i
\(421\) −2.76720 + 8.51658i −0.134865 + 0.415073i −0.995569 0.0940335i \(-0.970024\pi\)
0.860704 + 0.509106i \(0.170024\pi\)
\(422\) 3.20374 + 9.86009i 0.155955 + 0.479982i
\(423\) 9.21875 6.69781i 0.448231 0.325659i
\(424\) 1.41696 1.02948i 0.0688135 0.0499959i
\(425\) 7.02076 + 21.6077i 0.340557 + 1.04813i
\(426\) −1.09017 + 3.35520i −0.0528189 + 0.162560i
\(427\) 7.12714 + 5.17817i 0.344906 + 0.250589i
\(428\) 1.64552 0.0795392
\(429\) 10.3093 + 0.743715i 0.497735 + 0.0359069i
\(430\) 26.8171 1.29324
\(431\) −14.8190 10.7666i −0.713807 0.518611i 0.170593 0.985342i \(-0.445432\pi\)
−0.884399 + 0.466731i \(0.845432\pi\)
\(432\) −0.309017 + 0.951057i −0.0148676 + 0.0457577i
\(433\) −5.97926 18.4023i −0.287345 0.884357i −0.985686 0.168592i \(-0.946078\pi\)
0.698341 0.715765i \(-0.253922\pi\)
\(434\) 8.56473 6.22264i 0.411120 0.298696i
\(435\) −26.7259 + 19.4175i −1.28141 + 0.930997i
\(436\) 1.76069 + 5.41884i 0.0843216 + 0.259515i
\(437\) −7.56357 + 23.2783i −0.361815 + 1.11355i
\(438\) 0.513743 + 0.373256i 0.0245476 + 0.0178349i
\(439\) 13.6238 0.650227 0.325113 0.945675i \(-0.394598\pi\)
0.325113 + 0.945675i \(0.394598\pi\)
\(440\) −4.09805 + 10.0791i −0.195367 + 0.480500i
\(441\) 1.00000 0.0476190
\(442\) −9.94141 7.22285i −0.472864 0.343556i
\(443\) −8.16574 + 25.1315i −0.387966 + 1.19404i 0.546340 + 0.837563i \(0.316021\pi\)
−0.934306 + 0.356472i \(0.883979\pi\)
\(444\) −0.249811 0.768840i −0.0118555 0.0364875i
\(445\) −21.2269 + 15.4222i −1.00625 + 0.731083i
\(446\) −0.372861 + 0.270899i −0.0176555 + 0.0128275i
\(447\) 0.527109 + 1.62227i 0.0249314 + 0.0767309i
\(448\) −0.309017 + 0.951057i −0.0145997 + 0.0449332i
\(449\) −28.5280 20.7268i −1.34632 0.978158i −0.999186 0.0403426i \(-0.987155\pi\)
−0.347134 0.937816i \(-0.612845\pi\)
\(450\) 5.76195 0.271621
\(451\) 7.88381 4.90224i 0.371234 0.230837i
\(452\) 15.2204 0.715907
\(453\) −2.06412 1.49967i −0.0969809 0.0704607i
\(454\) −5.76495 + 17.7427i −0.270562 + 0.832706i
\(455\) −3.15926 9.72321i −0.148109 0.455831i
\(456\) 4.56732 3.31835i 0.213884 0.155396i
\(457\) 11.7293 8.52183i 0.548673 0.398634i −0.278623 0.960401i \(-0.589878\pi\)
0.827296 + 0.561766i \(0.189878\pi\)
\(458\) 4.18675 + 12.8855i 0.195634 + 0.602099i
\(459\) −1.21847 + 3.75006i −0.0568733 + 0.175038i
\(460\) 11.5065 + 8.35997i 0.536494 + 0.389786i
\(461\) 8.01704 0.373391 0.186695 0.982418i \(-0.440222\pi\)
0.186695 + 0.982418i \(0.440222\pi\)
\(462\) −0.795274 3.21987i −0.0369995 0.149802i
