Properties

Label 4608.2.a.l
Level $4608$
Weight $2$
Character orbit 4608.a
Self dual yes
Analytic conductor $36.795$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1536)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + 3 \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{5} + 3 \beta q^{7} + 6 q^{11} - 4 \beta q^{13} + 6 q^{17} - 4 q^{19} + 2 \beta q^{23} - 3 q^{25} + \beta q^{29} + \beta q^{31} + 6 q^{35} + 6 \beta q^{37} + 2 q^{41} + 2 \beta q^{47} + 11 q^{49} - 7 \beta q^{53} + 6 \beta q^{55} + 4 q^{59} + 6 \beta q^{61} - 8 q^{65} - 8 q^{67} - 2 \beta q^{71} + 8 q^{73} + 18 \beta q^{77} - 9 \beta q^{79} + 2 q^{83} + 6 \beta q^{85} - 2 q^{89} - 24 q^{91} - 4 \beta q^{95} + 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 12 q^{11} + 12 q^{17} - 8 q^{19} - 6 q^{25} + 12 q^{35} + 4 q^{41} + 22 q^{49} + 8 q^{59} - 16 q^{65} - 16 q^{67} + 16 q^{73} + 4 q^{83} - 4 q^{89} - 48 q^{91} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −1.41421 0 −4.24264 0 0 0
1.2 0 0 0 1.41421 0 4.24264 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.a.l 2
3.b odd 2 1 1536.2.a.i yes 2
4.b odd 2 1 4608.2.a.g 2
8.b even 2 1 4608.2.a.g 2
8.d odd 2 1 inner 4608.2.a.l 2
12.b even 2 1 1536.2.a.d 2
16.e even 4 2 4608.2.d.n 4
16.f odd 4 2 4608.2.d.n 4
24.f even 2 1 1536.2.a.i yes 2
24.h odd 2 1 1536.2.a.d 2
48.i odd 4 2 1536.2.d.c 4
48.k even 4 2 1536.2.d.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.2.a.d 2 12.b even 2 1
1536.2.a.d 2 24.h odd 2 1
1536.2.a.i yes 2 3.b odd 2 1
1536.2.a.i yes 2 24.f even 2 1
1536.2.d.c 4 48.i odd 4 2
1536.2.d.c 4 48.k even 4 2
4608.2.a.g 2 4.b odd 2 1
4608.2.a.g 2 8.b even 2 1
4608.2.a.l 2 1.a even 1 1 trivial
4608.2.a.l 2 8.d odd 2 1 inner
4608.2.d.n 4 16.e even 4 2
4608.2.d.n 4 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4608))\):

\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 18 \) Copy content Toggle raw display
\( T_{11} - 6 \) Copy content Toggle raw display
\( T_{17} - 6 \) Copy content Toggle raw display
\( T_{23}^{2} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2 \) Copy content Toggle raw display
$7$ \( T^{2} - 18 \) Copy content Toggle raw display
$11$ \( (T - 6)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 32 \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8 \) Copy content Toggle raw display
$29$ \( T^{2} - 2 \) Copy content Toggle raw display
$31$ \( T^{2} - 2 \) Copy content Toggle raw display
$37$ \( T^{2} - 72 \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( T^{2} - 98 \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 72 \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 8 \) Copy content Toggle raw display
$73$ \( (T - 8)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 162 \) Copy content Toggle raw display
$83$ \( (T - 2)^{2} \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less