Properties

Label 462.2.j.b.421.1
Level $462$
Weight $2$
Character 462.421
Analytic conductor $3.689$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 421.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 462.421
Dual form 462.2.j.b.169.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.309017 + 0.224514i) q^{5} +(0.809017 + 0.587785i) q^{6} +(0.309017 - 0.951057i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.309017 - 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.309017 + 0.224514i) q^{5} +(0.809017 + 0.587785i) q^{6} +(0.309017 - 0.951057i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} -0.381966 q^{10} +(3.04508 - 1.31433i) q^{11} -1.00000 q^{12} +(-1.00000 + 0.726543i) q^{13} +(0.309017 + 0.951057i) q^{14} +(0.118034 - 0.363271i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(2.11803 + 1.53884i) q^{17} +(0.309017 - 0.951057i) q^{18} +(-2.42705 - 7.46969i) q^{19} +(0.309017 - 0.224514i) q^{20} -1.00000 q^{21} +(-1.69098 + 2.85317i) q^{22} +3.38197 q^{23} +(0.809017 - 0.587785i) q^{24} +(-1.50000 - 4.61653i) q^{25} +(0.381966 - 1.17557i) q^{26} +(0.809017 + 0.587785i) q^{27} +(-0.809017 - 0.587785i) q^{28} +(-0.145898 + 0.449028i) q^{29} +(0.118034 + 0.363271i) q^{30} +(3.92705 - 2.85317i) q^{31} +1.00000 q^{32} +(-2.19098 - 2.48990i) q^{33} -2.61803 q^{34} +(0.309017 - 0.224514i) q^{35} +(0.309017 + 0.951057i) q^{36} +(1.50000 - 4.61653i) q^{37} +(6.35410 + 4.61653i) q^{38} +(1.00000 + 0.726543i) q^{39} +(-0.118034 + 0.363271i) q^{40} +(-1.35410 - 4.16750i) q^{41} +(0.809017 - 0.587785i) q^{42} +1.23607 q^{43} +(-0.309017 - 3.30220i) q^{44} -0.381966 q^{45} +(-2.73607 + 1.98787i) q^{46} +(0.145898 + 0.449028i) q^{47} +(-0.309017 + 0.951057i) q^{48} +(-0.809017 - 0.587785i) q^{49} +(3.92705 + 2.85317i) q^{50} +(0.809017 - 2.48990i) q^{51} +(0.381966 + 1.17557i) q^{52} +(7.85410 - 5.70634i) q^{53} -1.00000 q^{54} +(1.23607 + 0.277515i) q^{55} +1.00000 q^{56} +(-6.35410 + 4.61653i) q^{57} +(-0.145898 - 0.449028i) q^{58} +(-0.854102 + 2.62866i) q^{59} +(-0.309017 - 0.224514i) q^{60} +(-1.50000 + 4.61653i) q^{62} +(0.309017 + 0.951057i) q^{63} +(-0.809017 + 0.587785i) q^{64} -0.472136 q^{65} +(3.23607 + 0.726543i) q^{66} +4.00000 q^{67} +(2.11803 - 1.53884i) q^{68} +(-1.04508 - 3.21644i) q^{69} +(-0.118034 + 0.363271i) q^{70} +(9.70820 + 7.05342i) q^{71} +(-0.809017 - 0.587785i) q^{72} +(-3.61803 + 11.1352i) q^{73} +(1.50000 + 4.61653i) q^{74} +(-3.92705 + 2.85317i) q^{75} -7.85410 q^{76} +(-0.309017 - 3.30220i) q^{77} -1.23607 q^{78} +(-6.85410 + 4.97980i) q^{79} +(-0.118034 - 0.363271i) q^{80} +(0.309017 - 0.951057i) q^{81} +(3.54508 + 2.57565i) q^{82} +(2.38197 + 1.73060i) q^{83} +(-0.309017 + 0.951057i) q^{84} +(0.309017 + 0.951057i) q^{85} +(-1.00000 + 0.726543i) q^{86} +0.472136 q^{87} +(2.19098 + 2.48990i) q^{88} -14.3262 q^{89} +(0.309017 - 0.224514i) q^{90} +(0.381966 + 1.17557i) q^{91} +(1.04508 - 3.21644i) q^{92} +(-3.92705 - 2.85317i) q^{93} +(-0.381966 - 0.277515i) q^{94} +(0.927051 - 2.85317i) q^{95} +(-0.309017 - 0.951057i) q^{96} +(-0.381966 + 0.277515i) q^{97} +1.00000 q^{98} +(-1.69098 + 2.85317i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} - q^{5} + q^{6} - q^{7} - q^{8} - q^{9} + O(q^{10}) \) \( 4 q - q^{2} + q^{3} - q^{4} - q^{5} + q^{6} - q^{7} - q^{8} - q^{9} - 6 q^{10} + q^{11} - 4 q^{12} - 4 q^{13} - q^{14} - 4 q^{15} - q^{16} + 4 q^{17} - q^{18} - 3 q^{19} - q^{20} - 4 q^{21} - 9 q^{22} + 18 q^{23} + q^{24} - 6 q^{25} + 6 q^{26} + q^{27} - q^{28} - 14 q^{29} - 4 q^{30} + 9 q^{31} + 4 q^{32} - 11 q^{33} - 6 q^{34} - q^{35} - q^{36} + 6 q^{37} + 12 q^{38} + 4 q^{39} + 4 q^{40} + 8 q^{41} + q^{42} - 4 q^{43} + q^{44} - 6 q^{45} - 2 q^{46} + 14 q^{47} + q^{48} - q^{49} + 9 q^{50} + q^{51} + 6 q^{52} + 18 q^{53} - 4 q^{54} - 4 q^{55} + 4 q^{56} - 12 q^{57} - 14 q^{58} + 10 q^{59} + q^{60} - 6 q^{62} - q^{63} - q^{64} + 16 q^{65} + 4 q^{66} + 16 q^{67} + 4 q^{68} + 7 q^{69} + 4 q^{70} + 12 q^{71} - q^{72} - 10 q^{73} + 6 q^{74} - 9 q^{75} - 18 q^{76} + q^{77} + 4 q^{78} - 14 q^{79} + 4 q^{80} - q^{81} + 3 q^{82} + 14 q^{83} + q^{84} - q^{85} - 4 q^{86} - 16 q^{87} + 11 q^{88} - 26 q^{89} - q^{90} + 6 q^{91} - 7 q^{92} - 9 q^{93} - 6 q^{94} - 3 q^{95} + q^{96} - 6 q^{97} + 4 q^{98} - 9 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.309017 0.951057i −0.178411 0.549093i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.309017 + 0.224514i 0.138197 + 0.100406i 0.654736 0.755858i \(-0.272780\pi\)
−0.516539 + 0.856264i \(0.672780\pi\)
\(6\) 0.809017 + 0.587785i 0.330280 + 0.239962i
\(7\) 0.309017 0.951057i 0.116797 0.359466i
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −0.381966 −0.120788
\(11\) 3.04508 1.31433i 0.918128 0.396285i
\(12\) −1.00000 −0.288675
\(13\) −1.00000 + 0.726543i −0.277350 + 0.201507i −0.717761 0.696290i \(-0.754833\pi\)
0.440411 + 0.897796i \(0.354833\pi\)
\(14\) 0.309017 + 0.951057i 0.0825883 + 0.254181i
\(15\) 0.118034 0.363271i 0.0304762 0.0937962i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.11803 + 1.53884i 0.513699 + 0.373224i 0.814225 0.580550i \(-0.197162\pi\)
−0.300526 + 0.953774i \(0.597162\pi\)
\(18\) 0.309017 0.951057i 0.0728360 0.224166i
\(19\) −2.42705 7.46969i −0.556804 1.71367i −0.691132 0.722729i \(-0.742888\pi\)
0.134328 0.990937i \(-0.457112\pi\)
\(20\) 0.309017 0.224514i 0.0690983 0.0502029i
\(21\) −1.00000 −0.218218
\(22\) −1.69098 + 2.85317i −0.360519 + 0.608298i
\(23\) 3.38197 0.705189 0.352594 0.935776i \(-0.385300\pi\)
0.352594 + 0.935776i \(0.385300\pi\)
\(24\) 0.809017 0.587785i 0.165140 0.119981i
\(25\) −1.50000 4.61653i −0.300000 0.923305i
\(26\) 0.381966 1.17557i 0.0749097 0.230548i
\(27\) 0.809017 + 0.587785i 0.155695 + 0.113119i
\(28\) −0.809017 0.587785i −0.152890 0.111081i
\(29\) −0.145898 + 0.449028i −0.0270926 + 0.0833824i −0.963689 0.267029i \(-0.913958\pi\)
0.936596 + 0.350411i \(0.113958\pi\)
\(30\) 0.118034 + 0.363271i 0.0215500 + 0.0663240i
\(31\) 3.92705 2.85317i 0.705319 0.512444i −0.176341 0.984329i \(-0.556426\pi\)