\(463\) −23.6800 −1.10050 −0.550251 0.835000i \(-0.685468\pi\)
−0.550251 + 0.835000i \(0.685468\pi\)
\(464\) 8.14679 + 5.91899i 0.378205 + 0.274782i
\(465\) −10.7321 + 33.0300i −0.497689 + 1.53173i
\(466\) −0.842508 2.59297i −0.0390284 0.120117i
\(467\) 25.0714 18.2154i 1.16017 0.842910i 0.170367 0.985381i \(-0.445505\pi\)
0.989799 + 0.142470i \(0.0455045\pi\)
\(468\) −2.52125 + 1.83179i −0.116545 + 0.0846747i
\(469\) 3.39533 + 10.4498i 0.156782 + 0.482525i
\(470\) −11.5516 + 35.5522i −0.532836 + 1.63990i
\(471\) 0.474114 + 0.344464i 0.0218460 + 0.0158721i
\(472\) −8.68999 −0.399989
\(473\) 20.7306 + 17.4730i 0.953196 + 0.803411i
\(474\) 11.6343 0.534380
\(475\) −26.3167 19.1202i −1.20749 0.877295i
\(476\) −1.21847 + 3.75006i −0.0558484 + 0.171884i
\(477\) −0.541229 1.66573i −0.0247812 0.0762687i
\(478\) 0.420535 0.305537i 0.0192348 0.0139749i
\(479\) 19.3517 14.0599i 0.884204 0.642412i −0.0501564 0.998741i \(-0.515972\pi\)
0.934360 + 0.356330i \(0.115972\pi\)
\(480\) −1.01374 3.11998i −0.0462708 0.142407i
\(481\) 0.778520 2.39604i 0.0354974 0.109250i
\(482\) −5.71449 4.15182i −0.260288 0.189110i
\(483\) −4.33551 −0.197273
\(484\) −9.73508 + 5.12135i −0.442504 + 0.232789i
\(485\) −44.8074 −2.03460
\(486\) 0.809017 + 0.587785i 0.0366978 + 0.0266625i
\(487\) −8.85499 + 27.2529i −0.401258 + 1.23494i 0.522722 + 0.852503i \(0.324917\pi\)
−0.923980 + 0.382442i \(0.875083\pi\)
\(488\) 2.72232 + 8.37845i 0.123234 + 0.379275i
\(489\) 10.8541 7.88597i 0.490839 0.356616i
\(490\) −2.65401 + 1.92825i −0.119896 + 0.0871096i
\(491\) 9.77935 + 30.0977i 0.441336 + 1.35829i 0.886453 + 0.462819i \(0.153162\pi\)
−0.445117 + 0.895472i \(0.646838\pi\)
\(492\) −0.864979 + 2.66213i −0.0389962 + 0.120018i
\(493\) 32.1232 + 23.3389i 1.44676 + 1.05113i
\(494\) 17.5939 0.791587
\(495\) 8.31939 + 7.01208i 0.373929 + 0.315170i
\(496\) 10.5866 0.475352
\(497\) 2.85410 + 2.07363i 0.128024 + 0.0930149i
\(498\) −4.77730 + 14.7030i −0.214076 + 0.658858i
\(499\) −10.2868 31.6596i −0.460501 1.41728i −0.864553 0.502542i \(-0.832398\pi\)
0.404052 0.914736i \(-0.367602\pi\)
\(500\) −2.02224 + 1.46924i −0.0904372 + 0.0657065i
\(501\) −1.74661 + 1.26899i −0.0780328 + 0.0566942i
\(502\) −6.30040 19.3906i −0.281200 0.865446i
\(503\) 1.25790 3.87142i 0.0560870 0.172618i −0.919089 0.394051i \(-0.871073\pi\)
0.975176 + 0.221433i \(0.0710734\pi\)
\(504\) 0.809017 + 0.587785i 0.0360365 + 0.0261820i
\(505\) 16.7184 0.743961
