# Properties

 Label 462.2.i.b Level $462$ Weight $2$ Character orbit 462.i Analytic conductor $3.689$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$462 = 2 \cdot 3 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 462.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.68908857338$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} - q^{6} + ( -3 + 2 \zeta_{6} ) q^{7} - q^{8} -\zeta_{6} q^{9} +O(q^{10})$$ $$q + \zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} - q^{6} + ( -3 + 2 \zeta_{6} ) q^{7} - q^{8} -\zeta_{6} q^{9} + ( -1 + \zeta_{6} ) q^{11} -\zeta_{6} q^{12} -4 q^{13} + ( -2 - \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} + ( 1 - \zeta_{6} ) q^{18} + \zeta_{6} q^{19} + ( 1 - 3 \zeta_{6} ) q^{21} - q^{22} + 3 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{24} + ( 5 - 5 \zeta_{6} ) q^{25} -4 \zeta_{6} q^{26} + q^{27} + ( 1 - 3 \zeta_{6} ) q^{28} -9 q^{29} + ( -2 + 2 \zeta_{6} ) q^{31} + ( 1 - \zeta_{6} ) q^{32} -\zeta_{6} q^{33} -3 q^{34} + q^{36} + 7 \zeta_{6} q^{37} + ( -1 + \zeta_{6} ) q^{38} + ( 4 - 4 \zeta_{6} ) q^{39} -6 q^{41} + ( 3 - 2 \zeta_{6} ) q^{42} + 11 q^{43} -\zeta_{6} q^{44} + ( -3 + 3 \zeta_{6} ) q^{46} + 3 \zeta_{6} q^{47} + q^{48} + ( 5 - 8 \zeta_{6} ) q^{49} + 5 q^{50} -3 \zeta_{6} q^{51} + ( 4 - 4 \zeta_{6} ) q^{52} + \zeta_{6} q^{54} + ( 3 - 2 \zeta_{6} ) q^{56} - q^{57} -9 \zeta_{6} q^{58} + ( -9 + 9 \zeta_{6} ) q^{59} + 10 \zeta_{6} q^{61} -2 q^{62} + ( 2 + \zeta_{6} ) q^{63} + q^{64} + ( 1 - \zeta_{6} ) q^{66} + ( 4 - 4 \zeta_{6} ) q^{67} -3 \zeta_{6} q^{68} -3 q^{69} + 3 q^{71} + \zeta_{6} q^{72} + ( 4 - 4 \zeta_{6} ) q^{73} + ( -7 + 7 \zeta_{6} ) q^{74} + 5 \zeta_{6} q^{75} - q^{76} + ( 1 - 3 \zeta_{6} ) q^{77} + 4 q^{78} + 16 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -6 \zeta_{6} q^{82} + ( 2 + \zeta_{6} ) q^{84} + 11 \zeta_{6} q^{86} + ( 9 - 9 \zeta_{6} ) q^{87} + ( 1 - \zeta_{6} ) q^{88} + ( 12 - 8 \zeta_{6} ) q^{91} -3 q^{92} -2 \zeta_{6} q^{93} + ( -3 + 3 \zeta_{6} ) q^{94} + \zeta_{6} q^{96} - q^{97} + ( 8 - 3 \zeta_{6} ) q^{98} + q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{2} - q^{3} - q^{4} - 2q^{6} - 4q^{7} - 2q^{8} - q^{9} + O(q^{10})$$ $$2q + q^{2} - q^{3} - q^{4} - 2q^{6} - 4q^{7} - 2q^{8} - q^{9} - q^{11} - q^{12} - 8q^{13} - 5q^{14} - q^{16} - 3q^{17} + q^{18} + q^{19} - q^{21} - 2q^{22} + 3q^{23} + q^{24} + 5q^{25} - 4q^{26} + 2q^{27} - q^{28} - 18q^{29} - 2q^{31} + q^{32} - q^{33} - 6q^{34} + 2q^{36} + 7q^{37} - q^{38} + 4q^{39} - 12q^{41} + 4q^{42} + 22q^{43} - q^{44} - 3q^{46} + 3q^{47} + 2q^{48} + 2q^{49} + 10q^{50} - 3q^{51} + 4q^{52} + q^{54} + 4q^{56} - 2q^{57} - 9q^{58} - 9q^{59} + 10q^{61} - 4q^{62} + 5q^{63} + 2q^{64} + q^{66} + 4q^{67} - 3q^{68} - 6q^{69} + 6q^{71} + q^{72} + 4q^{73} - 7q^{74} + 5q^{75} - 2q^{76} - q^{77} + 8q^{78} + 16q^{79} - q^{81} - 6q^{82} + 5q^{84} + 11q^{86} + 9q^{87} + q^{88} + 16q^{91} - 6q^{92} - 2q^{93} - 3q^{94} + q^{96} - 2q^{97} + 13q^{98} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/462\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$211$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
67.1
 0.5 + 0.866025i 0.5 − 0.866025i
0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0 −1.00000 −2.00000 + 1.73205i −1.00000 −0.500000 0.866025i 0
331.1 0.500000 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0 −1.00000 −2.00000 1.73205i −1.00000 −0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 462.2.i.b 2
3.b odd 2 1 1386.2.k.d 2
7.c even 3 1 inner 462.2.i.b 2
7.c even 3 1 3234.2.a.l 1
7.d odd 6 1 3234.2.a.f 1
21.g even 6 1 9702.2.a.bn 1
21.h odd 6 1 1386.2.k.d 2
21.h odd 6 1 9702.2.a.bl 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.i.b 2 1.a even 1 1 trivial
462.2.i.b 2 7.c even 3 1 inner
1386.2.k.d 2 3.b odd 2 1
1386.2.k.d 2 21.h odd 6 1
3234.2.a.f 1 7.d odd 6 1
3234.2.a.l 1 7.c even 3 1
9702.2.a.bl 1 21.h odd 6 1
9702.2.a.bn 1 21.g even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(462, [\chi])$$:

 $$T_{5}$$ $$T_{13} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T + T^{2}$$
$3$ $$1 + T + T^{2}$$
$5$ $$T^{2}$$
$7$ $$7 + 4 T + T^{2}$$
$11$ $$1 + T + T^{2}$$
$13$ $$( 4 + T )^{2}$$
$17$ $$9 + 3 T + T^{2}$$
$19$ $$1 - T + T^{2}$$
$23$ $$9 - 3 T + T^{2}$$
$29$ $$( 9 + T )^{2}$$
$31$ $$4 + 2 T + T^{2}$$
$37$ $$49 - 7 T + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$( -11 + T )^{2}$$
$47$ $$9 - 3 T + T^{2}$$
$53$ $$T^{2}$$
$59$ $$81 + 9 T + T^{2}$$
$61$ $$100 - 10 T + T^{2}$$
$67$ $$16 - 4 T + T^{2}$$
$71$ $$( -3 + T )^{2}$$
$73$ $$16 - 4 T + T^{2}$$
$79$ $$256 - 16 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$( 1 + T )^{2}$$