0.881660 + 0.471885i \(0.156426\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.19098 2.48990i −0.381401 0.433436i
\(34\) −2.61803 −0.448989
\(35\) 0.309017 0.224514i 0.0522334 0.0379498i
\(36\) 0.309017 + 0.951057i 0.0515028 + 0.158509i
\(37\) 1.50000 4.61653i 0.246598 0.758952i −0.748771 0.662829i \(-0.769356\pi\)
0.995369 0.0961233i \(-0.0306443\pi\)
\(38\) 6.35410 + 4.61653i 1.03077 + 0.748899i
\(39\) 1.00000 + 0.726543i 0.160128 + 0.116340i
\(40\) −0.118034 + 0.363271i −0.0186628 + 0.0574382i
\(41\) −1.35410 4.16750i −0.211475 0.650854i −0.999385 0.0350632i \(-0.988837\pi\)
0.787910 0.615791i \(-0.211163\pi\)
\(42\) 0.809017 0.587785i 0.124834 0.0906972i
\(43\) 1.23607 0.188499 0.0942493 0.995549i \(-0.469955\pi\)
0.0942493 + 0.995549i \(0.469955\pi\)
\(44\) −0.309017 3.30220i −0.0465861 0.497825i
\(45\) −0.381966 −0.0569401
\(46\) −2.73607 + 1.98787i −0.403411 + 0.293095i
\(47\) 0.145898 + 0.449028i 0.0212814 + 0.0654975i 0.961133 0.276085i \(-0.0890371\pi\)
−0.939852 + 0.341582i \(0.889037\pi\)
\(48\) −0.309017 + 0.951057i −0.0446028 + 0.137273i
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 3.92705 + 2.85317i 0.555369 + 0.403499i
\(51\) 0.809017 2.48990i 0.113285 0.348655i
\(52\) 0.381966 + 1.17557i 0.0529692 + 0.163022i
\(53\) 7.85410 5.70634i 1.07884 0.783826i 0.101363 0.994850i \(-0.467680\pi\)
0.977481 + 0.211024i \(0.0676797\pi\)
\(54\) −1.00000 −0.136083
\(55\) 1.23607 + 0.277515i 0.166671 + 0.0374201i
\(56\) 1.00000 0.133631
\(57\) −6.35410 + 4.61653i −0.841621 + 0.611474i
\(58\) −0.145898 0.449028i −0.0191574 0.0589603i
\(59\) −0.854102 + 2.62866i −0.111195 + 0.342222i −0.991134 0.132864i \(-0.957583\pi\)
0.879940 + 0.475085i \(0.157583\pi\)
\(60\) −0.309017 0.224514i −0.0398939 0.0289846i
\(61\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(62\) −1.50000 + 4.61653i −0.190500 + 0.586299i
\(63\) 0.309017 + 0.951057i 0.0389325 + 0.119822i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −0.472136 −0.0585613
\(66\) 3.23607 + 0.726543i 0.398332 + 0.0894312i
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 2.11803 1.53884i 0.256849 0.186612i
\(69\) −1.04508 3.21644i −0.125813 0.387214i
\(70\) −0.118034 + 0.363271i −0.0141078 + 0.0434192i
\(71\) 9.70820 + 7.05342i 1.15215 + 0.837087i 0.988766 0.149475i \(-0.0477583\pi\)
0.163386 + 0.986562i \(0.447758\pi\)
\(72\) −0.809017 0.587785i −0.0953436 0.0692712i
\(73\) −3.61803 + 11.1352i −0.423459 + 1.30327i 0.481003 + 0.876719i \(0.340272\pi\)
−0.904462 + 0.426554i \(0.859728\pi\)
\(74\) 1.50000 + 4.61653i 0.174371 + 0.536660i
\(75\) −3.92705 + 2.85317i −0.453457 + 0.329456i
\(76\) −7.85410 −0.900927
\(77\) −0.309017 3.30220i −0.0352158 0.376320i
\(78\) −1.23607 −0.139957
\(79\) −6.85410 + 4.97980i −0.771147 + 0.560271i −0.902309 0.431090i \(-0.858129\pi\)
0.131162 + 0.991361i \(0.458129\pi\)
\(80\) −0.118034 0.363271i −0.0131966 0.0406150i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 3.54508 + 2.57565i 0.391489 + 0.284434i
\(83\) 2.38197 + 1.73060i 0.261455 + 0.189958i 0.710788 0.703406i \(-0.248338\pi\)
−0.449333 + 0.893364i \(0.648338\pi\)
\(84\) −0.309017 + 0.951057i −0.0337165 + 0.103769i
\(85\) 0.309017 + 0.951057i 0.0335176 + 0.103157i
\(86\) −1.00000 + 0.726543i −0.107833 + 0.0783451i
\(87\) 0.472136 0.0506183
\(88\) 2.19098 + 2.48990i 0.233560 + 0.265424i
\(89\) −14.3262 −1.51858 −0.759289 0.650753i \(-0.774453\pi\)
−0.759289 + 0.650753i \(0.774453\pi\)
\(90\) 0.309017 0.224514i 0.0325733 0.0236659i
\(91\) 0.381966 + 1.17557i 0.0400409 + 0.123233i
\(92\) 1.04508 3.21644i 0.108958 0.335337i
\(93\) −3.92705 2.85317i −0.407216 0.295860i
\(94\) −0.381966 0.277515i −0.0393968 0.0286234i
\(95\) 0.927051 2.85317i 0.0951134 0.292729i
\(96\) −0.309017 0.951057i −0.0315389 0.0970668i
\(97\) −0.381966 + 0.277515i −0.0387828 + 0.0281773i −0.607008 0.794696i \(-0.707630\pi\)
0.568225 + 0.822873i \(0.307630\pi\)
\(98\) 1.00000 0.101015
\(99\) −1.69098 + 2.85317i −0.169950 + 0.286754i
\(100\) −4.85410 −0.485410
\(101\) −14.7812 + 10.7391i −1.47078 + 1.06858i −0.490393 + 0.871502i \(0.663147\pi\)
−0.980387 + 0.197082i \(0.936853\pi\)
\(102\) 0.809017 + 2.48990i 0.0801046 + 0.246537i
\(103\) 3.57295 10.9964i 0.352053 1.08351i −0.605645 0.795735i \(-0.707085\pi\)
0.957699 0.287773i \(-0.0929150\pi\)
\(104\) −1.00000 0.726543i −0.0980581 0.0712434i
\(105\) −0.309017 0.224514i −0.0301570 0.0219103i
\(106\) −3.00000 + 9.23305i −0.291386 + 0.896793i
\(107\) 2.10081 + 6.46564i 0.203093 + 0.625057i 0.999786 + 0.0206726i \(0.00658077\pi\)
−0.796693 + 0.604384i \(0.793419\pi\)
\(108\) 0.809017 0.587785i 0.0778477 0.0565597i
\(109\) −19.3262 −1.85112 −0.925559 0.378604i \(-0.876404\pi\)
−0.925559 + 0.378604i \(0.876404\pi\)
\(110\) −1.16312 + 0.502029i −0.110899 + 0.0478665i
\(111\) −4.85410 −0.460731
\(112\) −0.809017 + 0.587785i −0.0764449 + 0.0555405i
\(113\) 4.52786 + 13.9353i 0.425946 + 1.31093i 0.902086 + 0.431556i \(0.142035\pi\)
−0.476140 + 0.879369i \(0.657965\pi\)
\(114\) 2.42705 7.46969i 0.227314 0.699601i
\(115\) 1.04508 + 0.759299i 0.0974547 + 0.0708050i
\(116\) 0.381966 + 0.277515i 0.0354647 + 0.0257666i
\(117\) 0.381966 1.17557i 0.0353128 0.108682i
\(118\) −0.854102 2.62866i −0.0786265 0.241987i
\(119\) 2.11803 1.53884i 0.194160 0.141065i
\(120\) 0.381966 0.0348686
\(121\) 7.54508 8.00448i 0.685917 0.727680i
\(122\) 0 0
\(123\) −3.54508 + 2.57565i −0.319650 + 0.232239i
\(124\) −1.50000 4.61653i −0.134704 0.414576i
\(125\) 1.16312 3.57971i 0.104033 0.320179i
\(126\) −0.809017 0.587785i −0.0720730 0.0523641i
\(127\) 17.5623 + 12.7598i 1.55840 + 1.13225i 0.937304 + 0.348514i \(0.113313\pi\)
0.621099 + 0.783732i \(0.286687\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) −0.381966 1.17557i −0.0336302 0.103503i
\(130\) 0.381966 0.277515i 0.0335006 0.0243396i
\(131\) −8.18034 −0.714720 −0.357360 0.933967i \(-0.616323\pi\)
−0.357360 + 0.933967i \(0.616323\pi\)
\(132\) −3.04508 + 1.31433i −0.265041 + 0.114398i
\(133\) −7.85410 −0.681037
\(134\) −3.23607 + 2.35114i −0.279554 + 0.203108i