\(506\) 3.44792 + 13.9598i 0.153279 + 0.620588i
\(507\) 3.28784 0.146018
\(508\) −8.18696 5.94817i −0.363237 0.263907i
\(509\) 4.71997 14.5266i 0.209209 0.643879i −0.790305 0.612713i \(-0.790078\pi\)
0.999514 0.0311657i \(-0.00992195\pi\)
\(510\) −3.99724 12.3022i −0.177001 0.544752i
\(511\) 0.513743 0.373256i 0.0227267 0.0165119i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −1.74456 5.36921i −0.0770243 0.237056i
\(514\) 4.85349 14.9375i 0.214078 0.658865i
\(515\) −3.29991 2.39753i −0.145411 0.105648i
\(516\) −8.17461 −0.359867
\(517\) −32.0943 + 19.9566i −1.41150 + 0.877688i
\(518\) −0.808406 −0.0355193
\(519\) 9.73893 + 7.07575i 0.427492 + 0.310591i
\(520\) 3.15926 9.72321i 0.138543 0.426391i
\(521\) −4.96088 15.2680i −0.217340 0.668904i −0.998979 0.0451732i \(-0.985616\pi\)
0.781639 0.623731i \(-0.214384\pi\)
\(522\) 8.14679 5.91899i 0.356575 0.259067i
\(523\) 11.8753 8.62795i 0.519273 0.377274i −0.297057 0.954860i \(-0.596005\pi\)
0.816330 + 0.577586i \(0.196005\pi\)
\(524\) −6.51838 20.0615i −0.284757 0.876391i
\(525\) 1.78054 5.47994i 0.0777092 0.239164i
\(526\) −2.93197 2.13020i −0.127840 0.0928811i
\(527\) 41.7435 1.81837
\(528\) 1.24920 3.07238i 0.0543644 0.133708i
\(529\) −4.20332 −0.182753
\(530\) 4.64839 + 3.37725i 0.201913 + 0.146698i
\(531\) −2.68536 + 8.26468i −0.116535 + 0.358656i
\(532\) −1.74456 5.36921i −0.0756363 0.232785i
\(533\) −7.05730 + 5.12743i −0.305686 + 0.222094i
\(534\) 6.47054 4.70112i 0.280007 0.203437i
\(535\) 1.66813 + 5.13399i 0.0721198 + 0.221962i
\(536\) −3.39533 + 10.4498i −0.146656 + 0.451361i
\(537\) −13.1033 9.52011i −0.565449 0.410823i
\(538\) −2.05893 −0.0887667
\(539\) −3.30803 0.238643i −0.142487 0.0102791i
\(540\) −3.28054 −0.141172
\(541\) 10.6415 + 7.73153i 0.457515 + 0.332404i 0.792556 0.609799i \(-0.208750\pi\)
−0.335040 + 0.942204i \(0.608750\pi\)
\(542\) 7.41733 22.8282i 0.318602 0.980556i
\(543\) 2.46341 + 7.58159i 0.105715 + 0.325357i
\(544\) −3.18999 + 2.31767i −0.136770 + 0.0993691i
\(545\) −15.1218 + 10.9866i −0.647746 + 0.470615i
\(546\) 0.963031 + 2.96390i 0.0412139 + 0.126843i
\(547\) 6.17612 19.0082i 0.264072 0.812730i −0.727834 0.685754i \(-0.759473\pi\)
0.991906 0.126976i \(-0.0405272\pi\)
\(548\) −8.50447 6.17886i −0.363293 0.263948i
\(549\) 8.80963 0.375986
\(550\) −19.0607 1.37505i −0.812751 0.0586323i
\(551\) −56.8503 −2.42190
\(552\) −3.50750 2.54835i −0.149289 0.108465i
\(553\) 3.59519 11.0648i 0.152883 0.470525i
\(554\) 2.96651 + 9.12998i 0.126035 + 0.387895i
