Properties

Label 462.2.i.f.67.2
Level $462$
Weight $2$
Character 462.67
Analytic conductor $3.689$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1156923.1
Defining polynomial: \(x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 27 x^{2} - 18 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.2
Root \(0.500000 + 1.51496i\) of defining polynomial
Character \(\chi\) \(=\) 462.67
Dual form 462.2.i.f.331.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.227452 - 0.393958i) q^{5} +1.00000 q^{6} +(-0.227452 - 2.63596i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.227452 - 0.393958i) q^{5} +1.00000 q^{6} +(-0.227452 - 2.63596i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.227452 + 0.393958i) q^{10} +(-0.500000 + 0.866025i) q^{11} +(-0.500000 - 0.866025i) q^{12} +0.909808 q^{13} +(-2.16908 + 1.51496i) q^{14} +0.454904 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-1.94163 - 3.36300i) q^{19} +0.454904 q^{20} +(2.39653 + 1.12100i) q^{21} +1.00000 q^{22} +(-4.16908 - 7.22106i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(2.39653 - 4.15091i) q^{25} +(-0.454904 - 0.787917i) q^{26} +1.00000 q^{27} +(2.39653 + 1.12100i) q^{28} -2.79306 q^{29} +(-0.227452 - 0.393958i) q^{30} +(4.79306 - 8.30183i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.500000 - 0.866025i) q^{33} +1.00000 q^{34} +(-0.986723 + 0.689160i) q^{35} +1.00000 q^{36} +(-3.94163 - 6.82710i) q^{37} +(-1.94163 + 3.36300i) q^{38} +(-0.454904 + 0.787917i) q^{39} +(-0.227452 - 0.393958i) q^{40} -1.79306 q^{41} +(-0.227452 - 2.63596i) q^{42} +7.88325 q^{43} +(-0.500000 - 0.866025i) q^{44} +(-0.227452 + 0.393958i) q^{45} +(-4.16908 + 7.22106i) q^{46} +(-0.169079 - 0.292854i) q^{47} +1.00000 q^{48} +(-6.89653 + 1.19911i) q^{49} -4.79306 q^{50} +(-0.500000 - 0.866025i) q^{51} +(-0.454904 + 0.787917i) q^{52} +(-0.454904 + 0.787917i) q^{53} +(-0.500000 - 0.866025i) q^{54} +0.454904 q^{55} +(-0.227452 - 2.63596i) q^{56} +3.88325 q^{57} +(1.39653 + 2.41886i) q^{58} +(-3.48672 + 6.03918i) q^{59} +(-0.227452 + 0.393958i) q^{60} +(7.02051 + 12.1599i) q^{61} -9.58612 q^{62} +(-2.16908 + 1.51496i) q^{63} +1.00000 q^{64} +(-0.206938 - 0.358427i) q^{65} +(-0.500000 + 0.866025i) q^{66} +(1.89653 - 3.28489i) q^{67} +(-0.500000 - 0.866025i) q^{68} +8.33816 q^{69} +(1.09019 + 0.509947i) q^{70} -4.79306 q^{71} +(-0.500000 - 0.866025i) q^{72} +(-5.33816 + 9.24596i) q^{73} +(-3.94163 + 6.82710i) q^{74} +(2.39653 + 4.15091i) q^{75} +3.88325 q^{76} +(2.39653 + 1.12100i) q^{77} +0.909808 q^{78} +(-2.68236 - 4.64598i) q^{79} +(-0.227452 + 0.393958i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(0.896531 + 1.55284i) q^{82} +1.97345 q^{83} +(-2.16908 + 1.51496i) q^{84} +0.454904 q^{85} +(-3.94163 - 6.82710i) q^{86} +(1.39653 - 2.41886i) q^{87} +(-0.500000 + 0.866025i) q^{88} +(5.54510 + 9.60439i) q^{89} +0.454904 q^{90} +(-0.206938 - 2.39821i) q^{91} +8.33816 q^{92} +(4.79306 + 8.30183i) q^{93} +(-0.169079 + 0.292854i) q^{94} +(-0.883254 + 1.52984i) q^{95} +(-0.500000 - 0.866025i) q^{96} +14.5861 q^{97} +(4.48672 + 5.37302i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{2} - 3q^{3} - 3q^{4} + 6q^{6} + 6q^{8} - 3q^{9} + O(q^{10}) \) \( 6q - 3q^{2} - 3q^{3} - 3q^{4} + 6q^{6} + 6q^{8} - 3q^{9} - 3q^{11} - 3q^{12} + 3q^{14} - 3q^{16} - 3q^{17} - 3q^{18} + 3q^{19} - 3q^{21} + 6q^{22} - 9q^{23} - 3q^{24} - 3q^{25} + 6q^{27} - 3q^{28} + 18q^{29} - 6q^{31} - 3q^{32} - 3q^{33} + 6q^{34} + 6q^{35} + 6q^{36} - 9q^{37} + 3q^{38} + 24q^{41} + 18q^{43} - 3q^{44} - 9q^{46} + 15q^{47} + 6q^{48} - 24q^{49} + 6q^{50} - 3q^{51} - 3q^{54} - 6q^{57} - 9q^{58} - 9q^{59} + 6q^{61} + 12q^{62} + 3q^{63} + 6q^{64} - 36q^{65} - 3q^{66} - 6q^{67} - 3q^{68} + 18q^{69} + 12q^{70} + 6q^{71} - 3q^{72} - 9q^{74} - 3q^{75} - 6q^{76} - 3q^{77} - 12q^{79} - 3q^{81} - 12q^{82} - 12q^{83} + 3q^{84} - 9q^{86} - 9q^{87} - 3q^{88} + 36q^{89} - 36q^{91} + 18q^{92} - 6q^{93} + 15q^{94} + 24q^{95} - 3q^{96} + 18q^{97} + 15q^{98} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.227452 0.393958i −0.101720 0.176184i 0.810674 0.585498i \(-0.199101\pi\)
−0.912393 + 0.409315i \(0.865768\pi\)
\(6\) 1.00000 0.408248
\(7\) −0.227452 2.63596i −0.0859688 0.996298i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.227452 + 0.393958i −0.0719267 + 0.124581i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 0.909808 0.252335 0.126168 0.992009i \(-0.459732\pi\)
0.126168 + 0.992009i \(0.459732\pi\)
\(14\) −2.16908 + 1.51496i −0.579711 + 0.404889i
\(15\) 0.454904 0.117456
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.500000 + 0.866025i −0.121268 + 0.210042i −0.920268 0.391289i \(-0.872029\pi\)
0.799000 + 0.601331i \(0.205363\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −1.94163 3.36300i −0.445440 0.771524i 0.552643 0.833418i \(-0.313619\pi\)
−0.998083 + 0.0618938i \(0.980286\pi\)
\(20\) 0.454904 0.101720
\(21\) 2.39653 + 1.12100i 0.522966 + 0.244622i
\(22\) 1.00000 0.213201
\(23\) −4.16908 7.22106i −0.869313 1.50569i −0.862700 0.505716i \(-0.831228\pi\)
−0.00661323 0.999978i \(-0.502105\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 2.39653 4.15091i 0.479306 0.830183i
\(26\) −0.454904 0.787917i −0.0892140 0.154523i
\(27\) 1.00000 0.192450
\(28\) 2.39653 + 1.12100i 0.452902 + 0.211849i
\(29\) −2.79306 −0.518659 −0.259329 0.965789i \(-0.583502\pi\)
−0.259329 + 0.965789i \(0.583502\pi\)
\(30\) −0.227452 0.393958i −0.0415269 0.0719267i
\(31\) 4.79306 8.30183i 0.860859 1.49105i −0.0102412 0.999948i \(-0.503260\pi\)
0.871101 0.491105i \(-0.163407\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.500000 0.866025i −0.0870388 0.150756i
\(34\) 1.00000 0.171499
\(35\) −0.986723 + 0.689160i −0.166787 + 0.116489i
\(36\) 1.00000 0.166667
\(37\) −3.94163 6.82710i −0.647999 1.12237i −0.983600 0.180364i \(-0.942273\pi\)