\(135\) 0.118034 + 0.363271i 0.0101587 + 0.0312654i
\(136\) −0.809017 + 2.48990i −0.0693726 + 0.213507i
\(137\) −8.23607 5.98385i −0.703655 0.511235i 0.177466 0.984127i \(-0.443210\pi\)
−0.881120 + 0.472892i \(0.843210\pi\)
\(138\) 2.73607 + 1.98787i 0.232910 + 0.169219i
\(139\) 0.718847 2.21238i 0.0609718 0.187652i −0.915931 0.401336i \(-0.868546\pi\)
0.976903 + 0.213684i \(0.0685461\pi\)
\(140\) −0.118034 0.363271i −0.00997569 0.0307020i
\(141\) 0.381966 0.277515i 0.0321673 0.0233709i
\(142\) −12.0000 −1.00702
\(143\) −2.09017 + 3.52671i −0.174789 + 0.294918i
\(144\) 1.00000 0.0833333
\(145\) −0.145898 + 0.106001i −0.0121162 + 0.00880291i
\(146\) −3.61803 11.1352i −0.299431 0.921553i
\(147\) −0.309017 + 0.951057i −0.0254873 + 0.0784418i
\(148\) −3.92705 2.85317i −0.322802 0.234529i
\(149\) 7.23607 + 5.25731i 0.592802 + 0.430696i 0.843317 0.537417i \(-0.180600\pi\)
−0.250515 + 0.968113i \(0.580600\pi\)
\(150\) 1.50000 4.61653i 0.122474 0.376938i
\(151\) 1.67376 + 5.15131i 0.136209 + 0.419208i 0.995776 0.0918150i \(-0.0292668\pi\)
−0.859567 + 0.511023i \(0.829267\pi\)
\(152\) 6.35410 4.61653i 0.515386 0.374450i
\(153\) −2.61803 −0.211656
\(154\) 2.19098 + 2.48990i 0.176554 + 0.200642i
\(155\) 1.85410 0.148925
\(156\) 1.00000 0.726543i 0.0800641 0.0581700i
\(157\) −0.0557281 0.171513i −0.00444759 0.0136883i 0.948808 0.315853i \(-0.102291\pi\)
−0.953256 + 0.302165i \(0.902291\pi\)
\(158\) 2.61803 8.05748i 0.208280 0.641019i
\(159\) −7.85410 5.70634i −0.622871 0.452542i
\(160\) 0.309017 + 0.224514i 0.0244299 + 0.0177494i
\(161\) 1.04508 3.21644i 0.0823642 0.253491i
\(162\) 0.309017 + 0.951057i 0.0242787 + 0.0747221i
\(163\) 0.381966 0.277515i 0.0299179 0.0217366i −0.572726 0.819747i \(-0.694114\pi\)
0.602644 + 0.798010i \(0.294114\pi\)
\(164\) −4.38197 −0.342174
\(165\) −0.118034 1.26133i −0.00918893 0.0981942i
\(166\) −2.94427 −0.228520
\(167\) −7.85410 + 5.70634i −0.607769 + 0.441570i −0.848628 0.528990i \(-0.822571\pi\)
0.240859 + 0.970560i \(0.422571\pi\)
\(168\) −0.309017 0.951057i −0.0238412 0.0733756i
\(169\) −3.54508 + 10.9106i −0.272699 + 0.839281i
\(170\) −0.809017 0.587785i −0.0620488 0.0450811i
\(171\) 6.35410 + 4.61653i 0.485910 + 0.353035i
\(172\) 0.381966 1.17557i 0.0291246 0.0896364i
\(173\) −3.10081 9.54332i −0.235750 0.725565i −0.997021 0.0771309i \(-0.975424\pi\)
0.761271 0.648434i \(-0.224576\pi\)
\(174\) −0.381966 + 0.277515i −0.0289568 + 0.0210383i
\(175\) −4.85410 −0.366936
\(176\) −3.23607 0.726543i −0.243928 0.0547652i
\(177\) 2.76393 0.207750
\(178\) 11.5902 8.42075i 0.868720 0.631162i
\(179\) 1.06231 + 3.26944i 0.0794005 + 0.244370i 0.982875 0.184271i \(-0.0589925\pi\)
−0.903475 + 0.428641i \(0.858993\pi\)
\(180\) −0.118034 + 0.363271i −0.00879773 + 0.0270766i
\(181\) 17.3262 + 12.5882i 1.28785 + 0.935677i 0.999760 0.0219263i \(-0.00697992\pi\)
0.288090 + 0.957603i \(0.406980\pi\)
\(182\) −1.00000 0.726543i −0.0741249 0.0538549i
\(183\) 0 0
\(184\) 1.04508 + 3.21644i 0.0770447 + 0.237119i
\(185\) 1.50000 1.08981i 0.110282 0.0801247i
\(186\) 4.85410 0.355920
\(187\) 8.47214 + 1.90211i 0.619544 + 0.139096i
\(188\) 0.472136 0.0344341
\(189\) 0.809017 0.587785i 0.0588473 0.0427551i
\(190\) 0.927051 + 2.85317i 0.0672553 + 0.206991i
\(191\) 1.11803 3.44095i 0.0808981 0.248979i −0.902425 0.430848i \(-0.858215\pi\)
0.983323 + 0.181869i \(0.0582146\pi\)
\(192\) 0.809017 + 0.587785i 0.0583858 + 0.0424197i
\(193\) 21.4894 + 15.6129i 1.54684 + 1.12384i 0.945859 + 0.324579i \(0.105222\pi\)
0.600979 + 0.799265i \(0.294778\pi\)
\(194\) 0.145898 0.449028i 0.0104749 0.0322383i
\(195\) 0.145898 + 0.449028i 0.0104480 + 0.0321556i
\(196\) −0.809017 + 0.587785i −0.0577869 + 0.0419847i
\(197\) 17.8885 1.27451 0.637253 0.770655i \(-0.280071\pi\)
0.637253 + 0.770655i \(0.280071\pi\)
\(198\) −0.309017 3.30220i −0.0219609 0.234677i
\(199\) 11.2705 0.798945 0.399473 0.916745i \(-0.369193\pi\)
0.399473 + 0.916745i \(0.369193\pi\)
\(200\) 3.92705 2.85317i 0.277684 0.201750i
\(201\) −1.23607 3.80423i −0.0871855 0.268329i
\(202\) 5.64590 17.3763i 0.397244 1.22259i
\(203\) 0.381966 + 0.277515i 0.0268088 + 0.0194777i
\(204\) −2.11803 1.53884i −0.148292 0.107740i
\(205\) 0.517221 1.59184i 0.0361243 0.111179i
\(206\) 3.57295 + 10.9964i 0.248939 + 0.766156i
\(207\) −2.73607 + 1.98787i −0.190170 + 0.138166i
\(208\) 1.23607 0.0857059
\(209\) −17.2082 19.5559i −1.19032 1.35271i
\(210\) 0.381966 0.0263582
\(211\) 11.3262 8.22899i 0.779730 0.566507i −0.125168 0.992136i \(-0.539947\pi\)
0.904898 + 0.425628i \(0.139947\pi\)
\(212\) −3.00000 9.23305i −0.206041 0.634129i
\(213\) 3.70820 11.4127i 0.254082 0.781984i
\(214\) −5.50000 3.99598i −0.375972 0.273160i
\(215\) 0.381966 + 0.277515i 0.0260499 + 0.0189263i
\(216\) −0.309017 + 0.951057i −0.0210259 + 0.0647112i
\(217\) −1.50000 4.61653i −0.101827 0.313390i
\(218\) 15.6353 11.3597i 1.05895 0.769374i
\(219\) 11.7082 0.791167
\(220\) 0.645898 1.08981i 0.0435464 0.0734752i
\(221\) −3.23607 −0.217681
\(222\) 3.92705 2.85317i 0.263566 0.191492i
\(223\) 0.246711 + 0.759299i 0.0165210 + 0.0508464i 0.958977 0.283483i \(-0.0914901\pi\)
−0.942456 + 0.334330i \(0.891490\pi\)
\(224\) 0.309017 0.951057i 0.0206471 0.0635451i
\(225\) 3.92705 + 2.85317i 0.261803 + 0.190211i
\(226\) −11.8541 8.61251i −0.788523 0.572896i
\(227\) −7.09017 + 21.8213i −0.470591 + 1.44833i 0.381221 + 0.924484i \(0.375504\pi\)
−0.851813 + 0.523847i \(0.824496\pi\)
\(228\) 2.42705 + 7.46969i 0.160735 + 0.494693i
\(229\) 11.9443 8.67802i 0.789300 0.573460i −0.118456 0.992959i \(-0.537794\pi\)
0.907756 + 0.419500i \(0.137794\pi\)
\(230\) −1.29180 −0.0851785
\(231\) −3.04508 + 1.31433i −0.200352 + 0.0864764i
\(232\) −0.472136 −0.0309972
\(233\) 1.85410 1.34708i 0.121466 0.0882504i −0.525394 0.850859i \(-0.676082\pi\)
0.646860 + 0.762609i \(0.276082\pi\)
\(234\) 0.381966 + 1.17557i 0.0249699 + 0.0768494i
\(235\) −0.0557281 + 0.171513i −0.00363530 + 0.0111883i
\(236\) 2.23607 + 1.62460i 0.145556 + 0.105752i
\(237\) 6.85410 + 4.97980i 0.445222 + 0.323473i