\(555\) 2.14552 1.55881i 0.0910723 0.0661679i
\(556\) −3.52285 + 2.55950i −0.149402 + 0.108547i
\(557\) −11.4976 35.3861i −0.487171 1.49936i −0.828812 0.559527i \(-0.810983\pi\)
0.341641 0.939830i \(-0.389017\pi\)
\(558\) 3.27144 10.0684i 0.138491 0.426231i
\(559\) −20.6102 14.9742i −0.871719 0.633341i
\(560\) −3.28054 −0.138628
\(561\) 4.92566 12.1145i 0.207961 0.511476i
\(562\) −13.4193 −0.566058
\(563\) −9.26089 6.72843i −0.390300 0.283570i 0.375278 0.926912i \(-0.377547\pi\)
−0.765578 + 0.643343i \(0.777547\pi\)
\(564\) 3.52125 10.8373i 0.148271 0.456332i
\(565\) 15.4296 + 47.4873i 0.649127 + 1.99781i
\(566\) 22.1608 16.1008i 0.931488 0.676766i
\(567\) 0.809017 0.587785i 0.0339755 0.0246847i
\(568\) 1.09017 + 3.35520i 0.0457425 + 0.140781i
\(569\) −0.851108 + 2.61944i −0.0356803 + 0.109813i −0.967310 0.253595i \(-0.918387\pi\)
0.931630 + 0.363408i \(0.118387\pi\)
\(570\) 14.9833 + 10.8860i 0.627581 + 0.455964i
\(571\) −17.1432 −0.717419 −0.358710 0.933449i \(-0.616783\pi\)
−0.358710 + 0.933449i \(0.616783\pi\)
\(572\) 8.77750 5.45795i 0.367006 0.228208i
\(573\) 13.0038 0.543240
\(574\) 2.26454 + 1.64529i 0.0945202 + 0.0686730i
\(575\) −7.71956 + 23.7584i −0.321928 + 0.990793i
\(576\) 0.309017 + 0.951057i 0.0128757 + 0.0396274i
\(577\) 14.1696 10.2948i 0.589890 0.428580i −0.252386 0.967627i \(-0.581215\pi\)
0.842276 + 0.539047i \(0.181215\pi\)
\(578\) 1.17498 0.853676i 0.0488729 0.0355082i
\(579\) −7.00413 21.5565i −0.291082 0.895858i
\(580\) −10.2084 + 31.4181i −0.423880 + 1.30457i
\(581\) 12.5071 + 9.08696i 0.518883 + 0.376991i
\(582\) 13.6586 0.566165
\(583\) 1.39289 + 5.63945i 0.0576875 + 0.233562i
\(584\) 0.635021 0.0262774
\(585\) −8.27106 6.00928i −0.341966 0.248453i
\(586\) 2.03195 6.25371i 0.0839392 0.258338i
\(587\) −7.61728 23.4436i −0.314399 0.967620i −0.976001 0.217765i \(-0.930123\pi\)
0.661602 0.749855i \(-0.269877\pi\)
\(588\) 0.809017 0.587785i 0.0333633 0.0242399i
\(589\) −48.3524 + 35.1301i −1.99232 + 1.44751i
\(590\) −8.80942 27.1126i −0.362678 1.11621i
\(591\) 0.0473403 0.145699i 0.00194732 0.00599324i
\(592\) −0.654014 0.475169i −0.0268798 0.0195293i
\(593\) −30.2795 −1.24343 −0.621716 0.783243i \(-0.713564\pi\)
−0.621716 + 0.783243i \(0.713564\pi\)
\(594\) −2.53598 2.13748i −0.104053 0.0877017i
\(595\) −12.9353 −0.530297
\(596\) 1.37999 + 1.00262i 0.0565265 + 0.0410689i
\(597\) 5.63079 17.3298i 0.230453 0.709261i
\(598\) −4.17523 12.8501i −0.170738 0.525478i
