Properties

Label 4608.2.k.bb.1153.1
Level $4608$
Weight $2$
Character 4608.1153
Analytic conductor $36.795$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 1536)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1153.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 4608.1153
Dual form 4608.2.k.bb.3457.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{5} -2.82843i q^{7} +O(q^{10})\) \(q+(1.00000 - 1.00000i) q^{5} -2.82843i q^{7} +(3.00000 + 3.00000i) q^{13} +4.00000 q^{17} +(5.65685 + 5.65685i) q^{19} +5.65685i q^{23} +3.00000i q^{25} +(1.00000 + 1.00000i) q^{29} -2.82843 q^{31} +(-2.82843 - 2.82843i) q^{35} +(3.00000 - 3.00000i) q^{37} +4.00000i q^{41} -11.3137 q^{47} -1.00000 q^{49} +(-5.00000 + 5.00000i) q^{53} +(-8.48528 + 8.48528i) q^{59} +(-1.00000 - 1.00000i) q^{61} +6.00000 q^{65} +(2.82843 + 2.82843i) q^{67} +11.3137i q^{71} +14.0000i q^{73} +8.48528 q^{79} +(-11.3137 - 11.3137i) q^{83} +(4.00000 - 4.00000i) q^{85} +6.00000i q^{89} +(8.48528 - 8.48528i) q^{91} +11.3137 q^{95} +16.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{5} + O(q^{10}) \) \( 4q + 4q^{5} + 12q^{13} + 16q^{17} + 4q^{29} + 12q^{37} - 4q^{49} - 20q^{53} - 4q^{61} + 24q^{65} + 16q^{85} + 64q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 1.00000i 0.447214 0.447214i −0.447214 0.894427i \(-0.647584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 2.82843i 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(12\) 0 0
\(13\) 3.00000 + 3.00000i 0.832050 + 0.832050i 0.987797 0.155747i \(-0.0497784\pi\)
−0.155747 + 0.987797i \(0.549778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 5.65685 + 5.65685i 1.29777 + 1.29777i 0.929861 + 0.367910i \(0.119927\pi\)
0.367910 + 0.929861i \(0.380073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.65685i 1.17954i 0.807573 + 0.589768i \(0.200781\pi\)
−0.807573 + 0.589768i \(0.799219\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 + 1.00000i 0.185695 + 0.185695i 0.793832 0.608137i \(-0.208083\pi\)
−0.608137 + 0.793832i \(0.708083\pi\)
\(30\) 0 0
\(31\) −2.82843 −0.508001 −0.254000 0.967204i \(-0.581746\pi\)
−0.254000 + 0.967204i \(0.581746\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.82843 2.82843i −0.478091 0.478091i
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.3137 −1.65027 −0.825137 0.564933i \(-0.808902\pi\)
−0.825137 + 0.564933i \(0.808902\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.00000 + 5.00000i −0.686803 + 0.686803i −0.961524 0.274721i \(-0.911414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.48528 + 8.48528i −1.10469 + 1.10469i −0.110853 + 0.993837i \(0.535358\pi\)
−0.993837 + 0.110853i \(0.964642\pi\)
\(60\) 0 0
\(61\) −1.00000 1.00000i −0.128037 0.128037i 0.640184 0.768221i \(-0.278858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 2.82843 + 2.82843i 0.345547 + 0.345547i 0.858448 0.512901i \(-0.171429\pi\)
−0.512901 + 0.858448i \(0.671429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3137i 1.34269i 0.741145 + 0.671345i \(0.234283\pi\)
−0.741145 + 0.671345i \(0.765717\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.3137 11.3137i −1.24184 1.24184i −0.959237 0.282604i \(-0.908802\pi\)
−0.282604 0.959237i \(-0.591198\pi\)
\(84\) 0 0
\(85\) 4.00000 4.00000i 0.433861 0.433861i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000i 0.635999i 0.948091 + 0.317999i \(0.103011\pi\)
−0.948091 + 0.317999i \(0.896989\pi\)
\(90\) 0 0
\(91\) 8.48528 8.48528i 0.889499 0.889499i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.3137 1.16076
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.0000 11.0000i 1.09454 1.09454i 0.0995037 0.995037i \(-0.468274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) 0 0
\(103\) 19.7990i 1.95085i −0.220326 0.975426i \(-0.570712\pi\)
0.220326 0.975426i \(-0.429288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.48528 8.48528i 0.820303 0.820303i −0.165848 0.986151i \(-0.553036\pi\)