\(238\) −0.809017 + 2.48990i −0.0524408 + 0.161396i
\(239\) −2.48278 7.64121i −0.160598 0.494269i 0.838087 0.545536i \(-0.183674\pi\)
−0.998685 + 0.0512674i \(0.983674\pi\)
\(240\) −0.309017 + 0.224514i −0.0199470 + 0.0144923i
\(241\) −16.9443 −1.09148 −0.545738 0.837956i \(-0.683751\pi\)
−0.545738 + 0.837956i \(0.683751\pi\)
\(242\) −1.39919 + 10.9106i −0.0899431 + 0.701363i
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.118034 0.363271i −0.00754091 0.0232085i
\(246\) 1.35410 4.16750i 0.0863344 0.265710i
\(247\) 7.85410 + 5.70634i 0.499745 + 0.363086i
\(248\) 3.92705 + 2.85317i 0.249368 + 0.181176i
\(249\) 0.909830 2.80017i 0.0576581 0.177453i
\(250\) 1.16312 + 3.57971i 0.0735621 + 0.226401i
\(251\) 21.5623 15.6659i 1.36100 0.988825i 0.362620 0.931937i \(-0.381882\pi\)
0.998381 0.0568878i \(-0.0181177\pi\)
\(252\) 1.00000 0.0629941
\(253\) 10.2984 4.44501i 0.647453 0.279456i
\(254\) −21.7082 −1.36209
\(255\) 0.809017 0.587785i 0.0506626 0.0368085i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −5.48278 + 16.8743i −0.342006 + 1.05259i 0.621161 + 0.783683i \(0.286661\pi\)
−0.963167 + 0.268904i \(0.913339\pi\)
\(258\) 1.00000 + 0.726543i 0.0622573 + 0.0452326i
\(259\) −3.92705 2.85317i −0.244015 0.177287i
\(260\) −0.145898 + 0.449028i −0.00904821 + 0.0278475i
\(261\) −0.145898 0.449028i −0.00903086 0.0277941i
\(262\) 6.61803 4.80828i 0.408864 0.297057i
\(263\) −5.20163 −0.320746 −0.160373 0.987056i \(-0.551270\pi\)
−0.160373 + 0.987056i \(0.551270\pi\)
\(264\) 1.69098 2.85317i 0.104073 0.175600i
\(265\) 3.70820 0.227793
\(266\) 6.35410 4.61653i 0.389595 0.283057i
\(267\) 4.42705 + 13.6251i 0.270931 + 0.833840i
\(268\) 1.23607 3.80423i 0.0755049 0.232380i
\(269\) −12.0902 8.78402i −0.737151 0.535571i 0.154667 0.987967i \(-0.450570\pi\)
−0.891817 + 0.452395i \(0.850570\pi\)
\(270\) −0.309017 0.224514i −0.0188062 0.0136635i
\(271\) 2.31966 7.13918i 0.140909 0.433674i −0.855553 0.517715i \(-0.826783\pi\)
0.996462 + 0.0840410i \(0.0267827\pi\)
\(272\) −0.809017 2.48990i −0.0490539 0.150972i
\(273\) 1.00000 0.726543i 0.0605228 0.0439724i
\(274\) 10.1803 0.615017
\(275\) −10.6353 12.0862i −0.641330 0.728826i
\(276\) −3.38197 −0.203570
\(277\) −9.73607 + 7.07367i −0.584984 + 0.425015i −0.840517 0.541785i \(-0.817749\pi\)
0.255534 + 0.966800i \(0.417749\pi\)
\(278\) 0.718847 + 2.21238i 0.0431136 + 0.132690i
\(279\) −1.50000 + 4.61653i −0.0898027 + 0.276384i
\(280\) 0.309017 + 0.224514i 0.0184673 + 0.0134173i
\(281\) −12.0902 8.78402i −0.721239 0.524011i 0.165541 0.986203i \(-0.447063\pi\)
−0.886780 + 0.462192i \(0.847063\pi\)
\(282\) −0.145898 + 0.449028i −0.00868810 + 0.0267392i
\(283\) −7.15248 22.0131i −0.425171 1.30854i −0.902831 0.429996i \(-0.858515\pi\)
0.477660 0.878545i \(-0.341485\pi\)
\(284\) 9.70820 7.05342i 0.576076 0.418544i
\(285\) −3.00000 −0.177705
\(286\) −0.381966 4.08174i −0.0225861 0.241358i
\(287\) −4.38197 −0.258659
\(288\) −0.809017 + 0.587785i −0.0476718 + 0.0346356i
\(289\) −3.13525 9.64932i −0.184427 0.567607i
\(290\) 0.0557281 0.171513i 0.00327247 0.0100716i
\(291\) 0.381966 + 0.277515i 0.0223912 + 0.0162682i
\(292\) 9.47214 + 6.88191i 0.554315 + 0.402733i
\(293\) 3.82624 11.7759i 0.223531 0.687958i −0.774906 0.632076i \(-0.782203\pi\)
0.998437 0.0558820i \(-0.0177971\pi\)
\(294\) −0.309017 0.951057i −0.0180222 0.0554667i
\(295\) −0.854102 + 0.620541i −0.0497277 + 0.0361293i
\(296\) 4.85410 0.282139
\(297\) 3.23607 + 0.726543i 0.187776 + 0.0421583i
\(298\) −8.94427 −0.518128
\(299\) −3.38197 + 2.45714i −0.195584 + 0.142100i
\(300\) 1.50000 + 4.61653i 0.0866025 + 0.266535i
\(301\) 0.381966 1.17557i 0.0220162 0.0677588i
\(302\) −4.38197 3.18368i −0.252154 0.183200i
\(303\) 14.7812 + 10.7391i 0.849155 + 0.616947i
\(304\) −2.42705 + 7.46969i −0.139201 + 0.428416i
\(305\) 0 0
\(306\) 2.11803 1.53884i 0.121080 0.0879697i
\(307\) −4.85410 −0.277038 −0.138519 0.990360i \(-0.544234\pi\)
−0.138519 + 0.990360i \(0.544234\pi\)
\(308\) −3.23607 0.726543i −0.184392 0.0413986i
\(309\) −11.5623 −0.657757
\(310\) −1.50000 + 1.08981i −0.0851943 + 0.0618973i
\(311\) 5.00000 + 15.3884i 0.283524 + 0.872597i 0.986837 + 0.161717i \(0.0517032\pi\)
−0.703313 + 0.710880i \(0.748297\pi\)
\(312\) −0.381966 + 1.17557i −0.0216246 + 0.0665536i
\(313\) −9.00000 6.53888i −0.508710 0.369600i 0.303624 0.952792i \(-0.401803\pi\)
−0.812334 + 0.583192i \(0.801803\pi\)
\(314\) 0.145898 + 0.106001i 0.00823350 + 0.00598199i
\(315\) −0.118034 + 0.363271i −0.00665046 + 0.0204680i
\(316\) 2.61803 + 8.05748i 0.147276 + 0.453269i
\(317\) −16.3262 + 11.8617i −0.916973 + 0.666220i −0.942769 0.333447i \(-0.891788\pi\)
0.0257958 + 0.999667i \(0.491788\pi\)
\(318\) 9.70820 0.544409
\(319\) 0.145898 + 1.55909i 0.00816872 + 0.0872921i
\(320\) −0.381966 −0.0213525
\(321\) 5.50000 3.99598i 0.306980 0.223034i
\(322\) 1.04508 + 3.21644i 0.0582403 + 0.179245i
\(323\) 6.35410 19.5559i 0.353552 1.08812i
\(324\) −0.809017 0.587785i −0.0449454 0.0326547i
\(325\) 4.85410 + 3.52671i 0.269257 + 0.195627i
\(326\) −0.145898 + 0.449028i −0.00808054 + 0.0248694i
\(327\) 5.97214 + 18.3803i 0.330260 + 1.01644i
\(328\) 3.54508 2.57565i 0.195745 0.142217i
\(329\) 0.472136 0.0260297
\(330\) 0.836881 + 0.951057i 0.0460688 + 0.0523539i
\(331\) 6.58359 0.361867 0.180933 0.983495i \(-0.442088\pi\)
0.180933 + 0.983495i \(0.442088\pi\)
\(332\) 2.38197 1.73060i 0.130727 0.0949790i
\(333\) 1.50000 + 4.61653i 0.0821995 + 0.252984i
\(334\) 3.00000 9.23305i 0.164153 0.505210i
\(335\) 1.23607 + 0.898056i 0.0675336 + 0.0490660i
\(336\) 0.809017 + 0.587785i 0.0441355 + 0.0320663i
\(337\) −9.91641 + 30.5196i −0.540181 + 1.66251i 0.191999 + 0.981395i \(0.438503\pi\)
−0.732180 + 0.681111i \(0.761497\pi\)
\(338\) −3.54508 10.9106i −0.192827 0.593461i
\(339\) 11.8541 8.61251i 0.643826 0.467767i
\(340\) 1.00000 0.0542326
\(341\) 8.20820 13.8496i 0.444499 0.749997i
\(342\) −7.85410 −0.424701
\(343\) −0.809017 + 0.587785i −0.0436828 + 0.0317374i
\(344\) 0.381966 + 1.17557i 0.0205942 + 0.0633825i
