Properties

Label 4608.2.k.y
Level $4608$
Weight $2$
Character orbit 4608.k
Analytic conductor $36.795$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1536)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{8}^{2} ) q^{5} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{7} +O(q^{10})\) \( q + ( -1 + \zeta_{8}^{2} ) q^{5} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{7} + ( -3 - 3 \zeta_{8}^{2} ) q^{13} + 4 q^{17} + 8 \zeta_{8} q^{19} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{23} + 3 \zeta_{8}^{2} q^{25} + ( -1 - \zeta_{8}^{2} ) q^{29} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{31} -4 \zeta_{8} q^{35} + ( -3 + 3 \zeta_{8}^{2} ) q^{37} + 4 \zeta_{8}^{2} q^{41} + ( 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{47} - q^{49} + ( 5 - 5 \zeta_{8}^{2} ) q^{53} + 12 \zeta_{8}^{3} q^{59} + ( 1 + \zeta_{8}^{2} ) q^{61} + 6 q^{65} + 4 \zeta_{8} q^{67} + ( -8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{71} + 14 \zeta_{8}^{2} q^{73} + ( -6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{79} -16 \zeta_{8} q^{83} + ( -4 + 4 \zeta_{8}^{2} ) q^{85} + 6 \zeta_{8}^{2} q^{89} -12 \zeta_{8}^{3} q^{91} + ( -8 \zeta_{8} + 8 \zeta_{8}^{3} ) q^{95} + 16 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{5} + O(q^{10}) \) \( 4q - 4q^{5} - 12q^{13} + 16q^{17} - 4q^{29} - 12q^{37} - 4q^{49} + 20q^{53} + 4q^{61} + 24q^{65} - 16q^{85} + 64q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(-\zeta_{8}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1153.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0 0 0 −1.00000 + 1.00000i 0 2.82843i 0 0 0
1153.2 0 0 0 −1.00000 + 1.00000i 0 2.82843i 0 0 0
3457.1 0 0 0 −1.00000 1.00000i 0 2.82843i 0 0 0
3457.2 0 0 0 −1.00000 1.00000i 0 2.82843i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.k.y 4
3.b odd 2 1 1536.2.j.c yes 4
4.b odd 2 1 inner 4608.2.k.y 4
8.b even 2 1 4608.2.k.bb 4
8.d odd 2 1 4608.2.k.bb 4
12.b even 2 1 1536.2.j.c yes 4
16.e even 4 1 inner 4608.2.k.y 4
16.e even 4 1 4608.2.k.bb 4
16.f odd 4 1 inner 4608.2.k.y 4
16.f odd 4 1 4608.2.k.bb 4
24.f even 2 1 1536.2.j.b 4
24.h odd 2 1 1536.2.j.b 4
32.g even 8 1 9216.2.a.h 2
32.g even 8 1 9216.2.a.i 2
32.h odd 8 1 9216.2.a.h 2
32.h odd 8 1 9216.2.a.i 2
48.i odd 4 1 1536.2.j.b 4
48.i odd 4 1 1536.2.j.c yes 4
48.k even 4 1 1536.2.j.b 4
48.k even 4 1 1536.2.j.c yes 4
96.o even 8 1 3072.2.a.b 2
96.o even 8 1 3072.2.a.h 2
96.o even 8 2 3072.2.d.c 4
96.p odd 8 1 3072.2.a.b 2
96.p odd 8 1 3072.2.a.h 2
96.p odd 8 2 3072.2.d.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.2.j.b 4 24.f even 2 1
1536.2.j.b 4 24.h odd 2 1
1536.2.j.b 4 48.i odd 4 1
1536.2.j.b 4 48.k even 4 1
1536.2.j.c yes 4 3.b odd 2 1
1536.2.j.c yes 4 12.b even 2 1
1536.2.j.c yes 4 48.i odd 4 1
1536.2.j.c yes 4 48.k even 4 1
3072.2.a.b 2 96.o even 8 1
3072.2.a.b 2 96.p odd 8 1
3072.2.a.h 2 96.o even 8 1
3072.2.a.h 2 96.p odd 8 1
3072.2.d.c 4 96.o even 8 2
3072.2.d.c 4 96.p odd 8 2
4608.2.k.y 4 1.a even 1 1 trivial
4608.2.k.y 4 4.b odd 2 1 inner
4608.2.k.y 4 16.e even 4 1 inner
4608.2.k.y 4 16.f odd 4 1 inner
4608.2.k.bb 4 8.b even 2 1
4608.2.k.bb 4 8.d odd 2 1
4608.2.k.bb 4 16.e even 4 1
4608.2.k.bb 4 16.f odd 4 1
9216.2.a.h 2 32.g even 8 1
9216.2.a.h 2 32.h odd 8 1
9216.2.a.i 2 32.g even 8 1
9216.2.a.i 2 32.h odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4608, [\chi])\):

\( T_{5}^{2} + 2 T_{5} + 2 \)
\( T_{7}^{2} + 8 \)
\( T_{11} \)
\( T_{13}^{2} + 6 T_{13} + 18 \)
\( T_{19}^{4} + 4096 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( 2 + 2 T + T^{2} )^{2} \)
$7$ \( ( 8 + T^{2} )^{2} \)
$11$ \( T^{4} \)
$13$ \( ( 18 + 6 T + T^{2} )^{2} \)
$17$ \( ( -4 + T )^{4} \)
$19$ \( 4096 + T^{4} \)
$23$ \( ( 32 + T^{2} )^{2} \)
$29$ \( ( 2 + 2 T + T^{2} )^{2} \)
$31$ \( ( -8 + T^{2} )^{2} \)
$37$ \( ( 18 + 6 T + T^{2} )^{2} \)
$41$ \( ( 16 + T^{2} )^{2} \)
$43$ \( T^{4} \)
$47$ \( ( -128 + T^{2} )^{2} \)
$53$ \( ( 50 - 10 T + T^{2} )^{2} \)
$59$ \( 20736 + T^{4} \)
$61$ \( ( 2 - 2 T + T^{2} )^{2} \)
$67$ \( 256 + T^{4} \)
$71$ \( ( 128 + T^{2} )^{2} \)
$73$ \( ( 196 + T^{2} )^{2} \)
$79$ \( ( -72 + T^{2} )^{2} \)
$83$ \( 65536 + T^{4} \)
$89$ \( ( 36 + T^{2} )^{2} \)
$97$ \( ( -16 + T )^{4} \)
show more
show less