0.986151 + 0.165848i \(0.0530362\pi\)
\(108\) 0 0
\(109\) −3.00000 3.00000i −0.287348 0.287348i 0.548683 0.836031i \(-0.315129\pi\)
−0.836031 + 0.548683i \(0.815129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 5.65685 + 5.65685i 0.527504 + 0.527504i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.3137i 1.03713i
\(120\) 0 0
\(121\) 11.0000i 1.00000i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.00000 + 8.00000i 0.715542 + 0.715542i
\(126\) 0 0
\(127\) 8.48528 0.752947 0.376473 0.926427i \(-0.377137\pi\)
0.376473 + 0.926427i \(0.377137\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.82843 + 2.82843i 0.247121 + 0.247121i 0.819788 0.572667i \(-0.194091\pi\)
−0.572667 + 0.819788i \(0.694091\pi\)
\(132\) 0 0
\(133\) 16.0000 16.0000i 1.38738 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −2.82843 + 2.82843i −0.239904 + 0.239904i −0.816810 0.576906i \(-0.804260\pi\)
0.576906 + 0.816810i \(0.304260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.00000 9.00000i 0.737309 0.737309i −0.234748 0.972056i \(-0.575426\pi\)
0.972056 + 0.234748i \(0.0754264\pi\)
\(150\) 0 0
\(151\) 2.82843i 0.230174i −0.993355 0.115087i \(-0.963285\pi\)
0.993355 0.115087i \(-0.0367147\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.82843 + 2.82843i −0.227185 + 0.227185i
\(156\) 0 0
\(157\) 15.0000 + 15.0000i 1.19713 + 1.19713i 0.975022 + 0.222108i \(0.0712939\pi\)
0.222108 + 0.975022i \(0.428706\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) −11.3137 11.3137i −0.886158 0.886158i 0.107994 0.994152i \(-0.465557\pi\)
−0.994152 + 0.107994i \(0.965557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.3137i 0.875481i 0.899101 + 0.437741i \(0.144221\pi\)
−0.899101 + 0.437741i \(0.855779\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.00000 5.00000i −0.380143 0.380143i 0.491011 0.871154i \(-0.336628\pi\)
−0.871154 + 0.491011i \(0.836628\pi\)
\(174\) 0 0
\(175\) 8.48528 0.641427
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.82843 + 2.82843i 0.211407 + 0.211407i 0.804865 0.593458i \(-0.202238\pi\)
−0.593458 + 0.804865i \(0.702238\pi\)
\(180\) 0 0
\(181\) 9.00000 9.00000i 0.668965 0.668965i −0.288512 0.957476i \(-0.593160\pi\)
0.957476 + 0.288512i \(0.0931604\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000i 0.441129i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.65685 −0.409316 −0.204658 0.978834i \(-0.565608\pi\)
−0.204658 + 0.978834i \(0.565608\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 5.00000i 0.356235 0.356235i −0.506188 0.862423i \(-0.668946\pi\)
0.862423 + 0.506188i \(0.168946\pi\)
\(198\) 0 0
\(199\) 8.48528i 0.601506i 0.953702 + 0.300753i \(0.0972379\pi\)
−0.953702 + 0.300753i \(0.902762\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.82843 2.82843i 0.198517 0.198517i
\(204\) 0 0
\(205\) 4.00000 + 4.00000i 0.279372 + 0.279372i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −8.48528 8.48528i −0.584151 0.584151i 0.351890 0.936041i \(-0.385539\pi\)
−0.936041 + 0.351890i \(0.885539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 + 12.0000i 0.807207 + 0.807207i
\(222\) 0 0
\(223\) −25.4558 −1.70465 −0.852325 0.523013i \(-0.824808\pi\)
−0.852325 + 0.523013i \(0.824808\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.65685 + 5.65685i 0.375459 + 0.375459i 0.869461 0.494002i \(-0.164466\pi\)
−0.494002 + 0.869461i \(0.664466\pi\)
\(228\) 0 0
\(229\) 17.0000 17.0000i 1.12339 1.12339i 0.132164 0.991228i \(-0.457808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) −11.3137 + 11.3137i −0.738025 + 0.738025i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.65685 0.365911 0.182956 0.983121i \(-0.441433\pi\)
0.182956 + 0.983121i \(0.441433\pi\)
\(240\) 0 0
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.00000 + 1.00000i −0.0638877 + 0.0638877i
\(246\) 0 0