\(345\) 0.399187 1.22857i 0.0214915 0.0661440i
\(346\) 8.11803 + 5.89810i 0.436428 + 0.317084i
\(347\) 14.0172 + 10.1841i 0.752484 + 0.546712i 0.896596 0.442850i \(-0.146033\pi\)
−0.144112 + 0.989561i \(0.546033\pi\)
\(348\) 0.145898 0.449028i 0.00782096 0.0240704i
\(349\) −4.85410 14.9394i −0.259834 0.799687i −0.992839 0.119463i \(-0.961883\pi\)
0.733004 0.680224i \(-0.238117\pi\)
\(350\) 3.92705 2.85317i 0.209910 0.152508i
\(351\) −1.23607 −0.0659764
\(352\) 3.04508 1.31433i 0.162304 0.0700539i
\(353\) −18.3607 −0.977240 −0.488620 0.872497i \(-0.662500\pi\)
−0.488620 + 0.872497i \(0.662500\pi\)
\(354\) −2.23607 + 1.62460i −0.118846 + 0.0863464i
\(355\) 1.41641 + 4.35926i 0.0751751 + 0.231365i
\(356\) −4.42705 + 13.6251i −0.234633 + 0.722127i
\(357\) −2.11803 1.53884i −0.112098 0.0814441i
\(358\) −2.78115 2.02063i −0.146989 0.106793i
\(359\) −7.64590 + 23.5317i −0.403535 + 1.24195i 0.518577 + 0.855031i \(0.326462\pi\)
−0.922112 + 0.386922i \(0.873538\pi\)
\(360\) −0.118034 0.363271i −0.00622094 0.0191461i
\(361\) −34.5344 + 25.0907i −1.81760 + 1.32057i
\(362\) −21.4164 −1.12562
\(363\) −9.94427 4.70228i −0.521939 0.246806i
\(364\) 1.23607 0.0647876
\(365\) −3.61803 + 2.62866i −0.189377 + 0.137590i
\(366\) 0 0
\(367\) 5.20820 16.0292i 0.271866 0.836718i −0.718166 0.695872i \(-0.755018\pi\)
0.990032 0.140845i \(-0.0449820\pi\)
\(368\) −2.73607 1.98787i −0.142627 0.103625i
\(369\) 3.54508 + 2.57565i 0.184550 + 0.134083i
\(370\) −0.572949 + 1.76336i −0.0297862 + 0.0916725i
\(371\) −3.00000 9.23305i −0.155752 0.479356i
\(372\) −3.92705 + 2.85317i −0.203608 + 0.147930i
\(373\) 9.61803 0.498003 0.249001 0.968503i \(-0.419898\pi\)
0.249001 + 0.968503i \(0.419898\pi\)
\(374\) −7.97214 + 3.44095i −0.412229 + 0.177928i
\(375\) −3.76393 −0.194369
\(376\) −0.381966 + 0.277515i −0.0196984 + 0.0143117i
\(377\) −0.180340 0.555029i −0.00928798 0.0285855i
\(378\) −0.309017 + 0.951057i −0.0158941 + 0.0489171i
\(379\) −30.6525 22.2703i −1.57451 1.14395i −0.922667 0.385598i \(-0.873995\pi\)
−0.651845 0.758352i \(-0.726005\pi\)
\(380\) −2.42705 1.76336i −0.124505 0.0904582i
\(381\) 6.70820 20.6457i 0.343672 1.05771i
\(382\) 1.11803 + 3.44095i 0.0572036 + 0.176055i
\(383\) −21.7984 + 15.8374i −1.11384 + 0.809256i −0.983265 0.182182i \(-0.941684\pi\)
−0.130580 + 0.991438i \(0.541684\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0.645898 1.08981i 0.0329180 0.0555421i
\(386\) −26.5623 −1.35199
\(387\) −1.00000 + 0.726543i −0.0508329 + 0.0369322i
\(388\) 0.145898 + 0.449028i 0.00740685 + 0.0227959i
\(389\) 3.03444 9.33905i 0.153852 0.473509i −0.844190 0.536043i \(-0.819918\pi\)
0.998043 + 0.0625346i \(0.0199184\pi\)
\(390\) −0.381966 0.277515i −0.0193416 0.0140525i
\(391\) 7.16312 + 5.20431i 0.362254 + 0.263193i
\(392\) 0.309017 0.951057i 0.0156077 0.0480356i
\(393\) 2.52786 + 7.77997i 0.127514 + 0.392447i
\(394\) −14.4721 + 10.5146i −0.729096 + 0.529719i
\(395\) −3.23607 −0.162824
\(396\) 2.19098 + 2.48990i 0.110101 + 0.125122i
\(397\) 21.7082 1.08950 0.544752 0.838597i \(-0.316624\pi\)
0.544752 + 0.838597i \(0.316624\pi\)
\(398\) −9.11803 + 6.62464i −0.457046 + 0.332063i
\(399\) 2.42705 + 7.46969i 0.121505 + 0.373952i
\(400\) −1.50000 + 4.61653i −0.0750000 + 0.230826i
\(401\) 6.76393 + 4.91428i 0.337775 + 0.245408i 0.743722 0.668489i \(-0.233058\pi\)
−0.405948 + 0.913896i \(0.633058\pi\)
\(402\) 3.23607 + 2.35114i 0.161400 + 0.117264i
\(403\) −1.85410 + 5.70634i −0.0923594 + 0.284253i
\(404\) 5.64590 + 17.3763i 0.280894 + 0.864503i
\(405\) 0.309017 0.224514i 0.0153552 0.0111562i
\(406\) −0.472136 −0.0234317
\(407\) −1.50000 16.0292i −0.0743522 0.794538i
\(408\) 2.61803 0.129612
\(409\) 11.5623 8.40051i 0.571719 0.415378i −0.264010 0.964520i \(-0.585045\pi\)
0.835729 + 0.549142i \(0.185045\pi\)
\(410\) 0.517221 + 1.59184i 0.0255437 + 0.0786155i
\(411\) −3.14590 + 9.68208i −0.155176 + 0.477582i
\(412\) −9.35410 6.79615i −0.460844 0.334822i
\(413\) 2.23607 + 1.62460i 0.110030 + 0.0799413i
\(414\) 1.04508 3.21644i 0.0513631 0.158079i
\(415\) 0.347524 + 1.06957i 0.0170593 + 0.0525031i
\(416\) −1.00000 + 0.726543i −0.0490290 + 0.0356217i
\(417\) −2.32624 −0.113916
\(418\) 25.4164 + 5.70634i 1.24316 + 0.279106i
\(419\) −5.23607 −0.255799 −0.127899 0.991787i \(-0.540823\pi\)
−0.127899 + 0.991787i \(0.540823\pi\)
\(420\) −0.309017 + 0.224514i −0.0150785 + 0.0109552i
\(421\) −2.75329 8.47375i −0.134187 0.412985i 0.861276 0.508138i \(-0.169666\pi\)
−0.995463 + 0.0951527i \(0.969666\pi\)
\(422\) −4.32624 + 13.3148i −0.210598 + 0.648154i
\(423\) −0.381966 0.277515i −0.0185718 0.0134932i
\(424\) 7.85410 + 5.70634i 0.381429 + 0.277124i
\(425\) 3.92705 12.0862i 0.190490 0.586268i
\(426\) 3.70820 + 11.4127i 0.179663 + 0.552946i
\(427\) 0 0
\(428\) 6.79837 0.328612
\(429\) 4.00000 + 0.898056i 0.193122 + 0.0433585i
\(430\) −0.472136 −0.0227684
\(431\) 8.92705 6.48588i 0.430001 0.312414i −0.351648 0.936132i \(-0.614379\pi\)
0.781649 + 0.623718i \(0.214379\pi\)
\(432\) −0.309017 0.951057i −0.0148676 0.0457577i
\(433\) −11.0344 + 33.9605i −0.530281 + 1.63204i 0.223348 + 0.974739i \(0.428301\pi\)
−0.753629 + 0.657300i \(0.771699\pi\)
\(434\) 3.92705 + 2.85317i 0.188504 + 0.136957i
\(435\) 0.145898 + 0.106001i 0.00699528 + 0.00508236i
\(436\) −5.97214 + 18.3803i −0.286013 + 0.880259i
\(437\) −8.20820 25.2623i −0.392652 1.20846i
\(438\) −9.47214 + 6.88191i −0.452596 + 0.328830i
\(439\) −24.2705 −1.15837 −0.579184 0.815197i \(-0.696629\pi\)
−0.579184 + 0.815197i \(0.696629\pi\)
\(440\) 0.118034 + 1.26133i 0.00562705 + 0.0601314i
\(441\) 1.00000 0.0476190
\(442\) 2.61803 1.90211i 0.124527 0.0904743i
\(443\) 12.5729 + 38.6956i 0.597359 + 1.83848i 0.542616 + 0.839981i \(0.317434\pi\)
0.0547430 + 0.998500i \(0.482566\pi\)
\(444\) −1.50000 + 4.61653i −0.0711868 + 0.219091i
\(445\) −4.42705 3.21644i −0.209862 0.152474i
\(446\) −0.645898 0.469272i −0.0305842 0.0222207i
\(447\) 2.76393 8.50651i 0.130729 0.402344i
\(448\) 0.309017 + 0.951057i 0.0145997 + 0.0449332i
\(449\) 1.23607 0.898056i 0.0583337 0.0423819i −0.558236 0.829682i \(-0.688522\pi\)
