# Properties

 Label 4608.2.c.e Level $4608$ Weight $2$ Character orbit 4608.c Analytic conductor $36.795$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4608 = 2^{9} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4608.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$36.7950652514$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-2})$$ Defining polynomial: $$x^{2} + 2$$ x^2 + 2 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{-2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 \beta q^{5} - \beta q^{7} +O(q^{10})$$ q + 2*b * q^5 - b * q^7 $$q + 2 \beta q^{5} - \beta q^{7} + 2 q^{13} + \beta q^{17} - 2 \beta q^{19} - 6 q^{23} - 3 q^{25} - 4 \beta q^{29} - 7 \beta q^{31} + 4 q^{35} - 2 q^{37} - 3 \beta q^{41} - 6 \beta q^{43} - 10 q^{47} + 5 q^{49} + 4 \beta q^{53} + 12 q^{59} + 10 q^{61} + 4 \beta q^{65} - 4 \beta q^{67} - 2 q^{71} - 10 q^{73} + 9 \beta q^{79} + 4 q^{83} - 4 q^{85} - 7 \beta q^{89} - 2 \beta q^{91} + 8 q^{95} + 12 q^{97} +O(q^{100})$$ q + 2*b * q^5 - b * q^7 + 2 * q^13 + b * q^17 - 2*b * q^19 - 6 * q^23 - 3 * q^25 - 4*b * q^29 - 7*b * q^31 + 4 * q^35 - 2 * q^37 - 3*b * q^41 - 6*b * q^43 - 10 * q^47 + 5 * q^49 + 4*b * q^53 + 12 * q^59 + 10 * q^61 + 4*b * q^65 - 4*b * q^67 - 2 * q^71 - 10 * q^73 + 9*b * q^79 + 4 * q^83 - 4 * q^85 - 7*b * q^89 - 2*b * q^91 + 8 * q^95 + 12 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q + 4 q^{13} - 12 q^{23} - 6 q^{25} + 8 q^{35} - 4 q^{37} - 20 q^{47} + 10 q^{49} + 24 q^{59} + 20 q^{61} - 4 q^{71} - 20 q^{73} + 8 q^{83} - 8 q^{85} + 16 q^{95} + 24 q^{97}+O(q^{100})$$ 2 * q + 4 * q^13 - 12 * q^23 - 6 * q^25 + 8 * q^35 - 4 * q^37 - 20 * q^47 + 10 * q^49 + 24 * q^59 + 20 * q^61 - 4 * q^71 - 20 * q^73 + 8 * q^83 - 8 * q^85 + 16 * q^95 + 24 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times$$.

 $$n$$ $$2053$$ $$3583$$ $$4097$$ $$\chi(n)$$ $$1$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
4607.1
 − 1.41421i 1.41421i
0 0 0 2.82843i 0 1.41421i 0 0 0
4607.2 0 0 0 2.82843i 0 1.41421i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.c.e yes 2
3.b odd 2 1 4608.2.c.f yes 2
4.b odd 2 1 4608.2.c.f yes 2
8.b even 2 1 4608.2.c.c 2
8.d odd 2 1 4608.2.c.d yes 2
12.b even 2 1 inner 4608.2.c.e yes 2
16.e even 4 2 4608.2.f.l 4
16.f odd 4 2 4608.2.f.j 4
24.f even 2 1 4608.2.c.c 2
24.h odd 2 1 4608.2.c.d yes 2
48.i odd 4 2 4608.2.f.j 4
48.k even 4 2 4608.2.f.l 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4608.2.c.c 2 8.b even 2 1
4608.2.c.c 2 24.f even 2 1
4608.2.c.d yes 2 8.d odd 2 1
4608.2.c.d yes 2 24.h odd 2 1
4608.2.c.e yes 2 1.a even 1 1 trivial
4608.2.c.e yes 2 12.b even 2 1 inner
4608.2.c.f yes 2 3.b odd 2 1
4608.2.c.f yes 2 4.b odd 2 1
4608.2.f.j 4 16.f odd 4 2
4608.2.f.j 4 48.i odd 4 2
4608.2.f.l 4 16.e even 4 2
4608.2.f.l 4 48.k even 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4608, [\chi])$$:

 $$T_{5}^{2} + 8$$ T5^2 + 8 $$T_{7}^{2} + 2$$ T7^2 + 2 $$T_{11}$$ T11 $$T_{13} - 2$$ T13 - 2 $$T_{23} + 6$$ T23 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 8$$
$7$ $$T^{2} + 2$$
$11$ $$T^{2}$$
$13$ $$(T - 2)^{2}$$
$17$ $$T^{2} + 2$$
$19$ $$T^{2} + 8$$
$23$ $$(T + 6)^{2}$$
$29$ $$T^{2} + 32$$
$31$ $$T^{2} + 98$$
$37$ $$(T + 2)^{2}$$
$41$ $$T^{2} + 18$$
$43$ $$T^{2} + 72$$
$47$ $$(T + 10)^{2}$$
$53$ $$T^{2} + 32$$
$59$ $$(T - 12)^{2}$$
$61$ $$(T - 10)^{2}$$
$67$ $$T^{2} + 32$$
$71$ $$(T + 2)^{2}$$
$73$ $$(T + 10)^{2}$$
$79$ $$T^{2} + 162$$
$83$ $$(T - 4)^{2}$$
$89$ $$T^{2} + 98$$
$97$ $$(T - 12)^{2}$$