\(247\) 33.9411i 2.15962i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65685 5.65685i 0.357057 0.357057i −0.505670 0.862727i \(-0.668755\pi\)
0.862727 + 0.505670i \(0.168755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) −8.48528 8.48528i −0.527250 0.527250i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 28.2843i 1.74408i −0.489432 0.872041i \(-0.662796\pi\)
0.489432 0.872041i \(-0.337204\pi\)
\(264\) 0 0
\(265\) 10.0000i 0.614295i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.0000 15.0000i −0.914566 0.914566i 0.0820612 0.996627i \(-0.473850\pi\)
−0.996627 + 0.0820612i \(0.973850\pi\)
\(270\) 0 0
\(271\) −8.48528 −0.515444 −0.257722 0.966219i \(-0.582972\pi\)
−0.257722 + 0.966219i \(0.582972\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 + 1.00000i −0.0600842 + 0.0600842i −0.736510 0.676426i \(-0.763528\pi\)
0.676426 + 0.736510i \(0.263528\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000i 1.31241i −0.754583 0.656205i \(-0.772161\pi\)
0.754583 0.656205i \(-0.227839\pi\)
\(282\) 0 0
\(283\) 2.82843 2.82843i 0.168133 0.168133i −0.618026 0.786158i \(-0.712067\pi\)
0.786158 + 0.618026i \(0.212067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.3137 0.667827
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.0000 13.0000i 0.759468 0.759468i −0.216757 0.976226i \(-0.569548\pi\)
0.976226 + 0.216757i \(0.0695481\pi\)
\(294\) 0 0
\(295\) 16.9706i 0.988064i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.9706 + 16.9706i −0.981433 + 0.981433i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 2.82843 + 2.82843i 0.161427 + 0.161427i 0.783199 0.621772i \(-0.213587\pi\)
−0.621772 + 0.783199i \(0.713587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.2843i 1.60385i −0.597422 0.801927i \(-0.703808\pi\)
0.597422 0.801927i \(-0.296192\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i 0.891923 + 0.452187i \(0.149356\pi\)
−0.891923 + 0.452187i \(0.850644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.0000 15.0000i −0.842484 0.842484i 0.146697 0.989181i \(-0.453136\pi\)
−0.989181 + 0.146697i \(0.953136\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22.6274 + 22.6274i 1.25902 + 1.25902i
\(324\) 0 0
\(325\) −9.00000 + 9.00000i −0.499230 + 0.499230i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 32.0000i 1.76422i
\(330\) 0 0
\(331\) 2.82843 2.82843i 0.155464 0.155464i −0.625089 0.780553i \(-0.714937\pi\)
0.780553 + 0.625089i \(0.214937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.65685 0.309067
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.6274 22.6274i 1.21470 1.21470i 0.245241 0.969462i \(-0.421133\pi\)
0.969462 0.245241i \(-0.0788672\pi\)
\(348\) 0 0
\(349\) 9.00000 + 9.00000i 0.481759 + 0.481759i 0.905693 0.423934i \(-0.139351\pi\)
−0.423934 + 0.905693i \(0.639351\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 11.3137 + 11.3137i 0.600469 + 0.600469i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.3137i 0.597115i 0.954392 + 0.298557i \(0.0965054\pi\)
−0.954392 + 0.298557i \(0.903495\pi\)
\(360\) 0 0
\(361\) 45.0000i 2.36842i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.0000 + 14.0000i 0.732793 + 0.732793i
\(366\) 0 0
\(367\) 2.82843 0.147643 0.0738213 0.997271i \(-0.476481\pi\)
0.0738213 + 0.997271i \(0.476481\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.1421 + 14.1421i 0.734223 + 0.734223i
\(372\) 0 0
\(373\) 3.00000 3.00000i 0.155334 0.155334i −0.625161 0.780496i \(-0.714967\pi\)
0.780496 + 0.625161i \(0.214967\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000i 0.309016i
\(378\) 0 0
\(379\) −11.3137 + 11.3137i −0.581146 + 0.581146i −0.935218 0.354072i \(-0.884797\pi\)
0.354072 + 0.935218i \(0.384797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −28.2843 −1.44526 −0.722629 0.691236i \(-0.757067\pi\)
