Properties

Label 4608.2.a.u
Level $4608$
Weight $2$
Character orbit 4608.a
Self dual yes
Analytic conductor $36.795$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.7950652514\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Defining polynomial: \(x^{4} - 4 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{5} -\beta_{1} q^{7} +O(q^{10})\) \( q + \beta_{1} q^{5} -\beta_{1} q^{7} -2 q^{11} -\beta_{2} q^{13} + \beta_{3} q^{17} -\beta_{3} q^{19} + 2 \beta_{2} q^{23} + q^{25} + \beta_{1} q^{29} -3 \beta_{1} q^{31} -6 q^{35} + 3 \beta_{2} q^{37} -3 \beta_{3} q^{41} + \beta_{3} q^{43} -2 \beta_{2} q^{47} - q^{49} + \beta_{1} q^{53} -2 \beta_{1} q^{55} -8 q^{59} -\beta_{2} q^{61} + 3 \beta_{3} q^{65} + 4 \beta_{3} q^{67} -4 \beta_{2} q^{71} + 2 \beta_{1} q^{77} -\beta_{1} q^{79} -14 q^{83} -2 \beta_{2} q^{85} -4 \beta_{3} q^{89} -3 \beta_{3} q^{91} + 2 \beta_{2} q^{95} -6 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + O(q^{10}) \) \( 4 q - 8 q^{11} + 4 q^{25} - 24 q^{35} - 4 q^{49} - 32 q^{59} - 56 q^{83} - 24 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.93185
0.517638
−1.93185
−0.517638
0 0 0 −2.44949 0 2.44949 0 0 0
1.2 0 0 0 −2.44949 0 2.44949 0 0 0
1.3 0 0 0 2.44949 0 −2.44949 0 0 0
1.4 0 0 0 2.44949 0 −2.44949 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
12.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.a.u 4
3.b odd 2 1 4608.2.a.bb yes 4
4.b odd 2 1 4608.2.a.bb yes 4
8.b even 2 1 4608.2.a.bb yes 4
8.d odd 2 1 inner 4608.2.a.u 4
12.b even 2 1 inner 4608.2.a.u 4
16.e even 4 2 4608.2.d.r 8
16.f odd 4 2 4608.2.d.r 8
24.f even 2 1 4608.2.a.bb yes 4
24.h odd 2 1 inner 4608.2.a.u 4
48.i odd 4 2 4608.2.d.r 8
48.k even 4 2 4608.2.d.r 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4608.2.a.u 4 1.a even 1 1 trivial
4608.2.a.u 4 8.d odd 2 1 inner
4608.2.a.u 4 12.b even 2 1 inner
4608.2.a.u 4 24.h odd 2 1 inner
4608.2.a.bb yes 4 3.b odd 2 1
4608.2.a.bb yes 4 4.b odd 2 1
4608.2.a.bb yes 4 8.b even 2 1
4608.2.a.bb yes 4 24.f even 2 1
4608.2.d.r 8 16.e even 4 2
4608.2.d.r 8 16.f odd 4 2
4608.2.d.r 8 48.i odd 4 2
4608.2.d.r 8 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4608))\):

\( T_{5}^{2} - 6 \)
\( T_{7}^{2} - 6 \)
\( T_{11} + 2 \)
\( T_{17}^{2} - 8 \)
\( T_{23}^{2} - 48 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( -6 + T^{2} )^{2} \)
$7$ \( ( -6 + T^{2} )^{2} \)
$11$ \( ( 2 + T )^{4} \)
$13$ \( ( -12 + T^{2} )^{2} \)
$17$ \( ( -8 + T^{2} )^{2} \)
$19$ \( ( -8 + T^{2} )^{2} \)
$23$ \( ( -48 + T^{2} )^{2} \)
$29$ \( ( -6 + T^{2} )^{2} \)
$31$ \( ( -54 + T^{2} )^{2} \)
$37$ \( ( -108 + T^{2} )^{2} \)
$41$ \( ( -72 + T^{2} )^{2} \)
$43$ \( ( -8 + T^{2} )^{2} \)
$47$ \( ( -48 + T^{2} )^{2} \)
$53$ \( ( -6 + T^{2} )^{2} \)
$59$ \( ( 8 + T )^{4} \)
$61$ \( ( -12 + T^{2} )^{2} \)
$67$ \( ( -128 + T^{2} )^{2} \)
$71$ \( ( -192 + T^{2} )^{2} \)
$73$ \( T^{4} \)
$79$ \( ( -6 + T^{2} )^{2} \)
$83$ \( ( 14 + T )^{4} \)
$89$ \( ( -128 + T^{2} )^{2} \)
$97$ \( ( 6 + T )^{4} \)
show more
show less