\(599\) −17.3943 + 12.6377i −0.710711 + 0.516362i −0.883403 0.468614i \(-0.844753\pi\)
0.172692 + 0.984976i \(0.444753\pi\)
\(600\) 4.66152 3.38679i 0.190306 0.138265i
\(601\) −2.54410 7.82992i −0.103776 0.319389i 0.885665 0.464324i \(-0.153703\pi\)
−0.989441 + 0.144935i \(0.953703\pi\)
\(602\) −2.52609 + 7.77451i −0.102956 + 0.316865i
\(603\) 8.88909 + 6.45830i 0.361992 + 0.263002i
\(604\) −2.55139 −0.103815
\(605\) −25.8474 25.1815i −1.05085 1.02377i
\(606\) −5.09625 −0.207021
\(607\) −29.1471 21.1766i −1.18304 0.859532i −0.190532 0.981681i \(-0.561021\pi\)
−0.992512 + 0.122149i \(0.961021\pi\)
\(608\) 1.74456 5.36921i 0.0707513 0.217750i
\(609\) −3.11180 9.57712i −0.126096 0.388085i
\(610\) −23.3809 + 16.9872i −0.946664 + 0.687792i
\(611\) 28.7296 20.8733i 1.16228 0.844443i
\(612\) 1.21847 + 3.75006i 0.0492537 + 0.151587i
\(613\) 4.37023 13.4502i 0.176512 0.543248i −0.823187 0.567770i \(-0.807806\pi\)
0.999699 + 0.0245221i \(0.00780641\pi\)
\(614\) −3.16345 2.29838i −0.127667 0.0927552i
\(615\) −9.18266 −0.370281
\(616\) −2.53598 2.13748i −0.102178 0.0861214i
\(617\) −2.09671 −0.0844105 −0.0422052 0.999109i \(-0.513438\pi\)
−0.0422052 + 0.999109i \(0.513438\pi\)
\(618\) 1.00590 + 0.730832i 0.0404634 + 0.0293984i
\(619\) 12.8834 39.6510i 0.517828 1.59371i −0.260250 0.965541i \(-0.583805\pi\)
0.778077 0.628168i \(-0.216195\pi\)
\(620\) 10.7321 + 33.0300i 0.431011 + 1.32652i
\(621\) −3.50750 + 2.54835i −0.140751 + 0.102262i
\(622\) 9.84660 7.15397i 0.394813 0.286848i
\(623\) −2.47152 7.60657i −0.0990195 0.304751i
\(624\) −0.963031 + 2.96390i −0.0385521 + 0.118651i
\(625\) 16.6736 + 12.1141i 0.666942 + 0.484562i
\(626\) 4.42112 0.176703
\(627\) 4.48973 + 18.1778i 0.179303 + 0.725952i
\(628\) 0.586037 0.0233854
\(629\) −2.57881 1.87361i −0.102824 0.0747059i
\(630\) −1.01374 + 3.11998i −0.0403885 + 0.124303i
\(631\) 9.97791 + 30.7089i 0.397214 + 1.22250i 0.927224 + 0.374508i \(0.122189\pi\)
−0.530009 + 0.847992i \(0.677811\pi\)
\(632\) 9.41232 6.83845i 0.374402 0.272019i
\(633\) 8.38749 6.09387i 0.333373 0.242210i
\(634\) 9.73733 + 29.9684i 0.386719 + 1.19020i
\(635\) 10.2587 31.5731i 0.407104 1.25294i
\(636\) −1.41696 1.02948i −0.0561860 0.0408215i
\(637\) 3.11643 0.123478
\(638\) −28.3623 + 17.6360i −1.12288 + 0.698216i
\(639\) 3.52786 0.139560
\(640\) −2.65401 1.92825i −0.104909 0.0762209i
\(641\) −14.6319 + 45.0325i −0.577927 + 1.77868i 0.0480608 + 0.998844i \(0.484696\pi\)
−0.625988 + 0.779833i \(0.715304\pi\)