−0.722629 + 0.691236i \(0.757067\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.00000 7.00000i 0.354914 0.354914i −0.507020 0.861934i \(-0.669253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 22.6274i 1.14432i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.48528 8.48528i 0.426941 0.426941i
\(396\) 0 0
\(397\) −15.0000 15.0000i −0.752828 0.752828i 0.222178 0.975006i \(-0.428683\pi\)
−0.975006 + 0.222178i \(0.928683\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −20.0000 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(402\) 0 0
\(403\) −8.48528 8.48528i −0.422682 0.422682i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 32.0000i 1.58230i −0.611623 0.791149i \(-0.709483\pi\)
0.611623 0.791149i \(-0.290517\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0000 + 24.0000i 1.18096 + 1.18096i
\(414\) 0 0
\(415\) −22.6274 −1.11074
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.65685 + 5.65685i 0.276355 + 0.276355i 0.831652 0.555297i \(-0.187395\pi\)
−0.555297 + 0.831652i \(0.687395\pi\)
\(420\) 0 0
\(421\) 9.00000 9.00000i 0.438633 0.438633i −0.452919 0.891552i \(-0.649617\pi\)
0.891552 + 0.452919i \(0.149617\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000i 0.582086i
\(426\) 0 0
\(427\) −2.82843 + 2.82843i −0.136877 + 0.136877i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.3137 0.544962 0.272481 0.962161i \(-0.412156\pi\)
0.272481 + 0.962161i \(0.412156\pi\)
\(432\) 0 0
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −32.0000 + 32.0000i −1.53077 + 1.53077i
\(438\) 0 0
\(439\) 2.82843i 0.134993i 0.997719 + 0.0674967i \(0.0215012\pi\)
−0.997719 + 0.0674967i \(0.978499\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.9706 + 16.9706i −0.806296 + 0.806296i −0.984071 0.177775i \(-0.943110\pi\)
0.177775 + 0.984071i \(0.443110\pi\)
\(444\) 0 0
\(445\) 6.00000 + 6.00000i 0.284427 + 0.284427i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.9706i 0.795592i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.0000 11.0000i −0.512321 0.512321i 0.402916 0.915237i \(-0.367997\pi\)
−0.915237 + 0.402916i \(0.867997\pi\)
\(462\) 0 0
\(463\) −31.1127 −1.44593 −0.722965 0.690885i \(-0.757221\pi\)
−0.722965 + 0.690885i \(0.757221\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.65685 + 5.65685i 0.261768 + 0.261768i 0.825772 0.564004i \(-0.190740\pi\)
−0.564004 + 0.825772i \(0.690740\pi\)
\(468\) 0 0
\(469\) 8.00000 8.00000i 0.369406 0.369406i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −16.9706 + 16.9706i −0.778663 + 0.778663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 28.2843 1.29234 0.646171 0.763193i \(-0.276369\pi\)
0.646171 + 0.763193i \(0.276369\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 16.0000i 0.726523 0.726523i
\(486\) 0 0
\(487\) 2.82843i 0.128168i 0.997944 + 0.0640841i \(0.0204126\pi\)
−0.997944 + 0.0640841i \(0.979587\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.48528 8.48528i 0.382935 0.382935i −0.489223 0.872159i \(-0.662720\pi\)
0.872159 + 0.489223i \(0.162720\pi\)
\(492\) 0 0
\(493\) 4.00000 + 4.00000i 0.180151 + 0.180151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) −19.7990 19.7990i −0.886325 0.886325i 0.107843 0.994168i \(-0.465605\pi\)
−0.994168 + 0.107843i \(0.965605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.3137i 0.504453i 0.967668 + 0.252227i \(0.0811629\pi\)
−0.967668 + 0.252227i \(0.918837\pi\)
\(504\) 0 0
\(505\) 22.0000i 0.978987i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.0000 + 23.0000i 1.01946 + 1.01946i 0.999807 + 0.0196502i \(0.00625524\pi\)
0.0196502 + 0.999807i \(0.493745\pi\)
\(510\) 0 0
\(511\) 39.5980 1.75171
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19.7990 19.7990i −0.872448 0.872448i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000i 0.525730i −0.964833 0.262865i \(-0.915333\pi\)
0.964833 0.262865i \(-0.0846673\pi\)
\(522\) 0 0
\(523\) 5.65685 5.65685i 0.247357 0.247357i −0.572528 0.819885i \(-0.694037\pi\)
0.819885 + 0.572528i \(0.194037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.3137 −0.492833