0.335601 0.942004i \(-0.391061\pi\)
\(38\) −1.94163 + 3.36300i −0.314973 + 0.545550i
\(39\) −0.454904 + 0.787917i −0.0728430 + 0.126168i
\(40\) −0.227452 0.393958i −0.0359633 0.0622903i
\(41\) −1.79306 −0.280029 −0.140015 0.990149i \(-0.544715\pi\)
−0.140015 + 0.990149i \(0.544715\pi\)
\(42\) −0.227452 2.63596i −0.0350966 0.406737i
\(43\) 7.88325 1.20218 0.601092 0.799179i \(-0.294732\pi\)
0.601092 + 0.799179i \(0.294732\pi\)
\(44\) −0.500000 0.866025i −0.0753778 0.130558i
\(45\) −0.227452 + 0.393958i −0.0339065 + 0.0587279i
\(46\) −4.16908 + 7.22106i −0.614697 + 1.06469i
\(47\) −0.169079 0.292854i −0.0246627 0.0427171i 0.853431 0.521206i \(-0.174518\pi\)
−0.878093 + 0.478489i \(0.841185\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.89653 + 1.19911i −0.985219 + 0.171301i
\(50\) −4.79306 −0.677841
\(51\) −0.500000 0.866025i −0.0700140 0.121268i
\(52\) −0.454904 + 0.787917i −0.0630838 + 0.109264i
\(53\) −0.454904 + 0.787917i −0.0624859 + 0.108229i −0.895576 0.444909i \(-0.853236\pi\)
0.833090 + 0.553137i \(0.186570\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 0.454904 0.0613393
\(56\) −0.227452 2.63596i −0.0303946 0.352244i
\(57\) 3.88325 0.514350
\(58\) 1.39653 + 2.41886i 0.183374 + 0.317612i
\(59\) −3.48672 + 6.03918i −0.453933 + 0.786234i −0.998626 0.0524008i \(-0.983313\pi\)
0.544693 + 0.838635i \(0.316646\pi\)
\(60\) −0.227452 + 0.393958i −0.0293639 + 0.0508598i
\(61\) 7.02051 + 12.1599i 0.898885 + 1.55691i 0.828922 + 0.559364i \(0.188955\pi\)
0.0699629 + 0.997550i \(0.477712\pi\)
\(62\) −9.58612 −1.21744
\(63\) −2.16908 + 1.51496i −0.273278 + 0.190867i
\(64\) 1.00000 0.125000
\(65\) −0.206938 0.358427i −0.0256675 0.0444574i
\(66\) −0.500000 + 0.866025i −0.0615457 + 0.106600i
\(67\) 1.89653 3.28489i 0.231698 0.401313i −0.726610 0.687050i \(-0.758905\pi\)
0.958308 + 0.285737i \(0.0922385\pi\)
\(68\) −0.500000 0.866025i −0.0606339 0.105021i
\(69\) 8.33816 1.00380
\(70\) 1.09019 + 0.509947i 0.130303 + 0.0609503i
\(71\) −4.79306 −0.568832 −0.284416 0.958701i \(-0.591800\pi\)
−0.284416 + 0.958701i \(0.591800\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −5.33816 + 9.24596i −0.624784 + 1.08216i 0.363798 + 0.931478i \(0.381480\pi\)
−0.988583 + 0.150680i \(0.951854\pi\)
\(74\) −3.94163 + 6.82710i −0.458205 + 0.793634i
\(75\) 2.39653 + 4.15091i 0.276728 + 0.479306i
\(76\) 3.88325 0.445440
\(77\) 2.39653 + 1.12100i 0.273110 + 0.127750i
\(78\) 0.909808 0.103015
\(79\) −2.68236 4.64598i −0.301789 0.522713i 0.674753 0.738044i \(-0.264250\pi\)
−0.976541 + 0.215331i \(0.930917\pi\)
\(80\) −0.227452 + 0.393958i −0.0254299 + 0.0440459i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0.896531 + 1.55284i 0.0990053 + 0.171482i
\(83\) 1.97345 0.216614 0.108307 0.994118i \(-0.465457\pi\)
0.108307 + 0.994118i \(0.465457\pi\)
\(84\) −2.16908 + 1.51496i −0.236666 + 0.165295i
\(85\) 0.454904 0.0493413
\(86\) −3.94163 6.82710i −0.425037 0.736185i
\(87\) 1.39653 2.41886i 0.149724 0.259329i
\(88\) −0.500000 + 0.866025i −0.0533002 + 0.0923186i
\(89\) 5.54510 + 9.60439i 0.587779 + 1.01806i 0.994523 + 0.104521i \(0.0333309\pi\)
−0.406744 + 0.913542i \(0.633336\pi\)
\(90\) 0.454904 0.0479511
\(91\) −0.206938 2.39821i −0.0216930 0.251401i
\(92\) 8.33816 0.869313
\(93\) 4.79306 + 8.30183i 0.497017 + 0.860859i
\(94\) −0.169079 + 0.292854i −0.0174392 + 0.0302055i
\(95\) −0.883254 + 1.52984i −0.0906200 + 0.156958i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 14.5861 1.48100 0.740498 0.672058i \(-0.234590\pi\)
0.740498 + 0.672058i \(0.234590\pi\)
\(98\) 4.48672 + 5.37302i 0.453227 + 0.542757i
\(99\) 1.00000 0.100504
\(100\) 2.39653 + 4.15091i 0.239653 + 0.415091i
\(101\) 4.03182 6.98332i 0.401181 0.694866i −0.592688 0.805432i \(-0.701933\pi\)
0.993869 + 0.110566i \(0.0352665\pi\)
\(102\) −0.500000 + 0.866025i −0.0495074 + 0.0857493i
\(103\) −2.88325 4.99394i −0.284095 0.492068i 0.688294 0.725432i \(-0.258360\pi\)
−0.972389 + 0.233364i \(0.925027\pi\)
\(104\) 0.909808 0.0892140
\(105\) −0.103469 1.19911i −0.0100975 0.117021i
\(106\) 0.909808 0.0883684
\(107\) −7.80634 13.5210i −0.754667 1.30712i −0.945540 0.325507i \(-0.894465\pi\)
0.190872 0.981615i \(-0.438868\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) −7.02051 + 12.1599i −0.672443 + 1.16471i 0.304766 + 0.952427i \(0.401422\pi\)
−0.977209 + 0.212279i \(0.931912\pi\)
\(110\) −0.227452 0.393958i −0.0216867 0.0375625i
\(111\) 7.88325 0.748245
\(112\) −2.16908 + 1.51496i −0.204959 + 0.143150i
\(113\) 7.58612 0.713643 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(114\) −1.94163 3.36300i −0.181850 0.314973i
\(115\) −1.89653 + 3.28489i −0.176852 + 0.306317i
\(116\) 1.39653 2.41886i 0.129665 0.224586i
\(117\) −0.454904 0.787917i −0.0420559 0.0728430i
\(118\) 6.97345 0.641958
\(119\) 2.39653 + 1.12100i 0.219690 + 0.102762i
\(120\) 0.454904 0.0415269
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 7.02051 12.1599i 0.635608 1.10090i
\(123\) 0.896531 1.55284i 0.0808375 0.140015i
\(124\) 4.79306 + 8.30183i 0.430430 + 0.745526i
\(125\) −4.45490 −0.398459
\(126\) 2.39653 + 1.12100i 0.213500 + 0.0998665i
\(127\) 7.42835 0.659159 0.329580 0.944128i \(-0.393093\pi\)
0.329580 + 0.944128i \(0.393093\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −3.94163 + 6.82710i −0.347041 + 0.601092i
\(130\) −0.206938 + 0.358427i −0.0181496 + 0.0314361i
\(131\) 9.70287 + 16.8059i 0.847744 + 1.46834i 0.883217 + 0.468965i \(0.155373\pi\)
−0.0354732 + 0.999371i \(0.511294\pi\)
\(132\) 1.00000 0.0870388
\(133\) −8.42309 + 5.88296i −0.730374 + 0.510118i
\(134\) −3.79306 −0.327671
\(135\) −0.227452 0.393958i −0.0195760 0.0339065i
\(136\) −0.500000 + 0.866025i −0.0428746 + 0.0742611i
\(137\) −0.454904 + 0.787917i −0.0388651 + 0.0673163i −0.884804 0.465964i \(-0.845708\pi\)