\(642\) −0.508494 1.56498i −0.0200686 0.0617649i
\(643\) 5.42462 3.94122i 0.213926 0.155427i −0.475662 0.879628i \(-0.657791\pi\)
0.689588 + 0.724202i \(0.257791\pi\)
\(644\) −3.50750 + 2.54835i −0.138215 + 0.100419i
\(645\) −8.28695 25.5046i −0.326298 1.00424i
\(646\) 6.87889 21.1711i 0.270646 0.832964i
\(647\) −0.479101 0.348087i −0.0188354 0.0136847i 0.578328 0.815805i \(-0.303706\pi\)
−0.597163 + 0.802120i \(0.703706\pi\)
\(648\) 1.00000 0.0392837
\(649\) 10.8555 26.6989i 0.426117 1.04802i
\(650\) 17.9567 0.704322
\(651\) −8.56473 6.22264i −0.335678 0.243885i
\(652\) 4.14590 12.7598i 0.162366 0.499711i
\(653\) 9.55358 + 29.4029i 0.373860 + 1.15062i 0.944244 + 0.329246i \(0.106794\pi\)
−0.570384 + 0.821378i \(0.693206\pi\)
\(654\) 4.60954 3.34903i 0.180247 0.130957i
\(655\) 55.9836 40.6744i 2.18746 1.58928i
\(656\) 0.864979 + 2.66213i 0.0337717 + 0.103939i
\(657\) 0.196232 0.603941i 0.00765576 0.0235620i
\(658\) −9.21875 6.69781i −0.359384 0.261108i
\(659\) 22.1288 0.862016 0.431008 0.902348i \(-0.358158\pi\)
0.431008 + 0.902348i \(0.358158\pi\)
\(660\) 10.8521 + 0.782879i 0.422418 + 0.0304735i
\(661\) −30.6593 −1.19251 −0.596254 0.802796i \(-0.703345\pi\)
−0.596254 + 0.802796i \(0.703345\pi\)
\(662\) 4.77464 + 3.46898i 0.185572 + 0.134826i
\(663\) −3.79728 + 11.6868i −0.147474 + 0.453879i
\(664\) 4.77730 + 14.7030i 0.185395 + 0.570587i
\(665\) 14.9833 10.8860i 0.581027 0.422141i
\(666\) −0.654014 + 0.475169i −0.0253425 + 0.0184124i
\(667\) 13.4912 + 41.5218i 0.522383 + 1.60773i
\(668\) −0.667146 + 2.05326i −0.0258127 + 0.0794432i
\(669\) 0.372861 + 0.270899i 0.0144156 + 0.0104736i
\(670\) −36.0450 −1.39254
\(671\) −29.1425 2.10236i −1.12503 0.0811606i
\(672\) 1.00000 0.0385758
\(673\) 11.1387 + 8.09277i 0.429367 + 0.311953i 0.781396 0.624036i \(-0.214508\pi\)
−0.352029 + 0.935989i \(0.614508\pi\)
\(674\) −2.89895 + 8.92206i −0.111664 + 0.343665i
\(675\) −1.78054 5.47994i −0.0685331 0.210923i
\(676\) 2.65992 1.93254i 0.102305 0.0743286i
\(677\) 18.0732 13.1309i 0.694609 0.504663i −0.183563 0.983008i \(-0.558763\pi\)
0.878172 + 0.478345i \(0.158763\pi\)
\(678\) −4.70336 14.4755i −0.180631 0.555926i
\(679\) 4.22072 12.9901i 0.161977 0.498513i
\(680\) −10.4649 7.60320i −0.401311 0.291569i
\(681\) 18.6558 0.714890
\(682\) −13.2248 + 32.5260i −0.506403 + 1.24548i
\(683\) 11.0001 0.420905 0.210453 0.977604i \(-0.432506\pi\)
0.210453 + 0.977604i \(0.432506\pi\)
\(684\) −4.56732 3.31835i −0.174636 0.126880i
