Defining parameters
Level: | \( N \) | \(=\) | \( 4608 = 2^{9} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4608.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(1536\) | ||
Trace bound: | \(23\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(13\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4608, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 832 | 64 | 768 |
Cusp forms | 704 | 64 | 640 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(4608, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(4608, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4608, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(768, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1536, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2304, [\chi])\)\(^{\oplus 2}\)