0.845939 + 0.533280i \(0.179041\pi\)
\(138\) −4.16908 7.22106i −0.354896 0.614697i
\(139\) −8.37919 −0.710713 −0.355357 0.934731i \(-0.615641\pi\)
−0.355357 + 0.934731i \(0.615641\pi\)
\(140\) −0.103469 1.19911i −0.00874472 0.101343i
\(141\) 0.338158 0.0284781
\(142\) 2.39653 + 4.15091i 0.201112 + 0.348337i
\(143\) −0.454904 + 0.787917i −0.0380410 + 0.0658889i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 0.635288 + 1.10035i 0.0527578 + 0.0913791i
\(146\) 10.6763 0.883578
\(147\) 2.40981 6.57212i 0.198758 0.542060i
\(148\) 7.88325 0.647999
\(149\) −2.05837 3.56521i −0.168628 0.292073i 0.769309 0.638876i \(-0.220600\pi\)
−0.937938 + 0.346803i \(0.887267\pi\)
\(150\) 2.39653 4.15091i 0.195676 0.338921i
\(151\) 3.07889 5.33279i 0.250556 0.433976i −0.713123 0.701039i \(-0.752720\pi\)
0.963679 + 0.267063i \(0.0860531\pi\)
\(152\) −1.94163 3.36300i −0.157487 0.272775i
\(153\) 1.00000 0.0808452
\(154\) −0.227452 2.63596i −0.0183286 0.212411i
\(155\) −4.36077 −0.350265
\(156\) −0.454904 0.787917i −0.0364215 0.0630838i
\(157\) 8.82488 15.2851i 0.704302 1.21989i −0.262641 0.964894i \(-0.584593\pi\)
0.966943 0.254993i \(-0.0820733\pi\)
\(158\) −2.68236 + 4.64598i −0.213397 + 0.369614i
\(159\) −0.454904 0.787917i −0.0360762 0.0624859i
\(160\) 0.454904 0.0359633
\(161\) −18.0861 + 12.6320i −1.42539 + 0.995537i
\(162\) 1.00000 0.0785674
\(163\) 5.80634 + 10.0569i 0.454788 + 0.787715i 0.998676 0.0514424i \(-0.0163818\pi\)
−0.543888 + 0.839158i \(0.683049\pi\)
\(164\) 0.896531 1.55284i 0.0700073 0.121256i
\(165\) −0.227452 + 0.393958i −0.0177071 + 0.0306696i
\(166\) −0.986723 1.70905i −0.0765846 0.132648i
\(167\) −4.85670 −0.375823 −0.187911 0.982186i \(-0.560172\pi\)
−0.187911 + 0.982186i \(0.560172\pi\)
\(168\) 2.39653 + 1.12100i 0.184896 + 0.0864869i
\(169\) −12.1722 −0.936327
\(170\) −0.227452 0.393958i −0.0174448 0.0302152i
\(171\) −1.94163 + 3.36300i −0.148480 + 0.257175i
\(172\) −3.94163 + 6.82710i −0.300546 + 0.520561i
\(173\) 12.7931 + 22.1582i 0.972639 + 1.68466i 0.687518 + 0.726168i \(0.258700\pi\)
0.285121 + 0.958492i \(0.407966\pi\)
\(174\) −2.79306 −0.211742
\(175\) −11.4867 5.37302i −0.868315 0.406162i
\(176\) 1.00000 0.0753778
\(177\) −3.48672 6.03918i −0.262078 0.453933i
\(178\) 5.54510 9.60439i 0.415623 0.719879i
\(179\) 7.85144 13.5991i 0.586844 1.01644i −0.407799 0.913072i \(-0.633704\pi\)
0.994643 0.103372i \(-0.0329631\pi\)
\(180\) −0.227452 0.393958i −0.0169533 0.0293639i
\(181\) −2.49593 −0.185521 −0.0927606 0.995688i \(-0.529569\pi\)
−0.0927606 + 0.995688i \(0.529569\pi\)
\(182\) −1.97345 + 1.37832i −0.146282 + 0.102168i
\(183\) −14.0410 −1.03794
\(184\) −4.16908 7.22106i −0.307349 0.532343i
\(185\) −1.79306 + 3.10567i −0.131829 + 0.228334i
\(186\) 4.79306 8.30183i 0.351444 0.608720i
\(187\) −0.500000 0.866025i −0.0365636 0.0633300i
\(188\) 0.338158 0.0246627
\(189\) −0.227452 2.63596i −0.0165447 0.191738i
\(190\) 1.76651 0.128156
\(191\) −4.90981 8.50404i −0.355261 0.615331i 0.631901 0.775049i \(-0.282275\pi\)
−0.987163 + 0.159718i \(0.948941\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) −3.42835 + 5.93808i −0.246778 + 0.427432i −0.962630 0.270820i \(-0.912705\pi\)
0.715852 + 0.698252i \(0.246039\pi\)
\(194\) −7.29306 12.6320i −0.523611 0.906921i
\(195\) 0.413875 0.0296382
\(196\) 2.40981 6.57212i 0.172129 0.469437i
\(197\) 23.4694 1.67212 0.836062 0.548635i \(-0.184852\pi\)
0.836062 + 0.548635i \(0.184852\pi\)
\(198\) −0.500000 0.866025i −0.0355335 0.0615457i
\(199\) 1.11675 1.93426i 0.0791640 0.137116i −0.823725 0.566989i \(-0.808108\pi\)
0.902889 + 0.429873i \(0.141442\pi\)
\(200\) 2.39653 4.15091i 0.169460 0.293514i
\(201\) 1.89653 + 3.28489i 0.133771 + 0.231698i
\(202\) −8.06364 −0.567356
\(203\) 0.635288 + 7.36239i 0.0445885 + 0.516738i
\(204\) 1.00000 0.0700140
\(205\) 0.407836 + 0.706392i 0.0284845 + 0.0493366i
\(206\) −2.88325 + 4.99394i −0.200886 + 0.347944i
\(207\) −4.16908 + 7.22106i −0.289771 + 0.501898i
\(208\) −0.454904 0.787917i −0.0315419 0.0546322i
\(209\) 3.88325 0.268610
\(210\) −0.986723 + 0.689160i −0.0680904 + 0.0475566i
\(211\) −18.2624 −1.25724 −0.628619 0.777713i \(-0.716380\pi\)
−0.628619 + 0.777713i \(0.716380\pi\)
\(212\) −0.454904 0.787917i −0.0312429 0.0541144i
\(213\) 2.39653 4.15091i 0.164208 0.284416i
\(214\) −7.80634 + 13.5210i −0.533630 + 0.924275i
\(215\) −1.79306 3.10567i −0.122286 0.211805i
\(216\) 1.00000 0.0680414
\(217\) −22.9734 10.7460i −1.55954 0.729488i
\(218\) 14.0410 0.950978
\(219\) −5.33816 9.24596i −0.360719 0.624784i
\(220\) −0.227452 + 0.393958i −0.0153348 + 0.0265607i
\(221\) −0.454904 + 0.787917i −0.0306002 + 0.0530010i
\(222\) −3.94163 6.82710i −0.264545 0.458205i
\(223\) 12.4959 0.836790 0.418395 0.908265i \(-0.362593\pi\)
0.418395 + 0.908265i \(0.362593\pi\)
\(224\) 2.39653 + 1.12100i 0.160125 + 0.0748999i
\(225\) −4.79306 −0.319537
\(226\) −3.79306 6.56978i −0.252311 0.437015i
\(227\) −4.89653 + 8.48104i −0.324994 + 0.562906i −0.981511 0.191405i \(-0.938696\pi\)
0.656517 + 0.754311i \(0.272029\pi\)
\(228\) −1.94163 + 3.36300i −0.128587 + 0.222720i
\(229\) −4.33816 7.51391i −0.286674 0.496533i 0.686340 0.727281i \(-0.259216\pi\)
−0.973014 + 0.230748i \(0.925883\pi\)
\(230\) 3.79306 0.250107
\(231\) −2.16908 + 1.51496i −0.142715 + 0.0996769i
\(232\) −2.79306 −0.183374
\(233\) −8.38325 14.5202i −0.549205 0.951251i −0.998329 0.0577819i \(-0.981597\pi\)
0.449124 0.893469i \(-0.351736\pi\)
\(234\) −0.454904 + 0.787917i −0.0297380 + 0.0515077i
\(235\) −0.0769148 + 0.133220i −0.00501737 + 0.00869033i
\(236\) −3.48672 6.03918i −0.226966 0.393117i
\(237\) 5.36471 0.348476
\(238\) −0.227452 2.63596i −0.0147435 0.170864i
\(239\) −26.2624 −1.69878 −0.849388 0.527769i \(-0.823029\pi\)
−0.849388 + 0.527769i \(0.823029\pi\)
\(240\) −0.227452 0.393958i −0.0146820 0.0254299i