\(528\) 0 0
\(529\) −9.00000 −0.391304
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 + 12.0000i −0.519778 + 0.519778i
\(534\) 0 0
\(535\) 16.9706i 0.733701i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.00000 + 3.00000i 0.128980 + 0.128980i 0.768650 0.639670i \(-0.220929\pi\)
−0.639670 + 0.768650i \(0.720929\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) −5.65685 5.65685i −0.241870 0.241870i 0.575754 0.817623i \(-0.304709\pi\)
−0.817623 + 0.575754i \(0.804709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.3137i 0.481980i
\(552\) 0 0
\(553\) 24.0000i 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.0000 21.0000i −0.889799 0.889799i 0.104705 0.994503i \(-0.466610\pi\)
−0.994503 + 0.104705i \(0.966610\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.65685 5.65685i −0.238408 0.238408i 0.577783 0.816191i \(-0.303918\pi\)
−0.816191 + 0.577783i \(0.803918\pi\)
\(564\) 0 0
\(565\) −18.0000 + 18.0000i −0.757266 + 0.757266i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.0000i 0.838444i −0.907884 0.419222i \(-0.862303\pi\)
0.907884 0.419222i \(-0.137697\pi\)
\(570\) 0 0
\(571\) 14.1421 14.1421i 0.591830 0.591830i −0.346296 0.938125i \(-0.612561\pi\)
0.938125 + 0.346296i \(0.112561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.9706 −0.707721
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −32.0000 + 32.0000i −1.32758 + 1.32758i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.82843 + 2.82843i −0.116742 + 0.116742i −0.763064 0.646323i \(-0.776306\pi\)
0.646323 + 0.763064i \(0.276306\pi\)
\(588\) 0 0
\(589\) −16.0000 16.0000i −0.659269 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) −11.3137 11.3137i −0.463817 0.463817i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 39.5980i 1.61793i 0.587857 + 0.808965i \(0.299972\pi\)
−0.587857 + 0.808965i \(0.700028\pi\)
\(600\) 0 0
\(601\) 14.0000i 0.571072i −0.958368 0.285536i \(-0.907828\pi\)
0.958368 0.285536i \(-0.0921716\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.0000 + 11.0000i 0.447214 + 0.447214i
\(606\) 0 0
\(607\) 42.4264 1.72203 0.861017 0.508576i \(-0.169828\pi\)
0.861017 + 0.508576i \(0.169828\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −33.9411 33.9411i −1.37311 1.37311i
\(612\) 0 0
\(613\) −11.0000 + 11.0000i −0.444286 + 0.444286i −0.893449 0.449164i \(-0.851722\pi\)
0.449164 + 0.893449i \(0.351722\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000i 0.241551i 0.992680 + 0.120775i \(0.0385381\pi\)
−0.992680 + 0.120775i \(0.961462\pi\)
\(618\) 0 0
\(619\) 31.1127 31.1127i 1.25052 1.25052i 0.295040 0.955485i \(-0.404667\pi\)
0.955485 0.295040i \(-0.0953330\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.9706 0.679911
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 12.0000i 0.478471 0.478471i
\(630\) 0 0
\(631\) 8.48528i 0.337794i 0.985634 + 0.168897i \(0.0540205\pi\)
−0.985634 + 0.168897i \(0.945980\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.48528 8.48528i 0.336728 0.336728i
\(636\) 0 0
\(637\) −3.00000 3.00000i −0.118864 0.118864i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 11.3137 + 11.3137i 0.446169 + 0.446169i 0.894079 0.447910i \(-0.147831\pi\)
−0.447910 + 0.894079i \(0.647831\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 39.5980i 1.55676i −0.627795 0.778379i \(-0.716042\pi\)
0.627795 0.778379i \(-0.283958\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.00000 3.00000i −0.117399 0.117399i 0.645967 0.763366i \(-0.276455\pi\)
−0.763366 + 0.645967i \(0.776455\pi\)
\(654\) 0 0
\(655\) 5.65685 0.221032
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.1421 + 14.1421i 0.550899 + 0.550899i 0.926700 0.375801i \(-0.122632\pi\)
−0.375801 + 0.926700i \(0.622632\pi\)
\(660\) 0 0
\(661\) −19.0000 + 19.0000i −0.739014 + 0.739014i −0.972387 0.233373i \(-0.925024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.0000i 1.24091i