0.616570 + 0.787300i \(0.288522\pi\)
\(450\) −4.85410 −0.228825
\(451\) −9.60081 10.9106i −0.452085 0.513762i
\(452\) 14.6525 0.689194
\(453\) 4.38197 3.18368i 0.205883 0.149583i
\(454\) −7.09017 21.8213i −0.332758 1.02412i
\(455\) −0.145898 + 0.449028i −0.00683981 + 0.0210508i
\(456\) −6.35410 4.61653i −0.297558 0.216189i
\(457\) 5.32624 + 3.86974i 0.249151 + 0.181019i 0.705350 0.708859i \(-0.250790\pi\)
−0.456200 + 0.889878i \(0.650790\pi\)
\(458\) −4.56231 + 14.0413i −0.213183 + 0.656108i
\(459\) 0.809017 + 2.48990i 0.0377617 + 0.116218i
\(460\) 1.04508 0.759299i 0.0487273 0.0354025i
\(461\) 37.4164 1.74266 0.871328 0.490701i \(-0.163259\pi\)
0.871328 + 0.490701i \(0.163259\pi\)
\(462\) 1.69098 2.85317i 0.0786716 0.132741i
\(463\) 36.0000 1.67306 0.836531 0.547920i \(-0.184580\pi\)
0.836531 + 0.547920i \(0.184580\pi\)
\(464\) 0.381966 0.277515i 0.0177323 0.0128833i
\(465\) −0.572949 1.76336i −0.0265699 0.0817737i
\(466\) −0.708204 + 2.17963i −0.0328069 + 0.100969i
\(467\) −18.7984 13.6578i −0.869885 0.632008i 0.0606711 0.998158i \(-0.480676\pi\)
−0.930556 + 0.366149i \(0.880676\pi\)
\(468\) −1.00000 0.726543i −0.0462250 0.0335844i
\(469\) 1.23607 3.80423i 0.0570763 0.175663i
\(470\) −0.0557281 0.171513i −0.00257055 0.00791132i
\(471\) −0.145898 + 0.106001i −0.00672263 + 0.00488427i
\(472\) −2.76393 −0.127220
\(473\) 3.76393 1.62460i 0.173066 0.0746991i
\(474\) −8.47214 −0.389138
\(475\) −30.8435 + 22.4091i −1.41519 + 1.02820i
\(476\) −0.809017 2.48990i −0.0370812 0.114124i
\(477\) −3.00000 + 9.23305i −0.137361 + 0.422752i
\(478\) 6.50000 + 4.72253i 0.297303 + 0.216003i
\(479\) −19.4164 14.1068i −0.887158 0.644558i 0.0479772 0.998848i \(-0.484723\pi\)
−0.935136 + 0.354290i \(0.884723\pi\)
\(480\) 0.118034 0.363271i 0.00538749 0.0165810i
\(481\) 1.85410 + 5.70634i 0.0845398 + 0.260187i
\(482\) 13.7082 9.95959i 0.624392 0.453647i
\(483\) −3.38197 −0.153885
\(484\) −5.28115 9.64932i −0.240052 0.438606i
\(485\) −0.180340 −0.00818881
\(486\) 0.809017 0.587785i 0.0366978 0.0266625i
\(487\) −1.58359 4.87380i −0.0717594 0.220853i 0.908744 0.417353i \(-0.137042\pi\)
−0.980504 + 0.196501i \(0.937042\pi\)
\(488\) 0 0
\(489\) −0.381966 0.277515i −0.0172731 0.0125496i
\(490\) 0.309017 + 0.224514i 0.0139600 + 0.0101425i
\(491\) −2.57295 + 7.91872i −0.116116 + 0.357367i −0.992178 0.124831i \(-0.960161\pi\)
0.876063 + 0.482198i \(0.160161\pi\)
\(492\) 1.35410 + 4.16750i 0.0610476 + 0.187885i
\(493\) −1.00000 + 0.726543i −0.0450377 + 0.0327218i
\(494\) −9.70820 −0.436793
\(495\) −1.16312 + 0.502029i −0.0522783 + 0.0225645i
\(496\) −4.85410 −0.217956
\(497\) 9.70820 7.05342i 0.435472 0.316389i
\(498\) 0.909830 + 2.80017i 0.0407705 + 0.125479i
\(499\) 7.32624 22.5478i 0.327967 1.00938i −0.642116 0.766608i \(-0.721943\pi\)
0.970083 0.242772i \(-0.0780568\pi\)
\(500\) −3.04508 2.21238i −0.136180 0.0989408i
\(501\) 7.85410 + 5.70634i 0.350895 + 0.254940i
\(502\) −8.23607 + 25.3480i −0.367594 + 1.13134i
\(503\) 10.0000 + 30.7768i 0.445878 + 1.37227i 0.881518 + 0.472150i \(0.156522\pi\)
−0.435640 + 0.900121i \(0.643478\pi\)
\(504\) −0.809017 + 0.587785i −0.0360365 + 0.0261820i
\(505\) −6.97871 −0.310549
\(506\) −5.71885 + 9.64932i −0.254234 + 0.428965i
\(507\) 11.4721 0.509495
\(508\) 17.5623 12.7598i 0.779201 0.566123i
\(509\) 9.40983 + 28.9605i 0.417083 + 1.28365i 0.910374 + 0.413786i \(0.135794\pi\)
−0.493291 + 0.869865i \(0.664206\pi\)
\(510\) −0.309017 + 0.951057i −0.0136835 + 0.0421135i
\(511\) 9.47214 + 6.88191i 0.419023 + 0.304438i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 2.42705 7.46969i 0.107157 0.329795i
\(514\) −5.48278 16.8743i −0.241835 0.744292i
\(515\) 3.57295 2.59590i 0.157443 0.114389i
\(516\) −1.23607 −0.0544149
\(517\) 1.03444 + 1.17557i 0.0454947 + 0.0517015i
\(518\) 4.85410 0.213277
\(519\) −8.11803 + 5.89810i −0.356342 + 0.258898i
\(520\) −0.145898 0.449028i −0.00639805 0.0196912i
\(521\) −12.0623 + 37.1240i −0.528459 + 1.62643i 0.228913 + 0.973447i \(0.426483\pi\)
−0.757372 + 0.652983i \(0.773517\pi\)
\(522\) 0.381966 + 0.277515i 0.0167182 + 0.0121465i
\(523\) −5.88197 4.27350i −0.257200 0.186867i 0.451712 0.892164i \(-0.350814\pi\)
−0.708912 + 0.705297i \(0.750814\pi\)
\(524\) −2.52786 + 7.77997i −0.110430 + 0.339869i
\(525\) 1.50000 + 4.61653i 0.0654654 + 0.201482i
\(526\) 4.20820 3.05744i 0.183486 0.133311i
\(527\) 12.7082 0.553578
\(528\) 0.309017 + 3.30220i 0.0134482 + 0.143710i
\(529\) −11.5623 −0.502709
\(530\) −3.00000 + 2.17963i −0.130312 + 0.0946770i
\(531\) −0.854102 2.62866i −0.0370649 0.114074i
\(532\) −2.42705 + 7.46969i −0.105226 + 0.323852i
\(533\) 4.38197 + 3.18368i 0.189804 + 0.137901i
\(534\) −11.5902 8.42075i −0.501556 0.364402i
\(535\) −0.802439 + 2.46965i −0.0346925 + 0.106772i
\(536\) 1.23607 + 3.80423i 0.0533900 + 0.164318i
\(537\) 2.78115 2.02063i 0.120016 0.0871964i
\(538\) 14.9443 0.644293
\(539\) −3.23607 0.726543i −0.139387 0.0312944i
\(540\) 0.381966 0.0164372
\(541\) 8.07295 5.86534i 0.347083 0.252171i −0.400561 0.916270i \(-0.631185\pi\)
0.747644 + 0.664099i \(0.231185\pi\)
\(542\) 2.31966 + 7.13918i 0.0996379 + 0.306654i
\(543\) 6.61803 20.3682i 0.284007 0.874084i
\(544\) 2.11803 + 1.53884i 0.0908100 + 0.0659773i
\(545\) −5.97214 4.33901i −0.255818 0.185863i
\(546\) −0.381966 + 1.17557i −0.0163466 + 0.0503098i
\(547\) −9.56231 29.4298i −0.408855 1.25833i −0.917633 0.397428i \(-0.869903\pi\)
0.508779 0.860897i \(-0.330097\pi\)
\(548\) −8.23607 + 5.98385i −0.351827 + 0.255618i
\(549\) 0 0
\(550\) 15.7082 + 3.52671i 0.669800 + 0.150379i
\(551\) 3.70820 0.157975
\(552\) 2.73607 1.98787i 0.116455 0.0846094i
\(553\) 2.61803 + 8.05748i 0.111330 + 0.342639i
\(554\) 3.71885 11.4454i 0.157999 0.486270i
\(555\) −1.50000 1.08981i −0.0636715 0.0462600i
\(556\) −1.88197 1.36733i −0.0798131 0.0579876i
\(557\) 12.4377 38.2793i 0.527002 1.62195i −0.233321 0.972400i \(-0.574959\pi\)
0.760323 0.649546i \(-0.225041\pi\)
\(558\) −1.50000 4.61653i −0.0635001 0.195433i
\(559\) −1.23607 + 0.898056i −0.0522801 + 0.0379837i