\(241\) −3.97345 + 6.88221i −0.255952 + 0.443322i −0.965154 0.261684i \(-0.915722\pi\)
0.709202 + 0.705006i \(0.249056\pi\)
\(242\) −0.500000 + 0.866025i −0.0321412 + 0.0556702i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −14.0410 −0.898885
\(245\) 2.04103 + 2.44421i 0.130397 + 0.156155i
\(246\) −1.79306 −0.114321
\(247\) −1.76651 3.05968i −0.112400 0.194683i
\(248\) 4.79306 8.30183i 0.304360 0.527167i
\(249\) −0.986723 + 1.70905i −0.0625310 + 0.108307i
\(250\) 2.22745 + 3.85806i 0.140876 + 0.244005i
\(251\) −3.93636 −0.248461 −0.124230 0.992253i \(-0.539646\pi\)
−0.124230 + 0.992253i \(0.539646\pi\)
\(252\) −0.227452 2.63596i −0.0143281 0.166050i
\(253\) 8.33816 0.524216
\(254\) −3.71417 6.43314i −0.233048 0.403651i
\(255\) −0.227452 + 0.393958i −0.0142436 + 0.0246706i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.54510 + 13.0685i 0.470650 + 0.815190i 0.999437 0.0335650i \(-0.0106861\pi\)
−0.528786 + 0.848755i \(0.677353\pi\)
\(258\) 7.88325 0.490790
\(259\) −17.0994 + 11.9428i −1.06251 + 0.742089i
\(260\) 0.413875 0.0256675
\(261\) 1.39653 + 2.41886i 0.0864431 + 0.149724i
\(262\) 9.70287 16.8059i 0.599445 1.03827i
\(263\) 14.3116 24.7884i 0.882491 1.52852i 0.0339291 0.999424i \(-0.489198\pi\)
0.848562 0.529096i \(-0.177469\pi\)
\(264\) −0.500000 0.866025i −0.0307729 0.0533002i
\(265\) 0.413875 0.0254242
\(266\) 9.30634 + 4.35312i 0.570608 + 0.266907i
\(267\) −11.0902 −0.678709
\(268\) 1.89653 + 3.28489i 0.115849 + 0.200656i
\(269\) 11.4754 19.8760i 0.699669 1.21186i −0.268913 0.963165i \(-0.586664\pi\)
0.968581 0.248697i \(-0.0800023\pi\)
\(270\) −0.227452 + 0.393958i −0.0138423 + 0.0239756i
\(271\) −4.90981 8.50404i −0.298250 0.516583i 0.677486 0.735536i \(-0.263069\pi\)
−0.975736 + 0.218952i \(0.929736\pi\)
\(272\) 1.00000 0.0606339
\(273\) 2.18038 + 1.01989i 0.131963 + 0.0617268i
\(274\) 0.909808 0.0549635
\(275\) 2.39653 + 4.15091i 0.144516 + 0.250310i
\(276\) −4.16908 + 7.22106i −0.250949 + 0.434657i
\(277\) −5.36471 + 9.29195i −0.322334 + 0.558299i −0.980969 0.194163i \(-0.937801\pi\)
0.658635 + 0.752463i \(0.271134\pi\)
\(278\) 4.18959 + 7.25659i 0.251275 + 0.435221i
\(279\) −9.58612 −0.573906
\(280\) −0.986723 + 0.689160i −0.0589680 + 0.0411852i
\(281\) 2.58612 0.154275 0.0771376 0.997020i \(-0.475422\pi\)
0.0771376 + 0.997020i \(0.475422\pi\)
\(282\) −0.169079 0.292854i −0.0100685 0.0174392i
\(283\) 10.0410 17.3916i 0.596877 1.03382i −0.396402 0.918077i \(-0.629741\pi\)
0.993279 0.115745i \(-0.0369254\pi\)
\(284\) 2.39653 4.15091i 0.142208 0.246311i
\(285\) −0.883254 1.52984i −0.0523195 0.0906200i
\(286\) 0.909808 0.0537981
\(287\) 0.407836 + 4.72643i 0.0240738 + 0.278993i
\(288\) 1.00000 0.0589256
\(289\) 8.00000 + 13.8564i 0.470588 + 0.815083i
\(290\) 0.635288 1.10035i 0.0373054 0.0646148i
\(291\) −7.29306 + 12.6320i −0.427527 + 0.740498i
\(292\) −5.33816 9.24596i −0.312392 0.541079i
\(293\) 10.3792 0.606359 0.303179 0.952934i \(-0.401952\pi\)
0.303179 + 0.952934i \(0.401952\pi\)
\(294\) −6.89653 + 1.19911i −0.402214 + 0.0699334i
\(295\) 3.17225 0.184695
\(296\) −3.94163 6.82710i −0.229102 0.396817i
\(297\) −0.500000 + 0.866025i −0.0290129 + 0.0502519i
\(298\) −2.05837 + 3.56521i −0.119238 + 0.206527i
\(299\) −3.79306 6.56978i −0.219358 0.379940i
\(300\) −4.79306 −0.276728
\(301\) −1.79306 20.7799i −0.103350 1.19773i
\(302\) −6.15777 −0.354340
\(303\) 4.03182 + 6.98332i 0.231622 + 0.401181i
\(304\) −1.94163 + 3.36300i −0.111360 + 0.192881i
\(305\) 3.19366 5.53158i 0.182868 0.316737i
\(306\) −0.500000 0.866025i −0.0285831 0.0495074i
\(307\) 9.76651 0.557404 0.278702 0.960378i \(-0.410096\pi\)
0.278702 + 0.960378i \(0.410096\pi\)
\(308\) −2.16908 + 1.51496i −0.123595 + 0.0863227i
\(309\) 5.76651 0.328045
\(310\) 2.18038 + 3.77654i 0.123837 + 0.214493i
\(311\) 3.25927 5.64522i 0.184816 0.320111i −0.758698 0.651442i \(-0.774164\pi\)
0.943515 + 0.331331i \(0.107498\pi\)
\(312\) −0.454904 + 0.787917i −0.0257539 + 0.0446070i
\(313\) −15.3965 26.6676i −0.870263 1.50734i −0.861724 0.507377i \(-0.830615\pi\)
−0.00853913 0.999964i \(-0.502718\pi\)
\(314\) −17.6498 −0.996034
\(315\) 1.09019 + 0.509947i 0.0614254 + 0.0287323i
\(316\) 5.36471 0.301789
\(317\) 13.8136 + 23.9258i 0.775848 + 1.34381i 0.934317 + 0.356444i \(0.116011\pi\)
−0.158469 + 0.987364i \(0.550656\pi\)
\(318\) −0.454904 + 0.787917i −0.0255098 + 0.0441842i
\(319\) 1.39653 2.41886i 0.0781907 0.135430i
\(320\) −0.227452 0.393958i −0.0127150 0.0220229i
\(321\) 15.6127 0.871415
\(322\) 19.9827 + 9.34707i 1.11359 + 0.520892i
\(323\) 3.88325 0.216070
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 2.18038 3.77654i 0.120946 0.209484i
\(326\) 5.80634 10.0569i 0.321583 0.556999i
\(327\) −7.02051 12.1599i −0.388235 0.672443i
\(328\) −1.79306 −0.0990053
\(329\) −0.733492 + 0.512295i −0.0404387 + 0.0282438i
\(330\) 0.454904 0.0250416
\(331\) 14.4827 + 25.0847i 0.796039 + 1.37878i 0.922177 + 0.386767i \(0.126408\pi\)
−0.126139 + 0.992013i \(0.540258\pi\)
\(332\) −0.986723 + 1.70905i −0.0541535 + 0.0937965i
\(333\) −3.94163 + 6.82710i −0.216000 + 0.374123i
\(334\) 2.42835 + 4.20603i 0.132873 + 0.230143i
\(335\) −1.72548 −0.0942730
\(336\) −0.227452 2.63596i −0.0124085 0.143803i
\(337\) −9.03708 −0.492281 −0.246141 0.969234i \(-0.579163\pi\)
−0.246141 + 0.969234i \(0.579163\pi\)
\(338\) 6.08612 + 10.5415i 0.331042 + 0.573381i
\(339\) −3.79306 + 6.56978i −0.206011 + 0.356821i
\(340\) −0.227452 + 0.393958i −0.0123353 + 0.0213654i
\(341\) 4.79306 + 8.30183i 0.259559 + 0.449569i
\(342\) 3.88325 0.209982
\(343\) 4.72942 + 17.9062i 0.255365 + 0.966845i
\(344\) 7.88325 0.425037
\(345\) −1.89653 3.28489i −0.102106 0.176852i
\(346\) 12.7931 22.1582i 0.687759 1.19123i
\(347\) 10.8063 18.7171i 0.580115 1.00479i −0.415350 0.909661i \(-0.636341\pi\)