\(685\) 10.6566 32.7975i 0.407167 1.25313i
\(686\) −0.309017 0.951057i −0.0117983 0.0363115i
\(687\) 10.9611 7.96367i 0.418190 0.303833i
\(688\) −6.61340 + 4.80491i −0.252133 + 0.183186i
\(689\) −1.68671 5.19115i −0.0642584 0.197767i
\(690\) 4.39510 13.5267i 0.167319 0.514953i
\(691\) −5.50068 3.99648i −0.209256 0.152033i 0.478221 0.878239i \(-0.341282\pi\)
−0.687477 + 0.726206i \(0.741282\pi\)
\(692\) 12.0380 0.457616
\(693\) −2.81652 + 1.75134i −0.106991 + 0.0665280i
\(694\) −27.9233 −1.05996
\(695\) −11.5569 8.39654i −0.438376 0.318499i
\(696\) 3.11180 9.57712i 0.117952 0.363020i
\(697\) 3.41065 + 10.4969i 0.129188 + 0.397599i
\(698\) −22.7059 + 16.4968i −0.859431 + 0.624413i
\(699\) −2.20572 + 1.60255i −0.0834278 + 0.0606139i
\(700\) −1.78054 5.47994i −0.0672982 0.207122i
\(701\) −11.4835 + 35.3427i −0.433727 + 1.33487i 0.460659 + 0.887577i \(0.347613\pi\)
−0.894386 + 0.447296i \(0.852387\pi\)
\(702\) 2.52125 + 1.83179i 0.0951584 + 0.0691366i
\(703\) 4.56387 0.172130
\(704\) −0.795274 3.21987i −0.0299730 0.121353i
\(705\) 37.3818 1.40788
\(706\) 5.36751 + 3.89973i 0.202009 + 0.146768i
\(707\) −1.57483 + 4.84682i −0.0592275 + 0.182283i
\(708\) 2.68536 + 8.26468i 0.100922 + 0.310606i
\(709\) 24.8260 18.0371i 0.932359 0.677399i −0.0142102 0.999899i \(-0.504523\pi\)
0.946569 + 0.322501i \(0.104523\pi\)
\(710\) −9.36300 + 6.80262i −0.351387 + 0.255298i
\(711\) −3.59519 11.0648i −0.134830 0.414964i
\(712\) 2.47152 7.60657i 0.0926243 0.285068i
\(713\) 37.1325 + 26.9784i 1.39062 + 1.01035i
\(714\) 3.94305 0.147565
\(715\) 25.9268 + 21.8527i 0.969608 + 0.817244i
\(716\) −16.1966 −0.605294
\(717\) −0.420535 0.305537i −0.0157052 0.0114105i
\(718\) −2.87248 + 8.84059i −0.107200 + 0.329928i
\(719\) −1.32691 4.08382i −0.0494856 0.152301i 0.923260 0.384175i \(-0.125514\pi\)
−0.972746 + 0.231874i \(0.925514\pi\)
\(720\) −2.65401 + 1.92825i −0.0989093 + 0.0718618i
\(721\) 1.00590 0.730832i 0.0374618 0.0272176i
\(722\) 3.97764 + 12.2419i 0.148032 + 0.455596i
\(723\) −2.18274 + 6.71778i −0.0811770 + 0.249837i
\(724\) 6.44929 + 4.68568i 0.239686 + 0.174142i
\(725\) −58.0228 −2.15491
\(726\) 7.87900 + 7.67603i 0.292417 + 0.284884i
\(727\) −23.5376 −0.872962 −0.436481 0.899714i \(-0.643775\pi\)
−0.436481 + 0.899714i \(0.643775\pi\)
\(728\) 2.52125 + 1.83179i 0.0934437 + 0.0678908i
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0.643749 + 1.98125i 0.0238262 + 0.0733295i
\(731\) −26.0769 + 18.9460i −0.964491 + 0.700744i