\(560\) −0.381966 −0.0161410
\(561\) −0.809017 8.64527i −0.0341567 0.365003i
\(562\) 14.9443 0.630386
\(563\) 5.70820 4.14725i 0.240572 0.174786i −0.460966 0.887418i \(-0.652497\pi\)
0.701538 + 0.712632i \(0.252497\pi\)
\(564\) −0.145898 0.449028i −0.00614342 0.0189075i
\(565\) −1.72949 + 5.32282i −0.0727602 + 0.223933i
\(566\) 18.7254 + 13.6048i 0.787088 + 0.571853i
\(567\) −0.809017 0.587785i −0.0339755 0.0246847i
\(568\) −3.70820 + 11.4127i −0.155593 + 0.478865i
\(569\) 2.56231 + 7.88597i 0.107417 + 0.330597i 0.990290 0.139015i \(-0.0443937\pi\)
−0.882873 + 0.469612i \(0.844394\pi\)
\(570\) 2.42705 1.76336i 0.101658 0.0738588i
\(571\) −17.1246 −0.716643 −0.358321 0.933598i \(-0.616651\pi\)
−0.358321 + 0.933598i \(0.616651\pi\)
\(572\) 2.70820 + 3.07768i 0.113236 + 0.128684i
\(573\) −3.61803 −0.151146
\(574\) 3.54508 2.57565i 0.147969 0.107506i
\(575\) −5.07295 15.6129i −0.211557 0.651104i
\(576\) 0.309017 0.951057i 0.0128757 0.0396274i
\(577\) 19.0902 + 13.8698i 0.794734 + 0.577408i 0.909365 0.416000i \(-0.136568\pi\)
−0.114630 + 0.993408i \(0.536568\pi\)
\(578\) 8.20820 + 5.96361i 0.341416 + 0.248053i
\(579\) 8.20820 25.2623i 0.341121 1.04986i
\(580\) 0.0557281 + 0.171513i 0.00231398 + 0.00712171i
\(581\) 2.38197 1.73060i 0.0988206 0.0717974i
\(582\) −0.472136 −0.0195707
\(583\) 16.4164 27.6992i 0.679898 1.14718i
\(584\) −11.7082 −0.484489
\(585\) 0.381966 0.277515i 0.0157924 0.0114738i
\(586\) 3.82624 + 11.7759i 0.158060 + 0.486460i
\(587\) 7.09017 21.8213i 0.292643 0.900661i −0.691360 0.722510i \(-0.742988\pi\)
0.984003 0.178151i \(-0.0570117\pi\)
\(588\) 0.809017 + 0.587785i 0.0333633 + 0.0242399i
\(589\) −30.8435 22.4091i −1.27088 0.923350i
\(590\) 0.326238 1.00406i 0.0134310 0.0413364i
\(591\) −5.52786 17.0130i −0.227386 0.699822i
\(592\) −3.92705 + 2.85317i −0.161401 + 0.117265i
\(593\) 9.90983 0.406948 0.203474 0.979080i \(-0.434777\pi\)
0.203474 + 0.979080i \(0.434777\pi\)
\(594\) −3.04508 + 1.31433i −0.124941 + 0.0539275i
\(595\) 1.00000 0.0409960
\(596\) 7.23607 5.25731i 0.296401 0.215348i
\(597\) −3.48278 10.7189i −0.142541 0.438695i
\(598\) 1.29180 3.97574i 0.0528255 0.162580i
\(599\) −23.3885 16.9928i −0.955630 0.694306i −0.00349827 0.999994i \(-0.501114\pi\)
−0.952132 + 0.305688i \(0.901114\pi\)
\(600\) −3.92705 2.85317i −0.160321 0.116480i
\(601\) −10.1459 + 31.2259i −0.413860 + 1.27373i 0.499407 + 0.866368i \(0.333551\pi\)
−0.913267 + 0.407362i \(0.866449\pi\)
\(602\) 0.381966 + 1.17557i 0.0155678 + 0.0479127i
\(603\) −3.23607 + 2.35114i −0.131783 + 0.0957459i
\(604\) 5.41641 0.220391
\(605\) 4.12868 0.779543i 0.167855 0.0316929i
\(606\) −18.2705 −0.742189
\(607\) 13.1180 9.53081i 0.532445 0.386844i −0.288827 0.957381i \(-0.593265\pi\)
0.821271 + 0.570538i \(0.193265\pi\)
\(608\) −2.42705 7.46969i −0.0984299 0.302936i
\(609\) 0.145898 0.449028i 0.00591209 0.0181955i
\(610\) 0 0
\(611\) −0.472136 0.343027i −0.0191006 0.0138774i
\(612\) −0.809017 + 2.48990i −0.0327026 + 0.100648i
\(613\) −2.28115 7.02067i −0.0921349 0.283562i 0.894362 0.447345i \(-0.147630\pi\)
−0.986496 + 0.163783i \(0.947630\pi\)
\(614\) 3.92705 2.85317i 0.158483 0.115145i
\(615\) −1.67376 −0.0674926
\(616\) 3.04508 1.31433i 0.122690 0.0529558i
\(617\) 9.81966 0.395325 0.197662 0.980270i \(-0.436665\pi\)
0.197662 + 0.980270i \(0.436665\pi\)
\(618\) 9.35410 6.79615i 0.376277 0.273381i
\(619\) −3.08359 9.49032i −0.123940 0.381448i 0.869766 0.493464i \(-0.164269\pi\)
−0.993706 + 0.112015i \(0.964269\pi\)
\(620\) 0.572949 1.76336i 0.0230102 0.0708181i
\(621\) 2.73607 + 1.98787i 0.109795 + 0.0797705i
\(622\) −13.0902 9.51057i −0.524868 0.381339i
\(623\) −4.42705 + 13.6251i −0.177366 + 0.545877i
\(624\) −0.381966 1.17557i −0.0152909 0.0470605i
\(625\) −18.4721 + 13.4208i −0.738885 + 0.536832i
\(626\) 11.1246 0.444629
\(627\) −13.2812 + 22.4091i −0.530398 + 0.894933i
\(628\) −0.180340 −0.00719634
\(629\) 10.2812 7.46969i 0.409936 0.297836i
\(630\) −0.118034 0.363271i −0.00470259 0.0144731i
\(631\) 8.00000 24.6215i 0.318475 0.980165i −0.655825 0.754913i \(-0.727679\pi\)
0.974300 0.225253i \(-0.0723207\pi\)
\(632\) −6.85410 4.97980i −0.272642 0.198086i
\(633\) −11.3262 8.22899i −0.450178 0.327073i
\(634\) 6.23607 19.1926i 0.247666 0.762237i
\(635\) 2.56231 + 7.88597i 0.101682 + 0.312945i
\(636\) −7.85410 + 5.70634i −0.311435 + 0.226271i
\(637\) 1.23607 0.0489748
\(638\) −1.03444 1.17557i −0.0409539 0.0465413i
\(639\) −12.0000 −0.474713
\(640\) 0.309017 0.224514i 0.0122150 0.00887469i
\(641\) 1.61803 + 4.97980i 0.0639085 + 0.196690i 0.977912 0.209015i \(-0.0670259\pi\)
−0.914004 + 0.405705i \(0.867026\pi\)
\(642\) −2.10081 + 6.46564i −0.0829125 + 0.255178i
\(643\) 22.0623 + 16.0292i 0.870052 + 0.632130i 0.930601 0.366035i \(-0.119285\pi\)
−0.0605486 + 0.998165i \(0.519285\pi\)
\(644\) −2.73607 1.98787i −0.107816 0.0783330i
\(645\) 0.145898 0.449028i 0.00574473 0.0176805i
\(646\) 6.35410 + 19.5559i 0.249999 + 0.769417i
\(647\) 25.7984 18.7436i 1.01424 0.736888i 0.0491448 0.998792i \(-0.484350\pi\)
0.965094 + 0.261904i \(0.0843504\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0.854102 + 9.12705i 0.0335264 + 0.358268i
\(650\) −6.00000 −0.235339
\(651\) −3.92705 + 2.85317i −0.153913 + 0.111825i
\(652\) −0.145898 0.449028i −0.00571381 0.0175853i
\(653\) 5.12461 15.7719i 0.200542 0.617203i −0.799326 0.600898i \(-0.794810\pi\)
0.999867 0.0163052i \(-0.00519033\pi\)
\(654\) −15.6353 11.3597i −0.611387 0.444199i
\(655\) −2.52786 1.83660i −0.0987718 0.0717619i
\(656\) −1.35410 + 4.16750i −0.0528688 + 0.162713i
\(657\) −3.61803 11.1352i −0.141153 0.434424i
\(658\) −0.381966 + 0.277515i −0.0148906 + 0.0108186i
\(659\) 13.6869 0.533167 0.266583 0.963812i \(-0.414105\pi\)
0.266583 + 0.963812i \(0.414105\pi\)
\(660\) −1.23607 0.277515i −0.0481139 0.0108022i
\(661\) 35.1246 1.36619 0.683095 0.730330i \(-0.260634\pi\)
0.683095 + 0.730330i \(0.260634\pi\)
\(662\) −5.32624 + 3.86974i −0.207010 + 0.150402i
\(663\) 1.00000 + 3.07768i 0.0388368 + 0.119527i