0.995465 0.0951267i \(-0.0303256\pi\)
\(348\) 1.39653 + 2.41886i 0.0748619 + 0.129665i
\(349\) 14.2745 0.764098 0.382049 0.924142i \(-0.375219\pi\)
0.382049 + 0.924142i \(0.375219\pi\)
\(350\) 1.09019 + 12.6343i 0.0582732 + 0.675332i
\(351\) 0.909808 0.0485620
\(352\) −0.500000 0.866025i −0.0266501 0.0461593i
\(353\) 14.2480 24.6782i 0.758343 1.31349i −0.185353 0.982672i \(-0.559343\pi\)
0.943695 0.330816i \(-0.107324\pi\)
\(354\) −3.48672 + 6.03918i −0.185317 + 0.320979i
\(355\) 1.09019 + 1.88827i 0.0578614 + 0.100219i
\(356\) −11.0902 −0.587779
\(357\) −2.16908 + 1.51496i −0.114800 + 0.0801800i
\(358\) −15.7029 −0.829922
\(359\) 6.81962 + 11.8119i 0.359926 + 0.623409i 0.987948 0.154786i \(-0.0494687\pi\)
−0.628022 + 0.778195i \(0.716135\pi\)
\(360\) −0.227452 + 0.393958i −0.0119878 + 0.0207634i
\(361\) 1.96017 3.39511i 0.103167 0.178690i
\(362\) 1.24797 + 2.16154i 0.0655917 + 0.113608i
\(363\) 1.00000 0.0524864
\(364\) 2.18038 + 1.01989i 0.114283 + 0.0534570i
\(365\) 4.85670 0.254211
\(366\) 7.02051 + 12.1599i 0.366968 + 0.635608i
\(367\) −11.3647 + 19.6843i −0.593233 + 1.02751i 0.400560 + 0.916270i \(0.368815\pi\)
−0.993794 + 0.111240i \(0.964518\pi\)
\(368\) −4.16908 + 7.22106i −0.217328 + 0.376424i
\(369\) 0.896531 + 1.55284i 0.0466715 + 0.0808375i
\(370\) 3.58612 0.186434
\(371\) 2.18038 + 1.01989i 0.113200 + 0.0529503i
\(372\) −9.58612 −0.497017
\(373\) −5.20090 9.00822i −0.269292 0.466428i 0.699387 0.714743i \(-0.253456\pi\)
−0.968679 + 0.248315i \(0.920123\pi\)
\(374\) −0.500000 + 0.866025i −0.0258544 + 0.0447811i
\(375\) 2.22745 3.85806i 0.115025 0.199229i
\(376\) −0.169079 0.292854i −0.00871959 0.0151028i
\(377\) −2.54115 −0.130876
\(378\) −2.16908 + 1.51496i −0.111565 + 0.0779210i
\(379\) 7.61268 0.391037 0.195519 0.980700i \(-0.437361\pi\)
0.195519 + 0.980700i \(0.437361\pi\)
\(380\) −0.883254 1.52984i −0.0453100 0.0784792i
\(381\) −3.71417 + 6.43314i −0.190283 + 0.329580i
\(382\) −4.90981 + 8.50404i −0.251208 + 0.435104i
\(383\) 11.0728 + 19.1787i 0.565796 + 0.979988i 0.996975 + 0.0777212i \(0.0247644\pi\)
−0.431179 + 0.902266i \(0.641902\pi\)
\(384\) 1.00000 0.0510310
\(385\) −0.103469 1.19911i −0.00527326 0.0611122i
\(386\) 6.85670 0.348997
\(387\) −3.94163 6.82710i −0.200364 0.347041i
\(388\) −7.29306 + 12.6320i −0.370249 + 0.641290i
\(389\) 1.77255 3.07014i 0.0898717 0.155662i −0.817585 0.575808i \(-0.804688\pi\)
0.907457 + 0.420145i \(0.138021\pi\)
\(390\) −0.206938 0.358427i −0.0104787 0.0181496i
\(391\) 8.33816 0.421679
\(392\) −6.89653 + 1.19911i −0.348327 + 0.0605641i
\(393\) −19.4057 −0.978890
\(394\) −11.7347 20.3251i −0.591185 1.02396i
\(395\) −1.22021 + 2.11347i −0.0613957 + 0.106340i
\(396\) −0.500000 + 0.866025i −0.0251259 + 0.0435194i
\(397\) 1.27979 + 2.21665i 0.0642306 + 0.111251i 0.896352 0.443342i \(-0.146207\pi\)
−0.832122 + 0.554593i \(0.812874\pi\)
\(398\) −2.23349 −0.111955
\(399\) −0.883254 10.2361i −0.0442180 0.512445i
\(400\) −4.79306 −0.239653
\(401\) −5.24797 9.08974i −0.262071 0.453920i 0.704721 0.709484i \(-0.251072\pi\)
−0.966792 + 0.255564i \(0.917739\pi\)
\(402\) 1.89653 3.28489i 0.0945904 0.163835i
\(403\) 4.36077 7.55307i 0.217225 0.376245i
\(404\) 4.03182 + 6.98332i 0.200590 + 0.347433i
\(405\) 0.454904 0.0226044
\(406\) 6.05837 4.23137i 0.300672 0.209999i
\(407\) 7.88325 0.390758
\(408\) −0.500000 0.866025i −0.0247537 0.0428746i
\(409\) −7.92428 + 13.7253i −0.391831 + 0.678670i −0.992691 0.120683i \(-0.961491\pi\)
0.600860 + 0.799354i \(0.294825\pi\)
\(410\) 0.407836 0.706392i 0.0201416 0.0348862i
\(411\) −0.454904 0.787917i −0.0224388 0.0388651i
\(412\) 5.76651 0.284095
\(413\) 16.7121 + 7.81723i 0.822348 + 0.384661i
\(414\) 8.33816 0.409798
\(415\) −0.448864 0.777456i −0.0220339 0.0381638i
\(416\) −0.454904 + 0.787917i −0.0223035 + 0.0386308i
\(417\) 4.18959 7.25659i 0.205165 0.355357i
\(418\) −1.94163 3.36300i −0.0949681 0.164490i
\(419\) −9.52249 −0.465204 −0.232602 0.972572i \(-0.574724\pi\)
−0.232602 + 0.972572i \(0.574724\pi\)
\(420\) 1.09019 + 0.509947i 0.0531959 + 0.0248829i
\(421\) −0.530621 −0.0258609 −0.0129305 0.999916i \(-0.504116\pi\)
−0.0129305 + 0.999916i \(0.504116\pi\)
\(422\) 9.13122 + 15.8157i 0.444501 + 0.769898i
\(423\) −0.169079 + 0.292854i −0.00822091 + 0.0142390i
\(424\) −0.454904 + 0.787917i −0.0220921 + 0.0382646i
\(425\) 2.39653 + 4.15091i 0.116249 + 0.201349i
\(426\) −4.79306 −0.232225
\(427\) 30.4561 21.2716i 1.47387 1.02940i
\(428\) 15.6127 0.754667
\(429\) −0.454904 0.787917i −0.0219630 0.0380410i
\(430\) −1.79306 + 3.10567i −0.0864691 + 0.149769i
\(431\) −10.4018 + 18.0164i −0.501037 + 0.867821i 0.498962 + 0.866624i \(0.333715\pi\)
−0.999999 + 0.00119770i \(0.999619\pi\)
\(432\) −0.500000 0.866025i −0.0240563 0.0416667i
\(433\) −4.40574 −0.211726 −0.105863 0.994381i \(-0.533761\pi\)
−0.105863 + 0.994381i \(0.533761\pi\)
\(434\) 2.18038 + 25.2686i 0.104662 + 1.21293i
\(435\) −1.27058 −0.0609194
\(436\) −7.02051 12.1599i −0.336222 0.582353i
\(437\) −16.1896 + 28.0412i −0.774453 + 1.34139i
\(438\) −5.33816 + 9.24596i −0.255067 + 0.441789i
\(439\) 7.59743 + 13.1591i 0.362606 + 0.628051i 0.988389 0.151946i \(-0.0485539\pi\)
−0.625783 + 0.779997i \(0.715221\pi\)
\(440\) 0.454904 0.0216867
\(441\) 4.48672 + 5.37302i 0.213653 + 0.255858i
\(442\) 0.909808 0.0432752
\(443\) 5.69366 + 9.86171i 0.270514 + 0.468544i 0.968994 0.247086i \(-0.0794730\pi\)
−0.698480 + 0.715630i \(0.746140\pi\)
\(444\) −3.94163 + 6.82710i −0.187061 + 0.324000i
\(445\) 2.52249 4.36908i 0.119577 0.207114i
\(446\) −6.24797 10.8218i −0.295850 0.512427i
\(447\) 4.11675 0.194715
\(448\) −0.227452 2.63596i −0.0107461 0.124537i
\(449\) −24.0821 −1.13650 −0.568251 0.822855i \(-0.692380\pi\)
−0.568251 + 0.822855i \(0.692380\pi\)
\(450\) 2.39653 + 4.15091i 0.112974 + 0.195676i
\(451\) 0.896531 1.55284i 0.0422160 0.0731203i