\(732\) 7.12714 5.17817i 0.263427 0.191391i
\(733\) 7.07858 + 21.7856i 0.261453 + 0.804670i 0.992489 + 0.122331i \(0.0390371\pi\)
−0.731036 + 0.682339i \(0.760963\pi\)
\(734\) 6.60771 20.3364i 0.243895 0.750631i
\(735\) 2.65401 + 1.92825i 0.0978948 + 0.0711247i
\(736\) −4.33551 −0.159809
\(737\) −27.8641 23.4856i −1.02639 0.865102i
\(738\) 2.79913 0.103037
\(739\) 6.83179 + 4.96359i 0.251312 + 0.182589i 0.706308 0.707905i \(-0.250359\pi\)
−0.454996 + 0.890493i \(0.650359\pi\)
\(740\) 0.819516 2.52221i 0.0301260 0.0927183i
\(741\) −5.43681 16.7328i −0.199726 0.614694i
\(742\) −1.41696 + 1.02948i −0.0520181 + 0.0377934i
\(743\) −15.6379 + 11.3616i −0.573699 + 0.416817i −0.836447 0.548048i \(-0.815371\pi\)
0.262748 + 0.964865i \(0.415371\pi\)
\(744\) −3.27144 10.0684i −0.119937 0.369127i
\(745\) −1.72920 + 5.32194i −0.0633530 + 0.194981i
\(746\) −21.2163 15.4146i −0.776785 0.564367i
\(747\) 15.4597 0.565639
\(748\) −3.13580 12.6961i −0.114656 0.464215i
\(749\) −1.64552 −0.0601260
\(750\) 2.02224 + 1.46924i 0.0738417 + 0.0536491i
\(751\) −0.688222 + 2.11813i −0.0251136 + 0.0772917i −0.962828 0.270116i \(-0.912938\pi\)
0.937714 + 0.347408i \(0.112938\pi\)
\(752\) −3.52125 10.8373i −0.128407 0.395195i
\(753\) −16.4947 + 11.9841i −0.601098 + 0.436724i
\(754\) 25.3889 18.4461i 0.924610 0.671768i
\(755\) −2.58646 7.96030i −0.0941309 0.289705i
\(756\) 0.309017 0.951057i 0.0112388 0.0345896i
\(757\) 25.2555 + 18.3492i 0.917928 + 0.666914i 0.943008 0.332771i \(-0.107984\pi\)
−0.0250791 + 0.999685i \(0.507984\pi\)
\(758\) −18.3918 −0.668020
\(759\) 12.2111 7.59298i 0.443234 0.275608i
\(760\) 18.5204 0.671804
\(761\) 28.1582 + 20.4581i 1.02073 + 0.741606i 0.966433 0.256919i \(-0.0827073\pi\)
0.0543000 + 0.998525i \(0.482707\pi\)
\(762\) −3.12714 + 9.62434i −0.113284 + 0.348653i
\(763\) −1.76069 5.41884i −0.0637412 0.196175i
\(764\) 10.5203 7.64342i 0.380610 0.276529i
\(765\) −10.4649 + 7.60320i −0.378360 + 0.274894i
\(766\) 4.98950 + 15.3561i 0.180278 + 0.554839i
\(767\) −8.36873 + 25.7563i −0.302177 + 0.930007i
\(768\) 0.809017 + 0.587785i 0.0291929 + 0.0212099i
\(769\) 12.5238 0.451621 0.225810 0.974171i \(-0.427497\pi\)
0.225810 + 0.974171i \(0.427497\pi\)
\(770\) 4.09805 10.0791i 0.147684 0.363224i
\(771\) −15.7062 −0.565646
\(772\) −18.3371 13.3227i −0.659965 0.479493i
\(773\) −1.77524 + 5.46363i −0.0638510 + 0.196513i −0.977893 0.209107i \(-0.932944\pi\)
0.914042 + 0.405620i \(0.132944\pi\)