\(664\) −0.909830 + 2.80017i −0.0353083 + 0.108668i
\(665\) −2.42705 1.76336i −0.0941170 0.0683800i
\(666\) −3.92705 2.85317i −0.152170 0.110558i
\(667\) −0.493422 + 1.51860i −0.0191054 + 0.0588003i
\(668\) 3.00000 + 9.23305i 0.116073 + 0.357237i
\(669\) 0.645898 0.469272i 0.0249719 0.0181431i
\(670\) −1.52786 −0.0590265
\(671\) 0 0
\(672\) −1.00000 −0.0385758
\(673\) −37.0344 + 26.9071i −1.42757 + 1.03719i −0.437111 + 0.899408i \(0.643998\pi\)
−0.990462 + 0.137785i \(0.956002\pi\)
\(674\) −9.91641 30.5196i −0.381966 1.17557i
\(675\) 1.50000 4.61653i 0.0577350 0.177690i
\(676\) 9.28115 + 6.74315i 0.356967 + 0.259352i
\(677\) 6.56231 + 4.76779i 0.252210 + 0.183241i 0.706706 0.707508i \(-0.250181\pi\)
−0.454496 + 0.890749i \(0.650181\pi\)
\(678\) −4.52786 + 13.9353i −0.173892 + 0.535183i
\(679\) 0.145898 + 0.449028i 0.00559905 + 0.0172321i
\(680\) −0.809017 + 0.587785i −0.0310244 + 0.0225405i
\(681\) 22.9443 0.879226
\(682\) 1.50000 + 16.0292i 0.0574380 + 0.613790i
\(683\) 31.0344 1.18750 0.593750 0.804650i \(-0.297647\pi\)
0.593750 + 0.804650i \(0.297647\pi\)
\(684\) 6.35410 4.61653i 0.242955 0.176517i
\(685\) −1.20163 3.69822i −0.0459118 0.141302i
\(686\) 0.309017 0.951057i 0.0117983 0.0363115i
\(687\) −11.9443 8.67802i −0.455702 0.331087i
\(688\) −1.00000 0.726543i −0.0381246 0.0276992i
\(689\) −3.70820 + 11.4127i −0.141271 + 0.434788i
\(690\) 0.399187 + 1.22857i 0.0151968 + 0.0467709i
\(691\) −41.7148 + 30.3076i −1.58691 + 1.15295i −0.678710 + 0.734406i \(0.737461\pi\)
−0.908195 + 0.418548i \(0.862539\pi\)
\(692\) −10.0344 −0.381452
\(693\) 2.19098 + 2.48990i 0.0832286 + 0.0945834i
\(694\) −17.3262 −0.657695
\(695\) 0.718847 0.522273i 0.0272674 0.0198109i
\(696\) 0.145898 + 0.449028i 0.00553025 + 0.0170204i
\(697\) 3.54508 10.9106i 0.134280 0.413270i
\(698\) 12.7082 + 9.23305i 0.481013 + 0.349476i
\(699\) −1.85410 1.34708i −0.0701286 0.0509514i
\(700\) −1.50000 + 4.61653i −0.0566947 + 0.174488i
\(701\) −8.85410 27.2501i −0.334415 1.02922i −0.967010 0.254740i \(-0.918010\pi\)
0.632595 0.774483i \(-0.281990\pi\)
\(702\) 1.00000 0.726543i 0.0377426 0.0274216i
\(703\) −38.1246 −1.43790
\(704\) −1.69098 + 2.85317i −0.0637313 + 0.107533i
\(705\) 0.180340 0.00679199
\(706\) 14.8541 10.7921i 0.559042 0.406167i
\(707\) 5.64590 + 17.3763i 0.212336 + 0.653503i
\(708\) 0.854102 2.62866i 0.0320991 0.0987909i
\(709\) 9.63525 + 7.00042i 0.361860 + 0.262906i 0.753827 0.657073i \(-0.228206\pi\)
−0.391968 + 0.919979i \(0.628206\pi\)
\(710\) −3.70820 2.69417i −0.139166 0.101110i
\(711\) 2.61803 8.05748i 0.0981839 0.302179i
\(712\) −4.42705 13.6251i −0.165911 0.510621i
\(713\) 13.2812 9.64932i 0.497383 0.361370i
\(714\) 2.61803 0.0979775
\(715\) −1.43769 + 0.620541i −0.0537667 + 0.0232069i
\(716\) 3.43769 0.128473
\(717\) −6.50000 + 4.72253i −0.242747 + 0.176366i
\(718\) −7.64590 23.5317i −0.285342 0.878194i
\(719\) −5.61803 + 17.2905i −0.209517 + 0.644828i 0.789980 + 0.613132i \(0.210091\pi\)
−0.999498 + 0.0316957i \(0.989909\pi\)
\(720\) 0.309017 + 0.224514i 0.0115164 + 0.00836714i
\(721\) −9.35410 6.79615i −0.348365 0.253102i
\(722\) 13.1910 40.5977i 0.490918 1.51089i
\(723\) 5.23607 + 16.1150i 0.194731 + 0.599322i
\(724\) 17.3262 12.5882i 0.643925 0.467839i
\(725\) 2.29180 0.0851152
\(726\) 10.8090 2.04087i 0.401160 0.0757438i
\(727\) 3.85410 0.142941 0.0714704 0.997443i \(-0.477231\pi\)
0.0714704 + 0.997443i \(0.477231\pi\)
\(728\) −1.00000 + 0.726543i −0.0370625 + 0.0269275i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 1.38197 4.25325i 0.0511489 0.157420i
\(731\) 2.61803 + 1.90211i 0.0968315 + 0.0703522i
\(732\) 0 0
\(733\) −1.90983 + 5.87785i −0.0705412 + 0.217103i −0.980112 0.198446i \(-0.936411\pi\)
0.909571 + 0.415549i \(0.136411\pi\)
\(734\) 5.20820 + 16.0292i 0.192238 + 0.591649i
\(735\) −0.309017 + 0.224514i −0.0113983 + 0.00828132i
\(736\) 3.38197 0.124661
\(737\) 12.1803 5.25731i 0.448669 0.193656i
\(738\) −4.38197 −0.161302
\(739\) 6.23607 4.53077i 0.229397 0.166667i −0.467149 0.884178i \(-0.654719\pi\)
0.696547 + 0.717511i \(0.254719\pi\)
\(740\) −0.572949 1.76336i −0.0210620 0.0648222i
\(741\) 3.00000 9.23305i 0.110208 0.339185i
\(742\) 7.85410 + 5.70634i 0.288333 + 0.209486i
\(743\) −22.7812 16.5515i −0.835759 0.607215i 0.0854234 0.996345i \(-0.472776\pi\)
−0.921183 + 0.389130i \(0.872776\pi\)
\(744\) 1.50000 4.61653i 0.0549927 0.169250i
\(745\) 1.05573 + 3.24920i 0.0386789 + 0.119041i
\(746\) −7.78115 + 5.65334i −0.284888 + 0.206983i
\(747\) −2.94427 −0.107725
\(748\) 4.42705 7.46969i 0.161869 0.273119i
\(749\) 6.79837 0.248407
\(750\) 3.04508 2.21238i 0.111191 0.0807848i
\(751\) −4.58359 14.1068i −0.167258 0.514766i 0.831938 0.554869i \(-0.187232\pi\)
−0.999196 + 0.0401026i \(0.987232\pi\)
\(752\) 0.145898 0.449028i 0.00532035 0.0163744i
\(753\) −21.5623 15.6659i −0.785774 0.570898i
\(754\) 0.472136 + 0.343027i 0.0171942 + 0.0124923i
\(755\) −0.639320 + 1.96763i −0.0232672 + 0.0716092i
\(756\) −0.309017 0.951057i −0.0112388 0.0345896i
\(757\) −14.4443 + 10.4944i −0.524986 + 0.381425i −0.818479 0.574537i \(-0.805182\pi\)
0.293493 + 0.955961i \(0.405182\pi\)
\(758\) 37.8885 1.37617
\(759\) −7.40983 8.42075i −0.268960 0.305654i
\(760\) 3.00000 0.108821
\(761\) 19.3262 14.0413i 0.700576 0.508998i −0.179544 0.983750i \(-0.557462\pi\)
0.880120 + 0.474752i \(0.157462\pi\)
\(762\) 6.70820 + 20.6457i 0.243013 + 0.747916i
\(763\) −5.97214 + 18.3803i −0.216206 + 0.665413i
\(764\) −2.92705 2.12663i −0.105897 0.0769387i
\(765\) −0.809017 0.587785i −0.0292501 0.0212514i
\(766\) 8.32624 25.6255i 0.300839 0.925888i
\(767\) −1.05573 3.24920i −0.0381201 0.117322i
\(768\) 0.809017 0.587785i 0.0291929 0.0212099i
\(769\) 15.8885 0.572956 0.286478 0.958087i \(-0.407516\pi\)
0.286478 + 0.958087i \(0.407516\pi\)
\(770\) 0.118034 + 1.26133i 0.00425365 + 0.0454551i
\(771\) 17.7426 0.638986
\(772\) 21.4894 15.6129i 0.773419 0.561922i
\(773\) 7.38197 + 22.7194i 0.265511 + 0.817158i 0.991575 + 0.129532i \(0.0413474\pi\)
−0.726064 + 0.687627i \(0.758653\pi\)
\(774\) 0.381966 1.17557i 0.0137295