\(452\) −3.79306 + 6.56978i −0.178411 + 0.309016i
\(453\) 3.07889 + 5.33279i 0.144659 + 0.250556i
\(454\) 9.79306 0.459611
\(455\) −0.897729 + 0.627004i −0.0420862 + 0.0293944i
\(456\) 3.88325 0.181850
\(457\) 14.7665 + 25.5763i 0.690748 + 1.19641i 0.971593 + 0.236658i \(0.0760520\pi\)
−0.280845 + 0.959753i \(0.590615\pi\)
\(458\) −4.33816 + 7.51391i −0.202709 + 0.351102i
\(459\) −0.500000 + 0.866025i −0.0233380 + 0.0404226i
\(460\) −1.89653 3.28489i −0.0884262 0.153159i
\(461\) 4.14569 0.193084 0.0965421 0.995329i \(-0.469222\pi\)
0.0965421 + 0.995329i \(0.469222\pi\)
\(462\) 2.39653 + 1.12100i 0.111497 + 0.0521536i
\(463\) −9.32368 −0.433308 −0.216654 0.976248i \(-0.569514\pi\)
−0.216654 + 0.976248i \(0.569514\pi\)
\(464\) 1.39653 + 2.41886i 0.0648323 + 0.112293i
\(465\) 2.18038 3.77654i 0.101113 0.175133i
\(466\) −8.38325 + 14.5202i −0.388347 + 0.672636i
\(467\) −18.2798 31.6615i −0.845888 1.46512i −0.884848 0.465880i \(-0.845738\pi\)
0.0389606 0.999241i \(-0.487595\pi\)
\(468\) 0.909808 0.0420559
\(469\) −9.09019 4.25202i −0.419746 0.196340i
\(470\) 0.153830 0.00709563
\(471\) 8.82488 + 15.2851i 0.406629 + 0.704302i
\(472\) −3.48672 + 6.03918i −0.160489 + 0.277976i
\(473\) −3.94163 + 6.82710i −0.181236 + 0.313910i
\(474\) −2.68236 4.64598i −0.123205 0.213397i
\(475\) −18.6127 −0.854008
\(476\) −2.16908 + 1.51496i −0.0994196 + 0.0694380i
\(477\) 0.909808 0.0416573
\(478\) 13.1312 + 22.7439i 0.600608 + 1.04028i
\(479\) −0.364712 + 0.631700i −0.0166641 + 0.0288631i −0.874237 0.485499i \(-0.838638\pi\)
0.857573 + 0.514362i \(0.171971\pi\)
\(480\) −0.227452 + 0.393958i −0.0103817 + 0.0179817i
\(481\) −3.58612 6.21135i −0.163513 0.283213i
\(482\) 7.94689 0.361971
\(483\) −1.89653 21.9790i −0.0862952 1.00008i
\(484\) 1.00000 0.0454545
\(485\) −3.31764 5.74633i −0.150646 0.260927i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) 18.4283 31.9188i 0.835068 1.44638i −0.0589066 0.998263i \(-0.518761\pi\)
0.893975 0.448117i \(-0.147905\pi\)
\(488\) 7.02051 + 12.1599i 0.317804 + 0.550452i
\(489\) −11.6127 −0.525143
\(490\) 1.09623 2.98969i 0.0495227 0.135060i
\(491\) 25.5065 1.15109 0.575545 0.817770i \(-0.304790\pi\)
0.575545 + 0.817770i \(0.304790\pi\)
\(492\) 0.896531 + 1.55284i 0.0404187 + 0.0700073i
\(493\) 1.39653 2.41886i 0.0628966 0.108940i
\(494\) −1.76651 + 3.05968i −0.0794790 + 0.137662i
\(495\) −0.227452 0.393958i −0.0102232 0.0177071i
\(496\) −9.58612 −0.430430
\(497\) 1.09019 + 12.6343i 0.0489018 + 0.566726i
\(498\) 1.97345 0.0884322
\(499\) 2.06364 + 3.57433i 0.0923811 + 0.160009i 0.908513 0.417857i \(-0.137219\pi\)
−0.816131 + 0.577866i \(0.803886\pi\)
\(500\) 2.22745 3.85806i 0.0996147 0.172538i
\(501\) 2.42835 4.20603i 0.108491 0.187911i
\(502\) 1.96818 + 3.40899i 0.0878442 + 0.152151i
\(503\) −6.85670 −0.305725 −0.152863 0.988247i \(-0.548849\pi\)
−0.152863 + 0.988247i \(0.548849\pi\)
\(504\) −2.16908 + 1.51496i −0.0966185 + 0.0674816i
\(505\) −3.66818 −0.163232
\(506\) −4.16908 7.22106i −0.185338 0.321015i
\(507\) 6.08612 10.5415i 0.270294 0.468163i
\(508\) −3.71417 + 6.43314i −0.164790 + 0.285424i
\(509\) −8.22141 14.2399i −0.364408 0.631173i 0.624273 0.781206i \(-0.285395\pi\)
−0.988681 + 0.150033i \(0.952062\pi\)
\(510\) 0.454904 0.0201435
\(511\) 25.5861 + 11.9681i 1.13186 + 0.529439i
\(512\) 1.00000 0.0441942
\(513\) −1.94163 3.36300i −0.0857249 0.148480i
\(514\) 7.54510 13.0685i 0.332800 0.576426i
\(515\) −1.31160 + 2.27176i −0.0577962 + 0.100106i
\(516\) −3.94163 6.82710i −0.173520 0.300546i
\(517\) 0.338158 0.0148722
\(518\) 18.8925 + 8.83712i 0.830087 + 0.388281i
\(519\) −25.5861 −1.12311
\(520\) −0.206938 0.358427i −0.00907482 0.0157180i
\(521\) 2.81962 4.88372i 0.123530 0.213960i −0.797628 0.603150i \(-0.793912\pi\)
0.921157 + 0.389191i \(0.127245\pi\)
\(522\) 1.39653 2.41886i 0.0611245 0.105871i
\(523\) 2.04103 + 3.53517i 0.0892480 + 0.154582i 0.907193 0.420714i \(-0.138220\pi\)
−0.817946 + 0.575296i \(0.804887\pi\)
\(524\) −19.4057 −0.847744
\(525\) 10.3965 7.26129i 0.453742 0.316908i
\(526\) −28.6232 −1.24803
\(527\) 4.79306 + 8.30183i 0.208789 + 0.361633i
\(528\) −0.500000 + 0.866025i −0.0217597 + 0.0376889i
\(529\) −23.2624 + 40.2917i −1.01141 + 1.75181i
\(530\) −0.206938 0.358427i −0.00898880 0.0155691i
\(531\) 6.97345 0.302622
\(532\) −0.883254 10.2361i −0.0382939 0.443791i
\(533\) −1.63134 −0.0706613
\(534\) 5.54510 + 9.60439i 0.239960 + 0.415623i
\(535\) −3.55114 + 6.15075i −0.153529 + 0.265920i
\(536\) 1.89653 3.28489i 0.0819177 0.141886i
\(537\) 7.85144 + 13.5991i 0.338814 + 0.586844i
\(538\) −22.9508 −0.989481
\(539\) 2.40981 6.57212i 0.103798 0.283081i
\(540\) 0.454904 0.0195760
\(541\) 2.44886 + 4.24156i 0.105285 + 0.182359i 0.913855 0.406042i \(-0.133091\pi\)
−0.808570 + 0.588400i \(0.799758\pi\)
\(542\) −4.90981 + 8.50404i −0.210894 + 0.365280i
\(543\) 1.24797 2.16154i 0.0535554 0.0927606i
\(544\) −0.500000 0.866025i −0.0214373 0.0371305i
\(545\) 6.38732 0.273603
\(546\) −0.206938 2.39821i −0.00885612 0.102634i
\(547\) 21.4694 0.917964 0.458982 0.888445i \(-0.348214\pi\)
0.458982 + 0.888445i \(0.348214\pi\)
\(548\) −0.454904 0.787917i −0.0194325 0.0336581i
\(549\) 7.02051 12.1599i 0.299628 0.518971i
\(550\) 2.39653 4.15091i 0.102188 0.176996i
\(551\) 5.42309 + 9.39306i 0.231031 + 0.400158i
\(552\) 8.33816 0.354896
\(553\) −11.6365 + 8.12731i −0.494834 + 0.345608i
\(554\) 10.7294 0.455850
\(555\) −1.79306 3.10567i −0.0761113 0.131829i
\(556\) 4.18959 7.25659i 0.177678 0.307748i
\(557\) 19.7347 34.1815i 0.836186 1.44832i −0.0568758 0.998381i \(-0.518114\pi\)
0.893061 0.449935i \(-0.148553\pi\)
\(558\) 4.79306 + 8.30183i 0.202907 + 0.351444i
\(559\) 7.17225 0.303354
\(560\) 1.09019 + 0.509947i 0.0460690 + 0.0215492i
\(561\) 1.00000 0.0422200
\(562\) −1.29306 2.23965i −0.0545445 0.0944739i