\(666\) 0 0
\(667\) −5.65685 + 5.65685i −0.219034 + 0.219034i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8.00000 −0.308377 −0.154189 0.988041i \(-0.549276\pi\)
−0.154189 + 0.988041i \(0.549276\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.0000 23.0000i 0.883962 0.883962i −0.109973 0.993935i \(-0.535076\pi\)
0.993935 + 0.109973i \(0.0350764\pi\)
\(678\) 0 0
\(679\) 45.2548i 1.73672i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.6274 + 22.6274i −0.865814 + 0.865814i −0.992006 0.126192i \(-0.959725\pi\)
0.126192 + 0.992006i \(0.459725\pi\)
\(684\) 0 0
\(685\) 12.0000 + 12.0000i 0.458496 + 0.458496i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −30.0000 −1.14291
\(690\) 0 0
\(691\) 28.2843 + 28.2843i 1.07598 + 1.07598i 0.996865 + 0.0791192i \(0.0252108\pi\)
0.0791192 + 0.996865i \(0.474789\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.65685i 0.214577i
\(696\) 0 0
\(697\) 16.0000i 0.606043i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −33.0000 33.0000i −1.24639 1.24639i −0.957302 0.289091i \(-0.906647\pi\)
−0.289091 0.957302i \(-0.593353\pi\)
\(702\) 0 0
\(703\) 33.9411 1.28011
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.1127 31.1127i −1.17011 1.17011i
\(708\) 0 0
\(709\) −25.0000 + 25.0000i −0.938895 + 0.938895i −0.998238 0.0593429i \(-0.981099\pi\)
0.0593429 + 0.998238i \(0.481099\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.9706 0.632895 0.316448 0.948610i \(-0.397510\pi\)
0.316448 + 0.948610i \(0.397510\pi\)
\(720\) 0 0
\(721\) −56.0000 −2.08555
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.00000 + 3.00000i −0.111417 + 0.111417i
\(726\) 0 0
\(727\) 42.4264i 1.57351i −0.617266 0.786754i \(-0.711760\pi\)
0.617266 0.786754i \(-0.288240\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −3.00000 3.00000i −0.110808 0.110808i 0.649529 0.760337i \(-0.274966\pi\)
−0.760337 + 0.649529i \(0.774966\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 25.4558 + 25.4558i 0.936408 + 0.936408i 0.998096 0.0616872i \(-0.0196481\pi\)
−0.0616872 + 0.998096i \(0.519648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.3137i 0.415060i −0.978229 0.207530i \(-0.933458\pi\)
0.978229 0.207530i \(-0.0665424\pi\)
\(744\) 0 0
\(745\) 18.0000i 0.659469i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24.0000 24.0000i −0.876941 0.876941i
\(750\) 0 0
\(751\) −8.48528 −0.309632 −0.154816 0.987943i \(-0.549479\pi\)
−0.154816 + 0.987943i \(0.549479\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.82843 2.82843i −0.102937 0.102937i
\(756\) 0 0
\(757\) −15.0000 + 15.0000i −0.545184 + 0.545184i −0.925044 0.379860i \(-0.875972\pi\)
0.379860 + 0.925044i \(0.375972\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.0000i 1.30500i 0.757789 + 0.652499i \(0.226280\pi\)
−0.757789 + 0.652499i \(0.773720\pi\)
\(762\) 0 0
\(763\) −8.48528 + 8.48528i −0.307188 + 0.307188i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −50.9117 −1.83831
\(768\) 0 0
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13.0000 + 13.0000i −0.467578 + 0.467578i −0.901129 0.433551i \(-0.857260\pi\)
0.433551 + 0.901129i \(0.357260\pi\)
\(774\) 0 0
\(775\) 8.48528i 0.304800i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −22.6274 + 22.6274i −0.810711 + 0.810711i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30.0000 1.07075
\(786\) 0 0
\(787\) 22.6274 + 22.6274i 0.806580 + 0.806580i 0.984115 0.177534i \(-0.0568121\pi\)
−0.177534 + 0.984115i \(0.556812\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 50.9117i 1.81021i
\(792\) 0 0
\(793\) 6.00000i 0.213066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.0000 + 35.0000i 1.23976 + 1.23976i 0.960097 + 0.279666i \(0.0902238\pi\)
0.279666 + 0.960097i \(0.409776\pi\)
\(798\) 0 0
\(799\) −45.2548 −1.60100
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 16.0000 16.0000i 0.563926 0.563926i
\(806\) 0