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) −0.169079 + 0.292854i −0.00711951 + 0.0123314i
\(565\) −1.72548 2.98862i −0.0725915 0.125732i
\(566\) −20.0821 −0.844112
\(567\) 2.39653 + 1.12100i 0.100645 + 0.0470775i
\(568\) −4.79306 −0.201112
\(569\) −17.0994 29.6170i −0.716844 1.24161i −0.962244 0.272189i \(-0.912253\pi\)
0.245400 0.969422i \(-0.421081\pi\)
\(570\) −0.883254 + 1.52984i −0.0369954 + 0.0640780i
\(571\) −7.39653 + 12.8112i −0.309535 + 0.536131i −0.978261 0.207379i \(-0.933507\pi\)
0.668726 + 0.743509i \(0.266840\pi\)
\(572\) −0.454904 0.787917i −0.0190205 0.0329445i
\(573\) 9.81962 0.410220
\(574\) 3.88929 2.71641i 0.162336 0.113381i
\(575\) −39.9653 −1.66667
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 3.59940 6.23435i 0.149845 0.259539i −0.781325 0.624124i \(-0.785456\pi\)
0.931170 + 0.364585i \(0.118789\pi\)
\(578\) 8.00000 13.8564i 0.332756 0.576351i
\(579\) −3.42835 5.93808i −0.142477 0.246778i
\(580\) −1.27058 −0.0527578
\(581\) −0.448864 5.20192i −0.0186220 0.215812i
\(582\) 14.5861 0.604614
\(583\) −0.454904 0.787917i −0.0188402 0.0326322i
\(584\) −5.33816 + 9.24596i −0.220895 + 0.382601i
\(585\) −0.206938 + 0.358427i −0.00855582 + 0.0148191i
\(586\) −5.18959 8.98864i −0.214380 0.371317i
\(587\) −44.4959 −1.83654 −0.918272 0.395951i \(-0.870415\pi\)
−0.918272 + 0.395951i \(0.870415\pi\)
\(588\) 4.48672 + 5.37302i 0.185029 + 0.221580i
\(589\) −37.2254 −1.53384
\(590\) −1.58612 2.74725i −0.0652997 0.113102i
\(591\) −11.7347 + 20.3251i −0.482701 + 0.836062i
\(592\) −3.94163 + 6.82710i −0.162000 + 0.280592i
\(593\) −8.98266 15.5584i −0.368873 0.638908i 0.620516 0.784194i \(-0.286923\pi\)
−0.989390 + 0.145286i \(0.953590\pi\)
\(594\) 1.00000 0.0410305
\(595\) −0.103469 1.19911i −0.00424181 0.0491586i
\(596\) 4.11675 0.168628
\(597\) 1.11675 + 1.93426i 0.0457054 + 0.0791640i
\(598\) −3.79306 + 6.56978i −0.155110 + 0.268658i
\(599\) 12.9038 22.3500i 0.527234 0.913196i −0.472263 0.881458i \(-0.656563\pi\)
0.999496 0.0317376i \(-0.0101041\pi\)
\(600\) 2.39653 + 4.15091i 0.0978380 + 0.169460i
\(601\) 10.4139 0.424791 0.212395 0.977184i \(-0.431874\pi\)
0.212395 + 0.977184i \(0.431874\pi\)
\(602\) −17.0994 + 11.9428i −0.696920 + 0.486752i
\(603\) −3.79306 −0.154465
\(604\) 3.07889 + 5.33279i 0.125278 + 0.216988i
\(605\) −0.227452 + 0.393958i −0.00924724 + 0.0160167i
\(606\) 4.03182 6.98332i 0.163781 0.283678i
\(607\) 4.44886 + 7.70566i 0.180574 + 0.312763i 0.942076 0.335399i \(-0.108871\pi\)
−0.761502 + 0.648162i \(0.775538\pi\)
\(608\) 3.88325 0.157487
\(609\) −6.69366 3.13102i −0.271241 0.126875i
\(610\) −6.38732 −0.258615
\(611\) −0.153830 0.266441i −0.00622328 0.0107790i
\(612\) −0.500000 + 0.866025i −0.0202113 + 0.0350070i
\(613\) 11.8136 20.4617i 0.477146 0.826441i −0.522511 0.852632i \(-0.675005\pi\)
0.999657 + 0.0261916i \(0.00833800\pi\)
\(614\) −4.88325 8.45804i −0.197072 0.341339i
\(615\) −0.815671 −0.0328910
\(616\) 2.39653 + 1.12100i 0.0965590 + 0.0451663i
\(617\) −35.8486 −1.44321 −0.721604 0.692306i \(-0.756595\pi\)
−0.721604 + 0.692306i \(0.756595\pi\)
\(618\) −2.88325 4.99394i −0.115981 0.200886i
\(619\) −13.9602 + 24.1797i −0.561107 + 0.971865i 0.436294 + 0.899804i \(0.356291\pi\)
−0.997400 + 0.0720607i \(0.977042\pi\)
\(620\) 2.18038 3.77654i 0.0875663 0.151669i
\(621\) −4.16908 7.22106i −0.167299 0.289771i
\(622\) −6.51854 −0.261370
\(623\) 24.0555 16.8012i 0.963763 0.673125i
\(624\) 0.909808 0.0364215
\(625\) −10.9694 18.9995i −0.438775 0.759981i
\(626\) −15.3965 + 26.6676i −0.615369 + 1.06585i
\(627\) −1.94163 + 3.36300i −0.0775411 + 0.134305i
\(628\) 8.82488 + 15.2851i 0.352151 + 0.609944i
\(629\) 7.88325 0.314326
\(630\) −0.103469 1.19911i −0.00412230 0.0477736i
\(631\) 43.6682 1.73840 0.869201 0.494458i \(-0.164633\pi\)
0.869201 + 0.494458i \(0.164633\pi\)
\(632\) −2.68236 4.64598i −0.106698 0.184807i
\(633\) 9.13122 15.8157i 0.362933 0.628619i
\(634\) 13.8136 23.9258i 0.548607 0.950216i
\(635\) −1.68959 2.92646i −0.0670495 0.116133i
\(636\) 0.909808 0.0360762
\(637\) −6.27452 + 1.09096i −0.248606 + 0.0432253i
\(638\) −2.79306 −0.110578
\(639\) 2.39653 + 4.15091i 0.0948053 + 0.164208i
\(640\) −0.227452 + 0.393958i −0.00899083 + 0.0155726i
\(641\) 9.88325 17.1183i 0.390365 0.676132i −0.602133 0.798396i \(-0.705682\pi\)
0.992498 + 0.122264i \(0.0390155\pi\)
\(642\) −7.80634 13.5210i −0.308092 0.533630i
\(643\) 24.7584 0.976375 0.488187 0.872739i \(-0.337658\pi\)
0.488187 + 0.872739i \(0.337658\pi\)
\(644\) −1.89653 21.9790i −0.0747338 0.866095i
\(645\) 3.58612 0.141204
\(646\) −1.94163 3.36300i −0.0763923 0.132315i
\(647\) −15.5391 + 26.9144i −0.610903 + 1.05812i 0.380185 + 0.924910i \(0.375860\pi\)
−0.991088 + 0.133205i \(0.957473\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −3.48672 6.03918i −0.136866 0.237059i
\(650\) −4.36077 −0.171043
\(651\) 20.7931 14.5226i 0.814944 0.569184i
\(652\) −11.6127 −0.454788
\(653\) −11.3587 19.6738i −0.444499 0.769895i 0.553518 0.832837i \(-0.313285\pi\)
−0.998017 + 0.0629420i \(0.979952\pi\)
\(654\) −7.02051 + 12.1599i −0.274524 + 0.475489i
\(655\) 4.41388 7.64506i 0.172464 0.298717i
\(656\) 0.896531 + 1.55284i 0.0350037 + 0.0606281i
\(657\) 10.6763 0.416523
\(658\) 0.810407 + 0.379075i 0.0315929 + 0.0147779i
\(659\) 43.6127 1.69891 0.849454 0.527662i \(-0.176931\pi\)
0.849454 + 0.527662i \(0.176931\pi\)
\(660\) −0.227452 0.393958i −0.00885356 0.0153348i
\(661\) 3.96818 6.87309i 0.154344 0.267332i −0.778476 0.627675i \(-0.784007\pi\)
0.932820 + 0.360342i \(0.117340\pi\)
\(662\) 14.4827 25.0847i 0.562884 0.974944i
\(663\) −0.454904 0.787917i −0.0176670 0.0306002i
\(664\) 1.97345 0.0765846
\(665\) 4.23349 + 1.98025i 0.164168 + 0.0767909i
\(666\) 7.88325 0.305470
\(667\) 11.6445 + 20.1689i 0.450877 + 0.780941i
\(668\) 2.42835 4.20603i 0.0939557 0.162736i
\(669\) −6.24797 + 10.8218i −0.241560 + 0.418395i
\(670\) 0.862740 + 1.49431i 0.0333305 + 0.0577302i
\(671\) −14.0410 −0.542048
\(672\) −2.16908 + 1.51496i −0.0836740 + 0.0584408i
\(673\) 36.9388 1.42388 0.711942 0.702238i \(-0.247816\pi\)
0.711942 + 0.702238i \(0.247816\pi\)
\(674\) 4.51854 + 7.82634i 0.174048 + 0.301460i
\(675\) 2.39653 4.15091i 0.0922425 0.159769i
\(676\) 6.08612 10.5415i 0.234082 0.405441i
\(677\) 19.8249 + 34.3377i 0.761932 + 1.31971i 0.941853 + 0.336024i \(0.109082\pi\)
−0.179921 + 0.983681i \(0.557584\pi\)
\(678\) 7.58612 0.291343
\(679\) −3.31764 38.4484i −0.127319 1.47551i
\(680\) 0.454904 0.0174448
\(681\) −4.89653 8.48104i −0.187635 0.324994i
\(682\) 4.79306 8.30183i 0.183536 0.317893i
\(683\) 22.7757 39.4487i 0.871489 1.50946i 0.0110318 0.999939i \(-0.496488\pi\)
0.860457 0.509523i \(-0.170178\pi\)
\(684\) −1.94163 3.36300i −0.0742400 0.128587i
\(685\) 0.413875 0.0158134
\(686\) 13.1425 13.0489i 0.501784 0.498210i
\(687\) 8.67632 0.331022
\(688\) −3.94163 6.82710i −0.150273 0.260281i
\(689\) −0.413875 + 0.716853i −0.0157674 + 0.0273099i
\(690\) −1.89653 + 3.28489i −0.0721997 + 0.125054i
\(691\) 9.59940 + 16.6267i 0.365178 + 0.632508i 0.988805 0.149215i \(-0.0476746\pi\)
−0.623626 + 0.781723i \(0.714341\pi\)
\(692\) −25.5861 −0.972639
\(693\) −0.227452 2.63596i −0.00864019 0.100132i
\(694\) −21.6127 −0.820406
\(695\) 1.90586 + 3.30105i 0.0722935 + 0.125216i
\(696\) 1.39653 2.41886i 0.0529354 0.0916868i
\(697\) 0.896531 1.55284i 0.0339585 0.0588179i
\(698\) −7.13726 12.3621i −0.270149 0.467912i
\(699\) 16.7665 0.634168
\(700\) 10.3965 7.26129i 0.392952 0.274451i
\(701\) 23.2890 0.879613 0.439807 0.898093i \(-0.355047\pi\)
0.439807 + 0.898093i \(0.355047\pi\)
\(702\) −0.454904 0.787917i −0.0171692 0.0297380i
\(703\) −15.3063 + 26.5114i −0.577290 + 0.999895i
\(704\) −0.500000 + 0.866025i −0.0188445 + 0.0326396i
\(705\) −0.0769148 0.133220i −0.00289678 0.00501737i
\(706\) −28.4959 −1.07246
\(707\) −19.3248 9.03933i −0.726782 0.339959i
\(708\) 6.97345 0.262078
\(709\) 10.3965 + 18.0073i 0.390450 + 0.676279i 0.992509 0.122173i \(-0.0389861\pi\)
−0.602059 + 0.798452i \(0.705653\pi\)
\(710\) 1.09019 1.88827i 0.0409142 0.0708654i
\(711\) −2.68236 + 4.64598i −0.100596 + 0.174238i
\(712\) 5.54510 + 9.60439i 0.207811 + 0.359940i
\(713\) −79.9306 −2.99343
\(714\) 2.39653 + 1.12100i 0.0896879 + 0.0419523i
\(715\) 0.413875 0.0154781
\(716\) 7.85144 + 13.5991i 0.293422 + 0.508222i
\(717\) 13.1312 22.7439i 0.490394 0.849388i
\(718\) 6.81962 11.8119i 0.254506 0.440817i
\(719\) 2.74073 + 4.74708i 0.102212 + 0.177036i 0.912596 0.408863i \(-0.134075\pi\)
−0.810384 + 0.585899i \(0.800741\pi\)
\(720\) 0.454904 0.0169533
\(721\) −12.5080 + 8.73601i −0.465823 + 0.325346i
\(722\) −3.92034 −0.145900
\(723\) −3.97345 6.88221i −0.147774 0.255952i
\(724\) 1.24797 2.16154i 0.0463803 0.0803330i
\(725\) −6.69366 + 11.5938i −0.248596 + 0.430581i
\(726\) −0.500000 0.866025i −0.0185567 0.0321412i
\(727\) 25.5330 0.946967 0.473484 0.880803i \(-0.342996\pi\)
0.473484 + 0.880803i \(0.342996\pi\)
\(728\) −0.206938 2.39821i −0.00766962 0.0888837i
\(729\) 1.00000 0.0370370
\(730\) −2.42835 4.20603i −0.0898773 0.155672i
\(731\) −3.94163 + 6.82710i −0.145786 + 0.252509i
\(732\) 7.02051 12.1599i 0.259486 0.449442i
\(733\) −8.11071 14.0482i −0.299576 0.518880i 0.676463 0.736476i \(-0.263512\pi\)
−0.976039 + 0.217596i \(0.930178\pi\)
\(734\) 22.7294 0.838958
\(735\) −3.13726 + 0.545479i −0.115720 + 0.0201203i
\(736\) 8.33816 0.307349
\(737\) 1.89653 + 3.28489i 0.0698596 + 0.121000i
\(738\) 0.896531 1.55284i 0.0330018 0.0571607i
\(739\) −9.37919 + 16.2452i −0.345019 + 0.597590i −0.985357 0.170503i \(-0.945461\pi\)
0.640338 + 0.768093i \(0.278794\pi\)
\(740\) −1.79306 3.10567i −0.0659143 0.114167i
\(741\) 3.53302 0.129789
\(742\) −0.206938 2.39821i −0.00759692 0.0880412i
\(743\) −44.6763 −1.63902 −0.819508 0.573068i \(-0.805753\pi\)
−0.819508 + 0.573068i \(0.805753\pi\)
\(744\) 4.79306 + 8.30183i 0.175722 + 0.304360i
\(745\) −0.936362 + 1.62183i −0.0343057 + 0.0594191i
\(746\) −5.20090 + 9.00822i −0.190418 + 0.329814i
\(747\) −0.986723 1.70905i −0.0361023 0.0625310i
\(748\) 1.00000 0.0365636
\(749\) −33.8651 + 23.6525i −1.23741 + 0.864245i
\(750\) −4.45490 −0.162670
\(751\) 1.48146 + 2.56596i 0.0540592 + 0.0936332i 0.891789 0.452452i \(-0.149451\pi\)
−0.837729 + 0.546085i \(0.816117\pi\)
\(752\) −0.169079 + 0.292854i −0.00616568 + 0.0106793i
\(753\) 1.96818 3.40899i 0.0717245 0.124230i
\(754\) 1.27058 + 2.20070i 0.0462716 + 0.0801448i
\(755\) −2.80120 −0.101946
\(756\) 2.39653 + 1.12100i 0.0871610 + 0.0407703i
\(757\) 26.1988 0.952212 0.476106 0.879388i \(-0.342048\pi\)
0.476106 + 0.879388i \(0.342048\pi\)
\(758\) −3.80634 6.59277i −0.138252 0.239460i
\(759\) −4.16908 + 7.22106i −0.151328 + 0.262108i
\(760\) −0.883254 + 1.52984i −0.0320390 + 0.0554932i
\(761\) −12.8965 22.3374i −0.467499 0.809732i 0.531812 0.846863i \(-0.321511\pi\)
−0.999310 + 0.0371309i \(0.988178\pi\)
\(762\) 7.42835 0.269101
\(763\) 33.6498 + 15.7400i 1.21820 + 0.569825i
\(764\) 9.81962 0.355261
\(765\) −0.227452 0.393958i −0.00822355 0.0142436i
\(766\) 11.0728 19.1787i 0.400078 0.692956i
\(767\) −3.17225 + 5.49450i −0.114543 + 0.198395i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) −37.2012 −1.34151 −0.670755 0.741679i \(-0.734030\pi\)
−0.670755 + 0.741679i \(0.734030\pi\)
\(770\) −0.986723 + 0.689160i −0.0355590 + 0.0248356i
\(771\) −15.0902 −0.543460
\(772\) −3.42835 5.93808i −0.123389 0.213716i
\(773\) 20.3852 35.3082i 0.733206 1.26995i −0.222300 0.974978i \(-0.571357\pi\)
0.955506 0.294971i \(-0.0953101\pi\)
\(774\) −3.94163 + 6.82710i −0.141679 + 0.245395i
\(775\) −22.9734 39.7912i −0.825231 1.42934i
\(776\) 14.5861 0.523611
\(777\) −1.79306 20.7799i